Linear Methods 2

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

February 2023

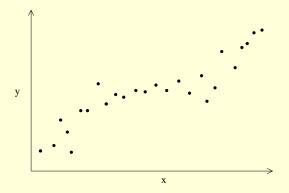
This Lecture

- Convergence of Perceptron Learning Algorithm
- Linear regression

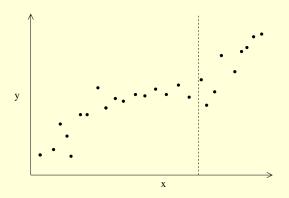
This Lecture

- Convergence of Perceptron Learning Algorithm
- Linear regression

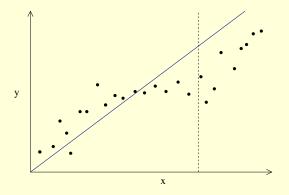
• Illustration with d = 1.



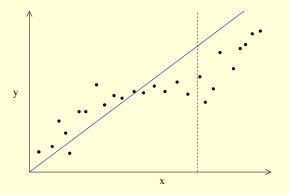
- Illustration with d = 1.
- Given arbitrary *x*, predict its *y*-value.



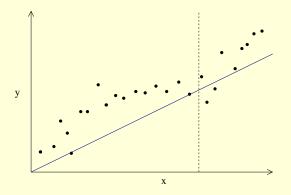
- Illustration with d = 1.
- Given arbitrary x, predict its y-value.
- Assume y = wx (linear model); w is the parameter to learn.



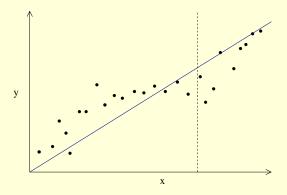
- Illustration with d = 1.
- Given arbitrary x, predict its y-value.
- Assume y = wx (linear model); w is the parameter to learn.
- What is the optimal choice of w?



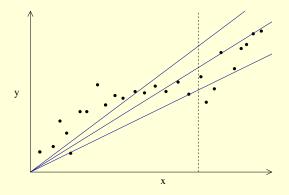
- Illustration with d = 1.
- Given arbitrary x, predict its y-value.
- Assume y = wx (linear model); w is the parameter to learn.
- What is the optimal choice of w?



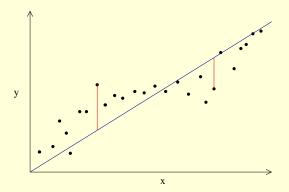
- Illustration with d = 1.
- Given arbitrary x, predict its y-value.
- Assume y = wx (linear model); w is the parameter to learn.
- What is the optimal choice of w?



- Illustration with d = 1.
- Given arbitrary x, predict its y-value.
- Assume y = wx (linear model); w is the parameter to learn.
- What is the optimal choice of w?



- Illustration with d = 1.
- Given arbitrary x, predict its y-value.
- Assume y = wx (linear model); w is the parameter to learn.
- What is the optimal choice of w?



• **Idea**: the optimal w (call it w_{opt}) must give a line from which deviations are small.

• In general w is d-dimensional.

- In general w is d-dimensional.
- Define

$$E(w) = \sum_{i=1}^{n} (y^{i} - w \cdot x^{i})^{2},$$

- In general w is d-dimensional.
- Define

$$E(w) = \sum_{i=1}^{n} (y^{i} - w \cdot x^{i})^{2},$$

$$w_{\text{opt}} = \underset{w}{\operatorname{argmin}} E(w).$$

- In general w is d-dimensional.
- Define

$$E(w) = \sum_{i=1}^{n} (y^i - w \cdot x^i)^2,$$

$$w_{\text{opt}} = \underset{w}{\operatorname{argmin}} E(w).$$

• E(w) is a "sum of squared errors" (SSE).

- In general w is d-dimensional.
- Define

$$E(w) = \sum_{i=1}^{n} (y^i - w \cdot x^i)^2,$$

$$w_{\text{opt}} = \underset{w}{\operatorname{argmin}} E(w).$$

- E(w) is a "sum of squared errors" (SSE).
- How to find w_{opt} ?

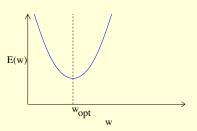
- In general w is d-dimensional.
- Define

$$E(w) = \sum_{i=1}^{n} (y^i - w \cdot x^i)^2,$$

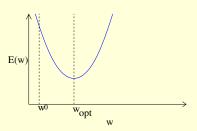
$$w_{\text{opt}} = \underset{w}{\operatorname{argmin}} E(w).$$

- E(w) is a "sum of squared errors" (SSE).
- How to find w_{opt} ?
- We give three methods!

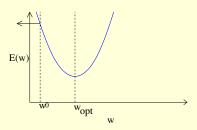
- Observe that E(w) is a differentiable function of w.
- Illustration below uses d = 1 (so w is a scalar).



- Observe that E(w) is a differentiable function of w.
- Illustration below uses d = 1 (so w is a scalar).
- Start with an initial guess w^0 .



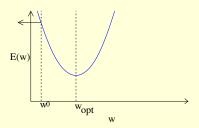
- Observe that E(w) is a differentiable function of w.
- Illustration below uses d = 1 (so w is a scalar).
- Start with an initial guess w^0 .
- Calculate $\frac{dE(w)}{dw}$ at w_0 . It conveys how E(w) varies with w at w_0 .



- Observe that E(w) is a differentiable function of w.
- Illustration below uses d = 1 (so w is a scalar).
- Start with an initial guess w^0 .
- Calculate $\frac{dE(w)}{dw}$ at w_0 . It conveys how E(w) varies with w at w_0 .
- Move in the direction that E(w) is decreasing:

$$w^1 \leftarrow w^0 - \alpha \left(\frac{dE(w)}{dw} \right)_{w=w^0},$$

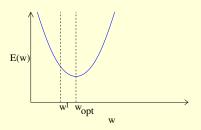
where α is a learning rate—say 10^{-4} .



- Observe that E(w) is a differentiable function of w.
- Illustration below uses d = 1 (so w is a scalar).
- Start with an initial guess w^0 .
- Calculate $\frac{dE(w)}{dw}$ at w_0 . It conveys how E(w) varies with w at w_0 .
- Move in the direction that E(w) is decreasing:

$$w^1 \leftarrow w^0 - \alpha \left(\frac{dE(w)}{dw} \right)_{w=w^0},$$

where α is a learning rate—say 10^{-4} .

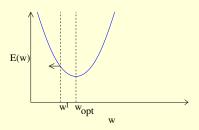


- Observe that E(w) is a differentiable function of w.
- Illustration below uses d = 1 (so w is a scalar).
- Start with an initial guess w^0 .
- Calculate $\frac{dE(w)}{dw}$ at w_0 . It conveys how E(w) varies with w at w_0 .
- Move in the direction that E(w) is decreasing:

$$w^1 \leftarrow w^0 - \alpha \left(\frac{dE(w)}{dw} \right)_{w=w^0},$$

where α is a learning rate—say 10^{-4} .

• Continue in the same way from w^1 !



- Observe that E(w) is a differentiable function of w.
- Illustration below uses d = 1 (so w is a scalar).
- Start with an initial guess w^0 .
- Calculate $\frac{dE(w)}{dw}$ at w_0 . It conveys how E(w) varies with w at w_0 .
- Move in the direction that E(w) is decreasing:

$$w^1 \leftarrow w^0 - \alpha \left(\frac{dE(w)}{dw} \right)_{w=w^0},$$

where α is a learning rate—say 10^{-4} .

- Continue in the same way from w¹!
- But what if E(w) looks like this?!

- Observe that E(w) is a differentiable function of w.
- Illustration below uses d = 1 (so w is a scalar).
- Start with an initial guess w^0 .
- Calculate $\frac{dE(w)}{dw}$ at w_0 . It conveys how E(w) varies with w at w_0 .
- Move in the direction that E(w) is decreasing:

$$w^1 \leftarrow w^0 - \alpha \left(\frac{dE(w)}{dw} \right)_{w=w^0},$$

where α is a learning rate—say 10^{-4} .

- Continue in the same way from w^1 !
- But what if E(w) looks like this?!
- Can't happen. With a linear model and SSE, E(w) is guaranteed to be convex, with unique minimum.

• For d = 1, we used $\frac{dE(w)}{dw}$, which is a scalar, to improve w.

- For d = 1, we used $\frac{dE(w)}{dw}$, which is a scalar, to improve w.
- For d > 1, this quantity generalises to the d-dimensional gradient vector $\nabla_w E(w)$. If we take $w = (w_1, w_2, \dots, w_d)$, then

$$\nabla_w E(w) = \left(\frac{\partial E(w)}{\partial w_1}, \frac{\partial E(w)}{\partial w_2}, \dots, \frac{\partial E(w)}{\partial w_d}\right).$$

- For d = 1, we used $\frac{dE(w)}{dw}$, which is a scalar, to improve w.
- For d > 1, this quantity generalises to the d-dimensional gradient vector $\nabla_w E(w)$. If we take $w = (w_1, w_2, \dots, w_d)$, then

$$\nabla_w E(w) = \left(\frac{\partial E(w)}{\partial w_1}, \frac{\partial E(w)}{\partial w_2}, \dots, \frac{\partial E(w)}{\partial w_d}\right).$$

• Since $E(w) = \sum_{i=1}^{n} (y^i - w \cdot x^i)^2$, we get $\nabla_w E(w) = -2 \sum_{i=1}^{n} (y^i - w \cdot x^i) x^i$.

- For d = 1, we used $\frac{dE(w)}{dw}$, which is a scalar, to improve w.
- For d > 1, this quantity generalises to the d-dimensional gradient vector $\nabla_w E(w)$. If we take $w = (w_1, w_2, \dots, w_d)$, then

$$\nabla_w E(w) = \left(\frac{\partial E(w)}{\partial w_1}, \frac{\partial E(w)}{\partial w_2}, \dots, \frac{\partial E(w)}{\partial w_d}\right).$$

- Since $E(w) = \sum_{i=1}^{n} (y^i w \cdot x^i)^2$, we get $\nabla_w E(w) = -2 \sum_{i=1}^{n} (y^i w \cdot x^i) x^i$.
- We perform the update $w^{i+1} \leftarrow w^i \alpha(\nabla_w E(w))_{w=w^i}$ using this formula.

- For d = 1, we used $\frac{dE(w)}{dw}$, which is a scalar, to improve w.
- For d > 1, this quantity generalises to the d-dimensional gradient vector $\nabla_w E(w)$. If we take $w = (w_1, w_2, \dots, w_d)$, then

$$\nabla_w E(w) = \left(\frac{\partial E(w)}{\partial w_1}, \frac{\partial E(w)}{\partial w_2}, \dots, \frac{\partial E(w)}{\partial w_d}\right).$$

- Since $E(w) = \sum_{i=1}^n (y^i w \cdot x^i)^2$, we get $\nabla_w E(w) = -2 \sum_{i=1}^n (y^i w \cdot x^i) x^i$.
- We perform the update $w^{i+1} \leftarrow w^i \alpha(\nabla_w E(w))_{w=w^i}$ using this formula.
- This process will eventually reach w_{opt}.

• Create a "data matrix" X with n rows and d columns: X_{ij} is the j-th feature of the i-th data point (x^i) .

- Create a "data matrix" X with n rows and d columns: X_{ij} is the j-th feature of the i-th data point (x^i) .
- Put the labels in an $n \times 1$ matrix (a.k.a. n-vector) Y: that is, $Y_i = y^i$.

- Create a "data matrix" X with n rows and d columns:
 X_{ij} is the j-th feature of the i-th data point (xⁱ).
- Put the labels in an $n \times 1$ matrix (a.k.a. n-vector) Y: that is, $Y_i = y^i$.
- We need d weights for w_{opt};

- Create a "data matrix" X with n rows and d columns:
 X_{ij} is the j-th feature of the i-th data point (xⁱ).
- Put the labels in an $n \times 1$ matrix (a.k.a. n-vector) Y: that is, $Y_i = y^i$.
- We need d weights for w_{opt}; obtain them as a vector

$$\mathbf{w}_{\mathrm{opt}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}.$$

Method 3: Use a library!

#scikit-learn code looks something like this.

Im = Ridge()

 $Im.fit(X,\ Y)$

Ynew = Im.predict(Xnew)

• Why did we define E(w) as a sum of squared errors? Are there alternatives?

Why did we define E(w) as a sum of squared errors? Are there alternatives?
 Yes. For example, we could have defined

$$E(w) = \sum_{i=1}^{n} |y^{i} - w \cdot x^{i}|.$$

But this formulation is not as easy to solve.

Why did we define E(w) as a sum of squared errors? Are there alternatives?
 Yes. For example, we could have defined

$$E(w) = \sum_{i=1}^{n} |y^{i} - w \cdot x^{i}|.$$

But this formulation is not as easy to solve.

• Is linear regression used commonly in practice?

Why did we define E(w) as a sum of squared errors? Are there alternatives?
 Yes. For example, we could have defined

$$E(w) = \sum_{i=1}^{n} |y^{i} - w \cdot x^{i}|.$$

But this formulation is not as easy to solve.

Is linear regression used commonly in practice?
 Yes! And it also forms the basis for several other methods in ML.

References

- Note on Perceptron Learning Algorithm (see course page).
- Chapter 7, A Course in Machine Learning, Hal Daumé III. Available on-line at http://ciml.info/.