On-line Learning

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

February 2023

A Game

 $\mathbb{P}\{\text{heads}\} = p_1$

 $\mathbb{P}\{\text{heads}\} = p_2$

Coin 3

 $\mathbb{P}\{\text{heads}\} = p_3$

- p_1 , p_2 , and p_3 are **unknown**.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

A Game

 $\mathbb{P}\{\text{heads}\} = p_1$

 $\mathbb{P}\{\text{heads}\} = \textcolor{red}{p_2}$

Coin 3

 $\mathbb{P}\{\text{heads}\} = \textcolor{red}{p_3}$

- p_1 , p_2 , and p_3 are **unknown**.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

Let's play!

A Game

 $\mathbb{P}\{\text{heads}\} = p_1$

 $\mathbb{P}\{\text{heads}\} = p_2$

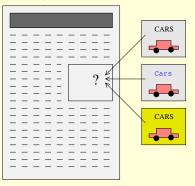
 $\mathbb{P}\{\text{heads}\} = \textcolor{red}{p_3}$

- p_1 , p_2 , and p_3 are **unknown**.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

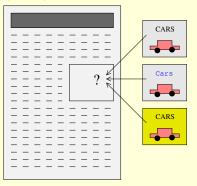
Let's play!

On-line learning: no "data" when we begin. Have to take actions to gather data.

• On-line advertising: Template optimisation

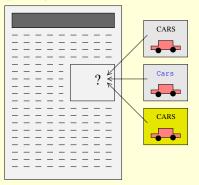


• On-line advertising: Template optimisation



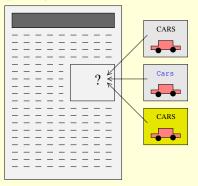
Clinical trials

On-line advertising: Template optimisation



- Clinical trials
- Packet routing in communication networks

On-line advertising: Template optimisation

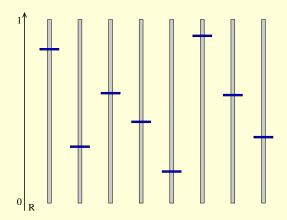


- Clinical trials
- Packet routing in communication networks
- Game playing and reinforcement learning

This lecture

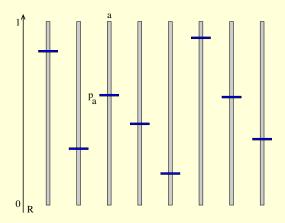
- Problem definition
- A natural algorithm
- Two improved algorithms
- Conclusion

Stochastic Multi-armed Bandits



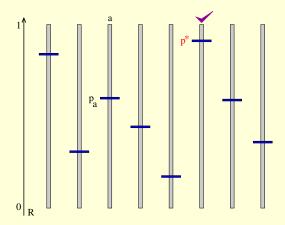
• *n* arms, each associated with a Bernoulli distribution (rewards are 0 or 1).

Stochastic Multi-armed Bandits



- *n* arms, each associated with a Bernoulli distribution (rewards are 0 or 1).
- Arm a has mean p_a.

Stochastic Multi-armed Bandits



- *n* arms, each associated with a Bernoulli distribution (rewards are 0 or 1).
- Arm a has mean p_a.
- Highest mean is p*.

One-armed Bandits

[1]

^{1.} https://pxhere.com/en/photo/942387.

• What does an algorithm do?

• What does an algorithm do?

For
$$t = 1, 2, 3, ..., T$$
:

- Given the history $a^1, r^1, a^2, r^2, a^3, r^3, \dots, a^{t-1}, r^{t-1}$,
- Pick an arm at to sample, and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .

• What does an algorithm do?

For
$$t = 1, 2, 3, ..., T$$
:

- Given the history $a^1, r^1, a^2, r^2, a^3, r^3, \dots, a^{t-1}, r^{t-1}$,
- Pick an arm at to sample, and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .

• *T* is the total sampling budget, or the <u>horizon</u>.

• What does an algorithm do?

For
$$t = 1, 2, 3, ..., T$$
:

- Given the history $a^1, r^1, a^2, r^2, a^3, r^3, \dots, a^{t-1}, r^{t-1}$,
- Pick an arm at to sample, and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t.
- T is the total sampling budget, or the horizon.
- What is the maximum expected reward possible in T pulls?

• What does an algorithm do?

For
$$t = 1, 2, 3, ..., T$$
:

- Given the history $a^1, r^1, a^2, r^2, a^3, r^3, \dots, a^{t-1}, r^{t-1}$,
- Pick an arm at to sample, and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- *T* is the total sampling budget, or the horizon.
- What is the maximum expected reward possible in T pulls? Tp*.

• What does an algorithm do?

For
$$t = 1, 2, 3, ..., T$$
:

- Given the history $a^1, r^1, a^2, r^2, a^3, r^3, \dots, a^{t-1}, r^{t-1}$,
- Pick an arm at to sample, and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- T is the total sampling budget, or the horizon.
- What is the maximum expected reward possible in T pulls? Tp*.
- The actual expected reward for an algorithm is $\sum_{t=1}^{T} \mathbb{E}[r^t]$.

• What does an algorithm do?

For
$$t = 1, 2, 3, ..., T$$
:

- Given the history $a^1, r^1, a^2, r^2, a^3, r^3, \dots, a^{t-1}, r^{t-1},$
- Pick an arm at to sample, and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- T is the total sampling budget, or the horizon.
- What is the maximum expected reward possible in T pulls? Tp^* .
- The actual expected reward for an algorithm is $\sum_{t=1}^{T} \mathbb{E}[r^t]$.
- The regret of the algorithm is the difference

$$R_T = Tp^* - \sum_{t=1}^T \mathbb{E}[r^t].$$

We desire an algorithm that minimises regret!

• What does an algorithm do?

For
$$t = 1, 2, 3, ..., T$$
:

- Given the history $a^1, r^1, a^2, r^2, a^3, r^3, \dots, a^{t-1}, r^{t-1},$
- Pick an arm at to sample, and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t.
- T is the total sampling budget, or the horizon.
- What is the maximum expected reward possible in T pulls? Tp^* .
- The actual expected reward for an algorithm is $\sum_{t=1}^{T} \mathbb{E}[r^t]$.
- The regret of the algorithm is the difference

$$R_T = Tp^* - \sum_{t=1}^T \mathbb{E}[r^t].$$

We desire an algorithm that minimises regret! Can you think of one?

This Lecture

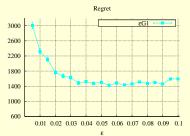
- Problem definition
- A natural algorithm
- Two improved algorithms
- Conclusion

- ϵ G1 (parameter $\epsilon \in [0, 1]$ controls the amount of exploration)
 - If $t \le \epsilon T$, sample an arm uniformly at random.
 - At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
 - If $t > \epsilon T$, sample a^{best} .

- ϵ G1 (parameter $\epsilon \in [0, 1]$ controls the amount of exploration)
 - If $t \le \epsilon T$, sample an arm uniformly at random.
 - At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
 - If $t > \epsilon T$, sample a^{best} .

• Test instance l_1 : n = 20; means = 0.01, 0.02, 0.03, ..., 0.2; T = 100,000.

- ϵ G1 (parameter $\epsilon \in [0, 1]$ controls the amount of exploration)
 - If $t \le \epsilon T$, sample an arm uniformly at random.
 - At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
 - If $t > \epsilon T$, sample a^{best} .

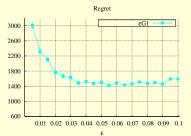


• Test instance I_1 : n = 20; means = 0.01, 0.02, 0.03, ..., 0.2; T = 100,000.

- ϵ G1 (parameter $\epsilon \in [0, 1]$ controls the amount of exploration)
 - If $t \le \epsilon T$, sample an arm uniformly at random.
 - At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
 - If $t > \epsilon T$, sample a^{best} .

● *ϵ*G2

- If $t \le \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.

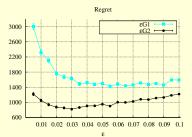


• Test instance I_1 : n = 20; means = 0.01, 0.02, 0.03, ..., 0.2; T = 100,000.

- ϵ G1 (parameter $\epsilon \in [0, 1]$ controls the amount of exploration)
 - If $t \le \epsilon T$, sample an arm uniformly at random.
 - At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
 - If $t > \epsilon T$, sample a^{best} .

● *ϵ*G2

- If $t \le \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.



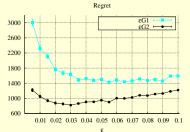
• Test instance I_1 : n = 20; means = 0.01, 0.02, 0.03, ..., 0.2; T = 100,000.

- ϵ G1 (parameter $\epsilon \in [0, 1]$ controls the amount of exploration)
 - If $t \le \epsilon T$, sample an arm uniformly at random.
 - At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
 - If $t > \epsilon T$, sample a^{best} .

● *ϵ*G2

- If $t \le \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.

- With probability ϵ , sample an arm uniformly at random; with probability $1-\epsilon$, sample an arm with the highest empirical mean.



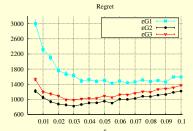
• Test instance I_1 : n = 20; means = 0.01, 0.02, 0.03, ..., 0.2; T = 100,000.

- ϵ G1 (parameter $\epsilon \in [0, 1]$ controls the amount of exploration)
 - If $t \le \epsilon T$, sample an arm uniformly at random.
 - At $t = |\epsilon T|$, identify a^{best} , an arm with the highest empirical mean.
 - If $t > \epsilon T$, sample a^{best} .

● *ϵ*G2

- If $t \le \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.

- With probability ϵ , sample an arm uniformly at random; with probability $1-\epsilon$, sample an arm with the highest empirical mean.



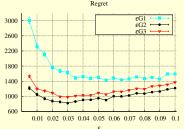
• Test instance I_1 : n = 20; means = 0.01, 0.02, 0.03, ..., 0.2; T = 100,000.

- ϵ G1 (parameter $\epsilon \in [0, 1]$ controls the amount of exploration)
 - If $t \leq \epsilon T$, sample an arm uniformly at random.
 - At $t = |\epsilon T|$, identify a^{best} , an arm with the highest empirical mean.
 - If $t > \epsilon T$, sample a^{best} .

ϵG2

- If $t \le \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.

- With probability ϵ , sample an arm uniformly at random; with probability $1-\epsilon$, sample an arm with the highest empirical mean.



• Test instance l_1 : n = 20; means = 0.01, 0.02, 0.03, ..., 0.2; T = 100,000.

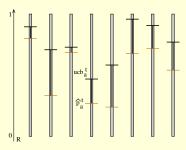
 ϵ G2 with $\epsilon = 0.03$ denoted ϵ G*. Regret of 822 \pm 24 over a horizon of 100,000.

This Lecture

- Problem definition
- A natural algorithm
- Two improved algorithms
- Conclusion

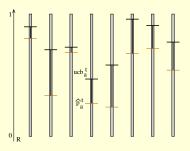
- UCB (Auer et al., 2002)
 - At time t, for every arm a, define $\operatorname{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.

 - \hat{p}_d^t is the empirical mean of rewards from arm \hat{a} .
 u_d^t the number of times a has been sampled at time t.



- UCB (Auer et al., 2002)
 - At time t, for every arm a, define $\operatorname{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.

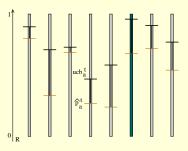
 - \hat{p}_d^t is the empirical mean of rewards from arm \hat{a} .
 u_d^t the number of times a has been sampled at time t.



Sample an arm a for which ucb_a^t is maximal.

- UCB (Auer et al., 2002)
 - At time t, for every arm a, define $\operatorname{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.

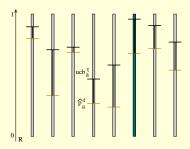
 - \hat{p}_d^t is the empirical mean of rewards from arm \hat{a} .
 u_d^t the number of times a has been sampled at time t.



Sample an arm a for which ucb_a^t is maximal.

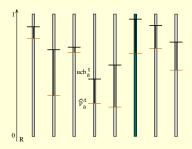
- UCB (Auer et al., 2002)
 - At time t, for every arm a, define $\operatorname{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.

 - \hat{p}_{a}^{t} is the empirical mean of rewards from arm a. u_{a}^{t} the number of times a has been sampled at time t.



- Sample an arm a for which ucb^t is maximal.
- Achieves regret of $O(\log(T))$: optimal dependence on T.

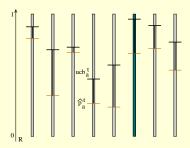
- UCB (Auer et al., 2002)
 - At time t, for every arm a, define $\mathrm{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.
 - \hat{p}_a^t is the empirical mean of rewards from arm a.
 - u_a^t the number of times a has been sampled at time t.



- Sample an arm a for which ucb_a^t is maximal.
- Achieves regret of $O(\log(T))$: optimal dependence on T.
- KL-UCB (Garivier and Cappé, 2011) improves the constant in the O().

Upper Confidence Bounds

- UCB (Auer et al., 2002)
 - At time t, for every arm a, define $\mathrm{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.
 - \hat{p}_a^t is the empirical mean of rewards from arm a.
 - u_a^t the number of times a has been sampled at time t.



- Sample an arm a for which ucba is maximal.
- Achieves regret of $O(\log(T))$: optimal dependence on T.
- KL-UCB (Garivier and Cappé, 2011) improves the constant in the O().

Regret on instance I_1 (with T = 100,000)–UCB: 1168 ± 16 ; KL-UCB: 738 ± 18 .

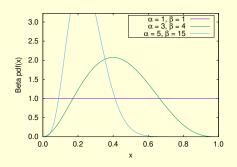
NCM-CEP Math AI/ML (2023) 11/17

Before Moving on ... The Beta Distribution

• Beta(α , β) defined on [0, 1].

Two parameters: α and β .

Mean =
$$\frac{\alpha}{\alpha + \beta}$$
; Variance = $\frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.



Plots obtained by adapting gnuplot script http://gnuplot.sourceforge.net/demo/prob.5.gnu.

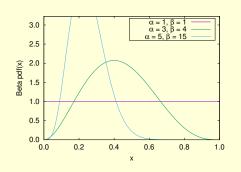
NCM-CEP Math Al/ML (2023) 12/17

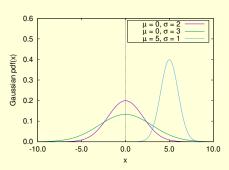
Before Moving on ... The Beta Distribution

• Beta(α , β) defined on [0, 1].

Two parameters: α and β .

Mean
$$=\frac{\alpha}{\alpha+\beta}$$
; Variance $=\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$.





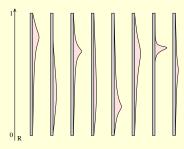
Plots obtained by adapting gnuplot script http://gnuplot.sourceforge.net/demo/prob.5.gnu.

NCM-CEP Math Al/ML (2023) 12/17

- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and f_a^t failures (zeroes/tails).

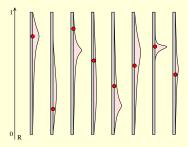
NCM-CEP Math Al/ML (2023) 13/17

- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and f_a^t failures (zeroes/tails).
 - $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.
 - Mean = $\frac{s_a^t + t_a^t}{s_a^t + t_a^t + 2}$; variance = $\frac{(s_a^t + 1)(f_a^t + 1)}{(s_a^t + t_a^t + 2)^2(s_a^t + t_a^t + 3)}$.



NCM-CEP Math AI/ML (2023) 13/17

- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and f_a^t failures (zeroes/tails).
 - $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.
 - Mean = $\frac{s_a^t + 1}{s_a^t + t_a^t + 2}$; variance = $\frac{(s_a^t + 1)(t_a^t + 1)}{(s_a^t + t_a^t + 2)^2(s_a^t + t_a^t + 3)}$.

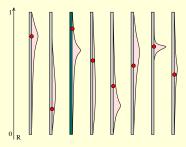


- Computational step: For every arm a, draw a sample $x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$.
- Sampling step: Sample an arm a for which x_a^t is maximal.

NCM-CEP Math Al/ML (2023) 13/17

- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and t_a^t failures (zeroes/tails).
 - $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.

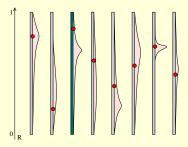
- Mean =
$$\frac{s_a^t + 1}{s_a^t + t_a^t + 2}$$
; variance = $\frac{\left(s_a^t + 1\right)\left(t_a^t + 1\right)}{\left(s_a^t + t_a^t + 2\right)^2\left(s_a^t + t_a^t + 3\right)}$.



- Computational step: For every arm a, draw a sample $x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$.
- Sampling step: Sample an arm a for which x_a^t is maximal.

NCM-CEP Math Al/ML (2023) 13/17

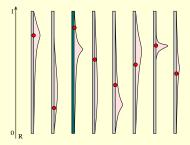
- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and t_a^t failures (zeroes/tails).
 - $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.
 - Mean = $\frac{s_a^t + 1}{s_a^t + t_a^t + 2}$; variance = $\frac{\left(s_a^t + 1\right)\left(t_a^t + 1\right)}{\left(s_a^t + t_a^t + 2\right)^2\left(s_a^t + t_a^t + 3\right)}$.



- Computational step: For every arm a, draw a sample $x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$.
- Sampling step: Sample an arm a for which x_a^t is maximal.
- Achieves optimal regret (Kaufmann et al., 2012); is excellent in practice (Chapelle and Li, 2011).

NCM-CEP Math AI/ML (2023) 13/17

- Thompson (Thompson, 1933)
 - At time t, let arm a have s_a^t successes (ones/heads) and f_a^t failures (zeroes/tails).
 - $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.
 - Mean = $\frac{s_a^t+1}{s_a^t+f_a^t+2}$; variance = $\frac{\left(s_a^t+1\right)\left(f_a^t+1\right)}{\left(s_a^t+f_a^t+2\right)^2\left(s_a^t+f_a^t+3\right)}$.



- Computational step: For every arm a, draw a sample $x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$.
- Sampling step: Sample an arm a for which x_a^t is maximal.
- Achieves optimal regret (Kaufmann et al., 2012); is excellent in practice (Chapelle and Li, 2011).

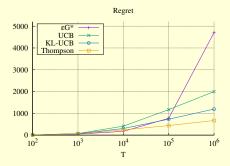
On instance I_1 (with T = 100,000), regret is 463 ± 18 .

NCM-CEP Math AI/ML (2023) 13/17

Method	Regret at T = 100,000
εG*	822 ± 24
UCB	1168 ± 16
KL-UCB	738 ± 16
Thompson	463 ± 18

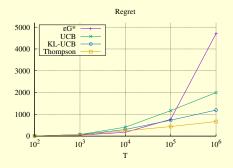
NCM-CEP Math AI/ML (2023) 14/17

Method	Regret at T = 100, 000
εG*	822 ± 24
UCB	1168 ± 16
KL-UCB	738 ± 16
Thompson	463 ± 18



NCM-CEP Math AI/ML (2023) 14/17

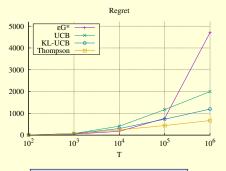
Method	Regret at T = 100, 000
εG*	822 ± 24
UCB	1168 ± 16
KL-UCB	738 ± 16
Thompson	463 ± 18



Use Thompson Sampling!

NCM-CEP Math Al/ML (2023) 14/17

Method	Regret at T = 100, 000
εG*	822 ± 24
UCB	1168 \pm 16
KL-UCB	738 ± 16
Thompson	463 ± 18



Use Thompson Sampling!

Principle: "Optimism in the face of uncertainty."

NCM-CEP Math Al/ML (2023) 14/17

This Lecture

- Problem definition
- A natural algorithm
- Two improved algorithms
- Conclusion

15/17

Challenges and extensions

NCM-CEP Math Al/ML (2023) 16/17

Challenges and extensions

- Set of arms can change over time.

NCM-CEP Math Al/ML (2023) 16/17

Challenges and extensions

- Set of arms can change over time.
- On-line updates not feasible; batch updating needed.

NCM-CEP Math AI/ML (2023) 16/17

Challenges and extensions

- Set of arms can change over time.
- On-line updates not feasible; batch updating needed.
- Rewards are delayed.

NCM-CEP Math Al/ML (2023) 16/17

Challenges and extensions

- Set of arms can change over time.
- On-line updates not feasible; batch updating needed.
- Rewards are delayed.
- Arms might be *dependent*; "context" can be modeled.

NCM-CEP Math AI/ML (2023) 16/17

Challenges and extensions

- Set of arms can change over time.
- On-line updates not feasible; batch updating needed.
- Rewards are delayed.
- Arms might be *dependent*; "context" can be modeled.
- Nonstationary rewards (changing over time); adversarial modeling possible.

NCM-CEP Math AI/ML (2023) 16/17

Challenges and extensions

- Set of arms can change over time.
- On-line updates not feasible; batch updating needed.
- Rewards are delayed.
- Arms might be dependent; "context" can be modeled.
- Nonstationary rewards (changing over time); adversarial modeling possible.

Summary

- Adaptive sampling of options, based on stochastic feedback, to maximise total reward.
- Well-studied problem with long history.
- Thompson Sampling is an essentially optimal algorithm.
- Modeling assumptions typically violated only slightly in practice.

NCM-CEP Math Al/ML (2023) 16/17

References

 Chapter 2, Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, 2020. Available on-line at

http://www.incompleteideas.net/book/RLbook2020.pdf.

 An Empirical Evaluation of Thompson Sampling. Olivier Chapelle and Lihong Li, Neural Information Processing Systems 2011. Available on-line at

```
https://papers.nips.cc/paper/
```

4321-an-empirical-evaluation-of-thompson-sampling.pdf.

NCM-CEP Math AI/ML (2023) 17/17