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Abstract 
In this paper we present innovative solutions to two major challenges faced in the design and 
construction of a Micro-Robot Soccer team. First, we examine the vision system, which requires 
very fast processing of images (60 Hz) for recognizing, segmenting and tracking coloured blobs 
across the playing field. This work introduces a simple neural network-based colour recognition 
module, followed by robust segmentation based on MacQueen’s method. This approach results in 
reliable detection and tracking even when the robots are fairly close to each other. Second, we 
look at the strategy and motion control system, in which we use potential fields to compute 
strategy, low-level decomposition to break up a complex trajectory into a sequence of primitive 
motions, and PID controllers to drive the robot along this path. 
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1. INTRODUCTIO N 
 

Robot Soccer, since the idea was born in 
1995 in the Korean Advanced Institute of 
Science and Technology, has been an 
intriguing field of research in Robotics and 
Artificial Intelligence. The game consists of 
two teams of robots playing a scaled-down 
version of soccer (association football). Robot 
Soccer is a multidisciplinary project, involving 
research in motor control using a 
microcontroller, radio communication, image 
processing and strategy programming. Various 

Robot Soccer championships are organis ed 
under the Federation of International Robot-
Soccer Associations (FIRA) and Robocup. 
Robot Soccer serves as a rigorous testing 
ground for advanced technologies in 
autonomous agent control and collaboration 
between artificial agents. We maintain a team 
of robots which participates in the MiroSot 
(Micro-Robot Soccer Tournament) division of 
the FIRA games. In this paper we describe 
some of the approaches that we have 
developed/implemented in order to 
successfully play a game of Robot Soccer. 



 
2. THE ROBOT SOCCER GAME 
 

A Micro-Robot Soccer match is played 
with two teams of three robots on a 1.5m x 
1.5m field. Each robot (excluding the 
communication antenna) must fit into a 7.5cm 
cube. The ball is an orange golf ball. Each 
team is assigned either the colour blue or the 
colour yellow: the team colour should occupy 
atleast 60% of the top surface of the robot. 
Colours other than orange, yellow and blue 
may be used for marking orientation detection 
patterns on the top surface. 

 
The playing field is black, with white 

markings to indicate the outer boundary, centre 
spot, half-line, penalty boxes, and certain 
reference positions. The playing field 
establishes the frame of reference for 
computation. 
 

Our setup uses a Canon YC -100 camera 
mounted 1.5m above the playing field. The 
analog input of this camera goes to the frame 
grabber connected to a computer, which 
digitizes the input and dumps it into a buffer. 
Software routines then analyse the input data, 
detect the positions of various objects on the 
playing field, comp ute game strategies and 
send motion commands to the robots. A 
schematic diagram of the setup is shown in 
Figure 1. A view of the field as seen by the 
camera is shown in Figure 2. 

 
3. VISION 
 

To accurately determine the positions of 
the robots and the ball, we need to analyse the 
image captured by the overhead camera. Since 
each object in the image is colour-coded, the 

first step is to identify the regions of the image 
with a specific colour. This is followed by 
position identification and tracking. In this 
section we present our implementation of these 
steps, with some prefatory background 
material. 
 
3.1. Colour 
 

The sensation of light arises when the 
human retina (or more precisely, the cone cells  
present in the retina) is  stimulated by 
electromagnetic radiation. These cone cells  are 
responsible for the sampling of different 
wavelengths present in the visual field. There 
are three different types of cone cells , each of 
them sensitive to a different wavelength. 
Typically these wavelengths are 445, 535 and 
570 nm, perceived respectively as red, green 
and blue. Any colour in the visible range of 
light (380 - 780 nm) may be described as a 
weighted combination of the red, green and 
blue primaries. The sensation induced by light 
has not only a physiological but als o a 
psychological (subjective) component [1]. 
After being sampled by the human optical 
system, the visual information is fed to 
structures of the nervous system: in essence, a 
cognitive function acts  on the sampled 
electromagnetic waves. Hence, when a person 
observes some colour (with any saturation or 
brightness), this colour is immediately 
classified as belonging to one of a number of 
previously known classes, such as purple, red 
or yellow. However, the exact procedure for 
classification and the range of each class is not 

Fig. 1: The Micro-Robot Soccer Setup 

Fig. 2: View of the field captured by the 
overhead camera 



well-established. It has been observed that the 
psychological characteristics of an individual 
influence the classification of colours. 

 
3.2. Colour Representation 
 

Colour can be described in two ways: 
physically or perceptually. Some perceptual 
measurements are: 

1. Hue: Distinguishes the dominant 
wavelength. A person subjectively 
perceives dominant wavelengths, i.e. 
colours. 

2. Saturation : Describes the purity of a 
colour, on a scale between a 
monochromatic wave (pure colour) 
and white light (a mixture of all 
colours). 

3. Brightness: Evaluated by establishing 
a visual intensity equivalence with a 
shade of grey. 

4. Luminance: Closely linked to 
brightness, and measured in units  of 
luminous flux. 

  
Physical measurements typically try to 

represent colours as a combination of certain 
primary colours. It has  been shown [1] that the 
stimulus induced in cone cells  by incident light 
of any colour may be reproduced by a 
combination of light of certain “pure” 
wavelengths. In order to uniquely specify a 
given colour, it is possible to add together 
three primary colors (trichromatic 
representation) in amounts such that their 
additive mixture matches the given colour. In 
choosing the primary colours, we must ensure 
that they are independent of each other, i.e. 
some mixture of two primaries should not 
produce the third. Once the primaries of a 
system are chosen, it is usual to represent them 
as an orthogonal basis  of a space in which any 
colour is identified by the triple of values 
specifying the individual amounts of the three 
primaries that constitute it. Let X, Y and Z be 
three primaries of a colour system. The plane 
having equation 

 
X + Y + Z = 1 
 
is called the Maxwell plane or chromancy 

plane, as shown in Figure 3. Spectral colours 
(pure colours) are represented in the Maxwell 

plane by points on a curve called the spectrum 
locus. The shape of the spectrum locus 
depends on the choice of the primary colour 
vectors. The spectrum locus encloses all 
possible combinations of the chosen primaries, 
i.e. all possible colours without the variation 
due to luminosity. The complete colour space 
is 3-dimensional. 

 
3.2.1. The RGB Colour Space 
 

It is natural to choose the retinal primaries 
as the basis of our colour space. In practice, the 
actual wavelengths used are 235.8, 546 and 
700 nm, perceived as red, green and blue. The 
primaries are denoted by R, G and B 
respectively. 
 
3.3. A Review of the Problem 
 

Let us consider Figure 4, which is an 
image of some sheets of coloured paper 
captured by a digital camera under a 
fluorescent light. In this image we find five 
different classes of colours: blue, yellow, 
orange, pink and black. Figure 5 shows the 
location of each pixel in the RGB colour space. 
This representation does not contain 
information about the spatial arrangement of 
the pixels in the original image. 

We observe that the different colour 
groups may be separated by edges  in a suitable 

Fig. 3: The Maxwell Plane 



planar projection of the RGB space. The 
problem of colour classification can thus be 
reduced to the problem of finding the optimal 
edges for a suitable partioning of the projected 
RGB space. We note that these edges need not 
be straight, or even regular. 
 
3.4. Towards a Solution 
 

In the past, several techniques have been 
presented to identify different colours in a 
scene. A survey can be found in [2]. However, 
the emphasis has been on accuracy and shape 
matching rather than speed. In our case, speed 
is an important criterion since we require real 
time control. Hence a fast, simple yet robust 
technique to identify colour is essential. [3] 
presents an algorithm to index and group 
different colours available in an image, 
resulting in distinct clusters, but we cannot use 
it because it is too slow. A real time algorithm 
proposed in [4] tracks a hand in an image 
without supervision. In the field of robot 
soccer, work on colour identification has been 
mostly ad hoc. Teams have tried to use an 
instance-based algorithm in which they 
approximate a colour space with a cuboid. This 
leads to obvious problems as (a) colour spaces 
are not cuboidal and (b) because the intensity 
of a single colour may vary over several 
frames and at different positions in the field. 
The commercially available robot soccer 
system by Yujin Robotics frequently loses 
track of the robots and the ball over time when 
they move from one place to another. This 
system uses background subtraction and 
Gaussian filtering to remove noise [5], 
followed by an instance-based colour 
identification algorithm to identify patches. 

 
3.5. An Instance-Based Algorithm to 
Identify Colours 
 

We initially used a simple algorithm to 
classify colour. The training input was a set of 
positive examples, each example being a 
colour vector of the form <R G B> . To train 
the system to recognise, say, the yellow colour, 
about 100 pixels in different shades of yellow 
were provided as input to the program. The 
mean and the standard deviation were 
calculated for the set and stored. We classified 
a test pixel as yellow if its <R G B> vector lay 
within the standard deviation dis tance from the 
mean in 3D RGB space. This scheme is very 
fast and fairly accurate if we give examples 
over multiple frames and create a linked list of 
means and standard deviation for each frame. 
However, it frequently produces false 
positives. Hence we had to abandon this 
approach. 

 
3.6. A Neural Network-Based Algorithm to 
Identify Colours 
 

After identifying the limitations of the 
instance-based algorithm, we decided to 
implement a back-propagation neural network 
to identify colour. This choice was influenced 
by the fact that artificial neural networks have 
been successfully used in many pattern 
classification applications where the class 
boundaries are not clearly specified. Their key 
features are: 

• Ability to approximate almost any 
function. 

Fig. 4: An image with five 
distinct colours 

Fig. 5: The five colours of Fig. 
4, plotted in RGB space 



• Ability to answer queries (by 
interpolation) for regions in which the 
network was not trained. 

• Ability to learn from examples. 
• Robustness over errors in training. 

  
In our implementation, three input nodes 

received the R, G and B values of the pixel. 
The output was a single node, for which a 
value of 0.9 denoted a positive response and 
0.1 denoted a negative response. A friendly 
and flexible Graphical User Interface (GUI) 
was created as a front-end for the training 
module. The GUI can be used to load, save, 
reset and test a neural network. It also 
simplifies the process of grabbing multiple 
images. Training pixels are selected by 
clicking on the grabbed image. Positive and 
negative examples were fed to the network 
using this GUI and the examples were used to 
train the network over several thousand 
iterations. Experiment showed that 2000 
iterations over positive and negative examples 
across several frames with 10 hidden nodes 
gave the best results. Adjusting network 
parameters and retesting undoubtedly formed 
the most time -consuming part of the project. A 
major advantage of using the neural network is 
that it does not identify too many false 
positives. 
 
3.6. A Neural Network-Based Algorithm to 
Identify Colours 
 

The iterative nature of a neural network 
computation makes it unsuitable for fast real-

time processing. To speed up the computation 
drastically, we used the brute-force method of 
storing the neural network outputs for a 
discrete set of inputs (256 values of R x 256 
values of G x 256 values of B) as a lookup 
table. Now we could replace the iterative 
computation by a simp le table lookup. Of 
course, this approach needed a large amount of 
memory, and we were forced to invest in an 
extra memory card for our main computer. The 
results were worth the expense: the rate of 
computation, measured in a test run of the 
robots, increased from about 10 frames 
processed per second (fps) to 60 fps. 
 
3.7. Initial Identification 
 

Let us assume the team colour is blue. We 
scan the entire image to identify all blue pixels  
by consulting the neural network lookup table. 
There will be three patches of blue pixels in 
the scene, one corresponding to each robot. To 
identify these patches, we apply a clustering 
method. 
 
3.7.1. MacQueen’s K-Means Clustering 
 

The k-means clustering algorithm uses an 
interchange (switching) method to partition a 
graph into clusters. An initial partition is given, 
and new partitions are obtained by switching 
an object from one cluster to another. 
MacQueen's method starts by randomly 
picking k  points, each corresponding to a 
cluster to be made. A set of points is taken 
from the graph, and each point is added to the 
closest cluster (the “closeness” of a cluster is  
measured as the distance to its centroid – the 
mean position of its points ). We then iterate 
over all points, checking if, for each point, the 
closest cluster (in the updated structure) is no 
longer the one to which it belongs. If this is the 
case, we move the point to the closest cluster. 
When such a switch occurs, the centroids of 
both modified clusters have to be recalculated. 
This procedure is repeated until no more 
switching takes place, after which we choose 
the next set of points to add and proceed as 
above. 

Although the initial points may not 
generate an optimal solution, MacQueen's 
method reduces the sum of squared distances 
(population variance) within the clusters to a 

Fig. 6: Two robots recognized and 
segmented by blue triangular markings 

on their top surfaces 



local optimu m. MacQueen's algorithm is 
guaranteed to converge, hence the algorithm is 
robust. 

Once the blue pixels have been identified, 
MacQueen’s algorithm is used to locate the 3 
principal clusters (the 3 optimal means). This 
establishes the spatial extents of the three 
robots  (Figure 6). The markings in the second 
colour (we use purple)  determine the 
orientation of each robot, and identify whether 
it is one of the two strikers or the goalkeeper. 
A similar procedure locates the opponent’s 
robots. 
 
3.8. Object Tracking 
 

Evidently, scanning the entire frame (640 
x 480 pixels) for blue pixels  is expensive. We 
need to exploit the fact that the physical 
motion of the robots is continuous and not very 
fast, hence the change in position between two 
successive frames is small. Given the position 
of a robot in one frame, its position in the next 
frame will lie in the immediate neighbourhood 
if its velocity is not too large. This reduces the 
size of the search space considerably. 

To do this, we must keep track of the 
locations of the robots and the ball. For each 
frame, we use the position information from 
the last few frames and the frame rate to 
compute the expected location of the object. A 
window of fixed size (say thrice the size of the 
robot) centred at this point gives the bounds of 
our search. If we find that enough pixels of the 
appropriate colour do not lie in the window, 
we double the window size and repeat the 
search. 

We obtained tracking speeds of up to 60 
frames per second with this setup in an 
interlaced image. 
 
4. STRATEGY 
 
4.1 Potential Fields  
 

The objective is to design a reactive 
strategy function which will indicate the 
appropriate actions of each robot in different 
configurations. Designing such behaviors 
involves planning for the individual robot as 
well the team dynamics, thus the reactive 
function is defined on a state vector which 
consists of the position and orientation relative 

to goal, position and headings of other robots 
(opponent/self team), ball ownership, etc. 
Now, based on the current task (defence, pass 
receiving, striking, etc.), a suitable reactive 
strategy has to be defined. In our approach, 
this is done by defining the strategy as a sum 
of several multi-dimensional fuzzy functions 
more popularly known as potential fields [6]. 
In this approach the robot is represented as an 
entity under the influence of several artificial 
potential fields whose local variations are 
expected to reflect the favourability of a 
particular action concerning that region. The 
potential functions are defined over entire 
field: lower potentials move the robot towards 
a more favourable location (e.g. closer to the 
ball or closer to the goal), higher potentials 
repel the robot from unfavourable locations 
(e.g. away from opponent robots). 
 
4.2 Fields Used 
 
Defensive 
• Goal Field: favours own goal. 
• Obstruction Field : favours positions that 

obstruct the opponents’ paths. 
 
Offensive 
• Opponents’ Goal Field: favours 

opponents’ goal. 
• Ball Occlusion Field: Avoids 

Fig. 7: The goal field. Darker regions are 
unfavourabl e, lighter regions favourable. 



configurations that will result in the ball 
being struck close to an opponent robot. 

 
Miscellaneous 
• Energy Conservation Field : favours nearer 

positions, to save time taken to move 
there. 

• Ball Field: favours positions near the ball. 
• Point Occlusion Field: avoids positions 

blocked by opponent robots. 
• Other Player Field: avoids collisions with 

other players. 
 
These fields are modelled with exponential or 
inverse linear functions. For example, the goal 
field has the function 

Fieldg = kg * (distg)
ng 

where distg is the distance of the robot from its 
own goal, and kg and ng are parameters. 
 
4.3 Superimposing Fields  
 

Depending on the nature of play required 
(offensive/defensive) the fields are assigned 
appropriate weights and combined linearly. 
Figure 8 shows the result of this approach in 
defense mode. 

 
4.4 Iterative Improvement 
 
We established strategy groundtruths for 
different situations by polling a large number 

of human experts (Delphi approach). The 
deviations of the potential field strategy from 
the groundtruths were recorded. These were 
then used as fitness measures in a genetic 
algorithm which iteratively improved the 
parameters used to define the potential fields. 
 
5. MOTION CONTROL 
 

The basic problem is control of a 
nonholonomic robot. Each of our robots has 
two traction wheels, which are completely 
independent of each other (they have 
individual motors and can be separately 
programmed). This enables very tight turns 
(including point rotation) and complicated 
manoeuvring, but accurate calibration is 
necessary for straight line motion and path 
following. PID control is useful in this regard. 
 
5.1 Trajectory Decomposition and Minimal 
Systems  
 

Due to the limited amount of processing 
time available to the robot for dynamic 
strategy planning (a large part of the timeslice 
is taken up by the vision system), the collision 
avoidance and motion code has to be kept as 
minimal and efficient as possible. Simple 
strategies have traditionally worked better than 
more complex and less robust ones. We were 
inspired by the approach of the Spirit of 
Bolivia robot soccer team to “fully exploit 
minimal systems ” [7]. This approach 
decomposes complex trajectories into very 
simple primitives. We are in the process of 
implementing and testing a small library of 
routines that allow straight line motion, target 
approach and orbiting motions (clockwise and 
anticlockwise). These basic actions can be 
combined to generate more involved 
sequences . 
 
5.2. Path Following 
 

We use software PID controllers to keep 
the robot on the designated path. An error 
value is computed taking into account 
deviation in both orientation and location. A 
linear combination of this error value, its 
integral and its derivative (with respect to 
time) is used for generating the feedback (a 
correctional angular velocity). A 

Fig. 8: Defensive field for a sample 
configuration. The white robot will 

preferably move back to defend its goal. 
 



straightforward calculation determines the 
individual wheel velocities, assuming 
maximum possible linear speed is to be 
maintained. 
  
5.3 The Goalkeeper 
 

The goalkeeper is a special robot which 
moves parallel to the centre line in the penalty 
box region and tries to stop the ball with its 
side. It is the last line of defense and has to be 
fairly robust. This robot should position itself 
at an optimal point in the goalkeeping area so 
that it covers the position from which the ball 
is most likely to come. Our current code uses 
an experimentally determined formula to 
compensate for overshoots in the position of 
the robot. We have determined that the amount 
of overshoot is approximately linearly 
proportional to the velocity of robot motion, 
and are trying to refine the method using PID 
control. 
 
5.4. Simulation. 
 

It is difficult to directly test new methods 
for motion control, since the robot batteries get 
drained quickly and long experimental runs are 
not possible. Hence we designed a software 
simulator for the micro-robot environment (a 
screenshot is shown in Figure 9). The 
simulator implements linear and rotational 
collision dynamics [8]. It is parametrized and 
highly configurable – we have tested non-
standard environments with more than one ball 
and arbitrary polygonal fields. We are working 
to adapt the interface of the simulator library to 

be exactly the same as that of the actual robot 
control module, and to generate images of the 
virtual environment which can be fed to the 
vision module for analysis. This would enable 
the physical equipment to be efficiently 
replaced by their virtual counterparts for 
testing purposes. Of course, since such 
simulations can never be entirely accurate, the 
final testing will have to be on the hardware. 
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