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Figure 1: Given 100 training airplanes (green), our probabilistic model synthesizes 1267 new airplanes (blue).

Abstract

We present an approach to synthesizing shapes from complex do-
mains, by identifying new plausible combinations of components
from existing shapes. Our primary contribution is a new genera-
tive model of component-based shape structure. The model repre-
sents probabilistic relationships between properties of shape com-
ponents, and relates them to learned underlying causes of struc-
tural variability within the domain. These causes are treated as
latent variables, leading to a compact representation that can be
effectively learned without supervision from a set of compatibly
segmented shapes. We evaluate the model on a number of shape
datasets with complex structural variability and demonstrate its
application to amplification of shape databases and to interactive
shape synthesis.
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1 Introduction

The creation of compelling three-dimensional content is a central
problem in computer graphics. Many applications such as games
and virtual worlds require large collections of three-dimensional
shapes for populating environments, and modeling each shape indi-
vidually can be tedious even with the best interactive tools. This is
particularly true for small development teams that lack 3D model-
ing expertise and resources. Such users can benefit from tools that
automatically synthesize a variety of new, distinct shapes from a
given domain.

Tools for automatic synthesis of shapes from complex real-world
domains must understand what characterizes the structure of shapes
within such domains. Developing formal models of this structure
is challenging, since shapes in many real-world domains exhibit
complex relationships between their components. Consider sail-
ing ships. Sailing ships vary in the size and type of hull, keel
and masts, as well as in the number and configuration of masts.
Different types of sailing ships constrain these factors differently.
For example, yawls are small crafts with a shallow hull that sup-
ports two masts with large, triangular sails. Caravels are small,
highly maneuverable ships carrying two or three masts with trian-
gular sails. Galleons are multi-decked vessels with much larger
hulls and primarily square sails on three or more masts. Various
geometric, stylistic and functional relationships influence the se-
lection and placement of individual components to ensure that the
final shape forms a coherent whole. Similarly complex networks of
relationships characterize other domains such as airplanes, automo-
biles, furniture, and various biological forms.

The focus of our work is on designing a compact representation of
these relationships that can be learned without supervision from a
limited number of examples. Our primary contribution is a genera-
tive probabilistic model of shape structure that can be trained on a

© ACM, (2012). This is the author's version of the 
work. It is posted here  by permission of ACM for 
your personal use. Not for redistribution. The 
original version was published  in ACM 
Transactions on Graphics 31{4}, July 2012. 



set of compatibly segmented shapes from a particular domain. The
model compactly represents the structural variability within the do-
main, without manual tuning or any additional specification of the
domain. Given a trained model, plausible new shapes from the do-
main can be automatically synthesized by combining existing com-
ponents, subject to optional high-level constraints. The key idea in
the design of the model is to relate probabilistic relationships be-
tween geometric and semantic properties of shape components to
learned latent causes of structural variability, both at the level of
individual component categories and at the level of the complete
shape.

We demonstrate two applications of the presented model. First, it
can be used to amplify an existing shape database. Given a limited
number of example shapes, the model can synthesize a large num-
ber of new shapes, expanding the size of the database by an order
of magnitude. For example, given a hundred airplanes, the model
can automatically synthesize over a thousand new airplanes, each
distinct from those in the input set (Figure 1). Second, the model
enables interactive shape synthesis interfaces that allow rapid cre-
ation of plausible shapes subject to high-level constraints.

2 Related Work

Our work is closely related to research on assembly-based 3D mod-
eling, which aims to facilitate interactive composition of shapes
from components. The pioneering Modeling by Example system
by Funkhouser et al. [2004] used a database of segmented shapes to
enable interactive assembly of new shapes from retrieved compo-
nents. A follow-up project extended this approach to sketch-based
retrieval of components [Lee and Funkhouser 2008]. The Shuffler
system of Kraevoy et al. [2007] allows interchanging components
between shapes in order to interactively create new shapes. Chaud-
huri and Koltun [2010] describe an approach to retrieving com-
patible components for incomplete shapes during assembly-based
modeling. Xu et al. [2011] describe a system that fits components
from a retrieved database shape to the silhouette of an object ex-
tracted from a photograph. Jain et al. [2012] describe a method that
interpolates between two shapes by combining components from
these shapes. None of these techniques allow automatic synthesis
of plausible new shapes with novel structure from a complex do-
main described only by a set of examples.

The most related assembly-based modeling technique is by Chaud-
huri et al. [2011], who develop a probabilistic representation of
shape structure that can be used to suggest relevant components
during an interactive assembly-based modeling session. While their
probabilistic model can be used to assemble complete novel shapes,
the plausibility of the synthesized shapes is severely limited. This is
due to a number of factors, including the use of probability tables,
the use of the Bayesian Information Criterion, and, most notably,
the flat nature of the model, which does not account for latent causes
of structural variability. The model is thus sufficient for suggesting
individual components, but is unsatisfactory for synthesizing com-
plete shapes. We evaluate the performance of this model against
ours in Section 7.

Our work is also related to techniques that analyze a single in-
put shape and generate larger shapes by exploiting adjacencies
and repeated patterns within the input, akin to texture synthesis
[Merrell 2007; Merrell and Manocha 2011; Bokeloh et al. 2010].
However, these previous techniques produce shapes that are only
locally similar to the input and do not represent the global structure
of shapes within a complex domain.

Prior works on learning models of variability in collections of
shapes have primarily focused on continuous variability. These in-
clude SCAPE [Anguelov et al. 2005], a learned model of variation

in human shape and pose, and the earlier works of Blanz and Vetter
[1999] and Allen et al. [2003]. A related recent work by Ovsjanikov
et al. [2011] enables exploration of continuous variability in collec-
tions of shapes by means of a deformable template. Our work can
be seen as a limited generalization of SCAPE to domains in which
shapes differ significantly in their component structure.

Our work can also be viewed as a generalization of in-
verse procedural modeling [Aliaga et al. 2007; Stava et al. 2010;
Bokeloh et al. 2010], which aims to reconstruct a procedural rep-
resentation from a given exemplar shape. Prior inverse procedural
modeling techniques analyzed single example shapes in isolation.
In contrast, we model structural variability in complex domains ex-
emplified by a set of shapes.

Our probabilistic model is related to a number of hierar-
chical generative models for object recognition in images
[Bouchard and Triggs 2005; Tu et al. 2005; Jin and Geman 2006;
Fidler and Leonardis 2007; Todorovic and Ahuja 2008;
Zhu et al. 2008; Ommer and Buhmann 2010; Roux et al. 2011;
Ranzato et al. 2011]. Like many of these models, we employ latent
variables to represent higher-level concepts, and learn both the
content of the latent variables and some of the structure of the
model from data. However, our model operates not on image
pixels or patches, but on geometric and semantic features of
three-dimensional shape components. It is specifically designed
to have a compact parameterization so as to synthesize complete
plausible novel shapes after training on only a small number (of up
to a hundred) examples.

3 Probabilistic Model

Our probabilistic model is designed to represent the component-
based structure of shapes in complex domains such as furniture,
aircraft, vehicles, etc. Our key observation is that the structural
variability in such domains is often characterized by the presence
of multiple underlying types of shapes and their components. For
example, the expected set of components present in a chair—as well
as their geometry—differs markedly between office chairs, dining
chairs, and cantilever chairs. This observation allows us to design a
compact hierarchical model that can be effectively trained on small
datasets. Our model incorporates latent variables that parameterize
the types of shapes in the domain as well as the styles of individual
components. The latent variables and their probabilistic relation-
ships to other variables in the model are learned from data.

The model is trained on a set of compatibly segmented shapes. We
do not require that the set of components in the examples be con-
sistent: some airplanes have horizontal stabilizers and some do not,
some have landing gear while others don’t, etc. Our requirement
from the input segmentation is rather that compatible components
be identified as such; thus horizontal stabilizers on all example air-
planes should be labeled as belonging to the same category. In our
implementation, we use the compatible segmentation and labeling
technique of Kalogerakis et al. [2010], assisted by manual segmen-
tation and labeling. The component categories were labeled with
semantically meaningful labels, but this is not a requirement for our
approach and an unsupervised compatible segmentation technique
could have been used instead [Huang et al. 2011; Sidi et al. 2011].

Random variables. Our model is illustrated in Figure 2. It is a
hierarchical mixture of distributions over attributes of shape com-
ponents, with a single latent variableR at the root. This variable can
be interpreted as the overall type of the shape. For each component
category l, there is also a latent variable Sl that aims to represent
the styles of components from l. The latent variables are not di-
rectly observed from the training data and are learned as described
in Section 4.
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Figure 2: Probabilistic model for component-based shape synthe-
sis. Top: Visualization of the model’s structure. Each node rep-
resents a random variable. Shaded nodes correspond to observed
variables, non-shaded nodes correspond to latent variables. The
visualization uses plate notation: the variables of the larger rect-
angle are replicated L times, where L is the number of component
categories. Bottom: The random variables used in the model.

Observed random variables describe attributes that can be unam-
biguously extracted from the data. These include Nl, the number
of components from category l,Cl, a vector of continuous geomet-
ric features of components from category l (with dimensionality
pl), andDl, a vector of discrete geometric features of components
from category l (with dimensionality p′l). In our implementation,
the continuous features include curvature histograms, shape diame-
ter histograms, scale parameters, spin images, PCA-based descrip-
tors, and lightfield descriptors. These features are described further
in Appendix A. The discrete features encode adjacency informa-
tion. Specifically, these features specify the number of components
from each category l′ that are adjacent to components from cate-
gory l. The discrete features help ensure that components selected
for a synthesized shape have compatible numbers of adjacent com-
ponents of each type, so that they can be assembled into a coherent
shape using the optimization procedure described in Section 5.2.

Model structure. The random variables are organized hierarchi-
cally, as shown in Figure 2, so that the latent variables produce a
hierarchical clustering effect: the values of the random variables Sl

represent clusters of similar components in terms of their geometric
and adjacency features, while the values of the root variable R rep-
resent clusters of similar shapes in terms of the style and numbers
of their components. In addition, the model includes lateral condi-
tional dependencies between the observed random variables, which
are not shown in Figure 2. For example, variables Cl and Cl′ can
be connected by an edge. Such lateral connections represent strong
relationships between attributes of different components.

R

Ntop NlegStop Sleg

Ctop ClegDtop Dleg

Figure 3: Illustrative example. A small dataset of tables (top) and
the probabilistic model learned for this dataset (bottom).

Illustrative example. Figure 3 shows a small dataset of compatibly
segmented tables and a probabilistic model learned for this dataset.
The input shapes have two component categories: legs and table-
tops. The random variable R represents the styles of tables in the
dataset. Our model learned that there the two dominant styles: one-
legged tables and four-legged tables. For each style, the model rep-
resents the conditional distribution over the number of components
from each category: specifically, the number of tabletops (Ntop)
and the number of legs (Nleg). For example, in the four-legged ta-
ble style, the number of tabletops is either one or, less commonly,
two. The model also represents the styles of components from each
category (Stop and Sleg). In this example, the model learned that
there are two dominant tabletop styles: rectangular tabletops and
roughly circular tabletops. The model also learned that there are
two leg styles: narrow column-like legs and legs with a split base.
The probability distributions in the model represent the tendency of
rectangular tabletops and narrow column-like legs to be commonly
associated with four-legged tables, and the tendency of roughly cir-
cular tabletops and split legs to be commonly associated with one-
legged tables.

The variables Ctop and Cleg represent continuous geometric fea-
tures for the respective component categories, whileDtop andDleg

represent discrete geometric features. For example, the conditional
probability distribution associated with the variable Dleg encodes
that legs in four-legged tables can be adjacent to either one or two
tabletops. There is also a learned lateral edge that represents a
strong relationship between the continuous geometric featuresCtop

and Cleg . For one-legged tables, the conditional probability distri-
bution associated with Cleg indicates that the horizontal extent of
the base of the leg is positively correlated with the horizontal extent
of the tabletop. This prevents the composition of narrow bases with
wide tabletops: such shapes were never observed in the data and
would be unstable and visually implausible.

Probability distribution represented by the model. The model
represents a joint probability distribution P (X) over all random
variables X = {R,S,N,C,D}. This distribution is factorized
as a product of conditional probability distributions (CPDs) as fol-
lows:

P (X) = P (R)
∏
l∈L

[
P (Sl | R)P (Nl | R, π(Nl))P (Cl | Sl, π(Cl))

P (Dl | Sl, π(Dl))
]
,



where π(Nl), π(Cl), π(Dl) are the sets of observed random vari-
ables that are linked to Nl,Cl andDl by lateral edges.

Parametrization of CPDs for discrete variables. The CPDs for
the discrete random variables T = {Sl, Nl, Dl} of the model can
be represented as conditional probability tables (CPTs). Consider
a discrete random variable T with a single parent discrete variable
U . For every assignment t to T and u to U , the CPT at T stores the
entry

P (T = t | U = u) = qt|u.

The values Q = {qt|u} comprise the parameters of the CPT. For
the random variable R, which has no parents, we simply store the
probability table P (R = r) = qr .

When a discrete random variable has a set of multiple parents
U = {U1, U2, . . . , Um}, we use sigmoid functions instead of a
CPT to parametrize its CPD. Sigmoid functions reduce the com-
plexity of the model and improve generalization, since the number
of parameters in a sigmoid CPD increases linearly with the number
and domain size of the parent random variables, while the num-
ber of parameters of CPTs increases exponentially. Models with a
large number of parameters are more prone to overfitting the train-
ing data. The sigmoid CPD is expressed as follows:

P (T = t | U = u) =
exp(wt,0 +

∑m

j=1 wt,j · Ij(uj))∑
t′∈T exp(wt′,0 +

∑m

j=1 wt′,j · Ij(uj))
,

where u = {u1, u2, . . . , um} is the assignment to the parent vari-
ables,W = {wt,0,wt,∗}t∈T are the parameters of the sigmoids,
and Ij(uj) = {I(Uj = uj)} is a vector-valued binary indicator
function for each of the parent variables Uj .

Parametrization of CPDs for continuous variables. The CPD for
each continuous random variable C is expressed as a conditional
linear multivariate Gaussian. Let U = {U1, U2, . . . , Um} be the
discrete and Z = {z1, z2, . . . , zn} the continuous parents of C.
The conditional linear Gaussian forC is defined as

P (C | u,v) = N

(
φ

u,0 +

n∑
j=1

φ
u,j · vj ; Σu

)
,

where Φ = {φ
u,∗} and Σ = {Σu} are the parameters of the con-

ditional Gaussian for each u in the value space U ofU, and v is the
vector of assignments to the continuous parents Z. Specifically, the
parameters φ

u,0 and Σu are the conditional mean and the covari-
ance matrix, respectively, while the remaining parameters Φ are
regression coefficients. If C has no continuous parents, the CPD
becomes

P (C | u) = N (φ
u,0; Σu) for each u ∈ U .

The parameters Θ = {Φ,Σ,Q,W}, the value spaces of the hid-
den random variables, and the edges between the observed random
variables are learned as described in the next section.

4 Learning

We now describe the offline procedure for learning the structure
and parameters of the probabilistic model. The input is a set of K
compatibly segmented shapes. For each component, we compute
its geometric attributes as described in Appendix A. Our training
data is thus a set of feature vectorsO = {O1, O2, . . . , OK}, where
Ok = {Nk,Dk,Ck}. Our goal is to learn the structure of the
model (domain sizes of latent variables and lateral edges between
observed variables) and the parameters of all CPDs in the model.

The desired structureG is the one that has highest probability given
input data O [Koller and Friedman 2009]. By Bayes’ rule, this
probability can be expressed as

P (G | O) =
P (O | G)P (G)

P (O)
,

where the denominator is a normalizing factor that does not dis-
tinguish between different structures. Assuming a uniform prior
P (G) over possible structures, maximizing P (G | O) reduces to
maximizing the marginal likelihood P (O | G). In order to avoid
overfitting and achieve better generalization, we assume prior dis-
tributions over the parameters Θ of the model. Integrating over the
parameters, the marginal likelihood can be expressed as

P (O | G) =
∑
R,S

∫
P (O, R,S | Θ, G)P (Θ | G) dΘ,

where P (Θ | G) are the parameter priors. Our choice of pri-
ors is discussed in the supplementary material. In the above ex-
pression, the marginal likelihood involves summing over all possi-
ble assignments to the latent variables R and S, thus the number
of integrals is exponentially large. To make the learning proce-
dure computationally tractable, we use an effective approximation
of the marginal likelihood known as the Cheeseman-Stutz score
[Cheeseman and Stutz 1996]:

P (O | G) ≈ P (O∗ | G) ·
P (O | G, Θ̃G)

P (O∗ | G, Θ̃G)
. (1)

Here Θ̃G are the parameters estimated for a given G, and O∗ is
a fictitious dataset that comprises the training data O and approx-
imate statistics for the values of the latent variables. The compu-
tation of this score for a given structure is described in detail in
supplementary material.

Structure search. The Cheeseman-Stutz score is maximized by
greedily searching over different structures G. We resort to greedy
search in order to decrease the computational costs associated with
the score evaluation for each candidate structure. The search pro-
ceeds as follows: we start with a domain size of 1 for R, corre-
sponding to a single shape style. Then, for each component style
Sl in each category l, we evaluate the score with a domain size of
2. This corresponds to a single component style, since the value 0
for Sl denotes the absence of components from this category. We
then gradually increase the domain size of Sl, evaluating the score
at each step. If the score decreases, the previous value (a local max-
imum) is retained as the domain size for Sl and the search moves
to the next component category. After the search iterates over all
variables in S, we increase the domain size of R and repeat the
procedure. The search terminates when the score reaches a local
maximum that does not improve over 10 subsequent iterations; the
domain size for R is set to the value that yielded the highest score,
and the domain sizes for all variables in S are set to the correspond-
ing locally maximal values.

Once the domain sizes for the latent variables have been deter-
mined, we search over possible sets of lateral edges between ob-
served random variables, by locally adding, removing, and flipping
possible edges, and evaluating the Cheeseman-Stutz score for each
attempted structure. We retain the graph structure that yields the
highest score, along with the corresponding parameters for all the
CPDs in the model, computed as described below.



Parameter estimation. For a given structure G, we perform
maximum a posteriori (MAP) estimation of the parameters. The
parameters cannot be optimized in closed form, since the content
of the latent random variables is unknown. Thus, MAP estimates
are found with the expectation-maximization (EM) algorithm. The
details of the EM algorithm are discussed in the supplementary ma-
terial, along with the computation of the three terms in (1). All
computations involving probabilities are performed in log-space to
avoid numerical errors.

5 Shape Synthesis

A model trained on a set of shapes as described in Section 4 can
be used to synthesize new shapes. The synthesis proceeds in two
stages. In the first stage, we enumerate high-probability instantia-
tions of the model. Each instantiation specifies a set of components.
In the second stage, we optimize the placement of these components
to produce a cohesive shape.

5.1 Synthesizing a set of components

Instantiations of the model, corresponding to sets of components,
can be found through forward sampling. However, this random
sampling process is biased towards higher-probability assignments
to the random variables. As a result, valid lower-probability as-
signments can take an exponentially long time to be discovered.
Forward sampling is thus unsuitable for efficiently enumerating all
instantiations that have non-negligible probability.

Instead, we use a simple deterministic procedure. First, we topolog-
ically sort the nodes in the model. Note that the style variables R
and S always appear before other variables, but the complete order-
ing depends on the learned graph structure. Next, we create a tree
whose nodes correspond to partial assignments to the random vari-
ables. The tree is initialized with an empty root node. The children
of the root are all possible assignments to R. The tree continues to
expand by creating nodes for the next partial assignment based on
the values of the next random variable in the sorted list.

When the algorithm reaches the continuous variablesCl, the partial
assignments could in principle take any value in R

dim(Cl), which
would make the search infeasible. However, only specific values
of these variables correspond to geometric features of components
extracted from the training set. Therefore, we expand the partial
assignments only to those values of Cl that correspond to existing
components from category l. Branches that contain assignments
that have extremely low probability density (less than 10−12 in our
implementation) are pruned from the tree. Each complete assign-
ment obtained in this way corresponds to a set of components that
can be combined to form a new shape.

5.2 Optimizing component placement

Given a set of components selected by the model, we need to place
them relative to each other to form a cohesive shape. To assist
this placement, certain regions on each component are marked as
“slots” that specify where this component can be attached to other
components. These slots, shown in red in Figure 4(a), are extracted
automatically from the training data, as described in Appendix A.
The discrete features D in the model encode the number of adja-
cent components for each component category, which ensures that
the set of components synthesized by the model has compatible sets
of slots.

Each slot stores the category label of components it can be attached
to. It also stores simple automatically extracted symmetry relation-
ships that allow correct relative placement of symmetric groups of

(a) Source shapes (b) Unoptimized (c) Optimized

Figure 4: Optimizing component placement. (a) Three source
shapes from the chair database. “Slots” are highlighted in red.
(b) A set of components for a new chair synthesized by the proba-
bilistic model. The components are drawn from the source shapes
shown on the left. Initially, the legs and the back are placed relative
to the seat according to transformations stored in the seat’s slots.
(c) The final synthesized chair, with components placed and scaled
by the least-squares optimization that aligns all pairs of adjacent
components at their corresponding slots.

adjacent components. In the example shown in Figure 4, the chair
seat has two slots for front legs and two slots for back legs. The
symmetry information stored in the seat slots specifies that the leg
placed in the front right slot of the seat is a symmetric counterpart
of the leg placed in the front left slot, reflected by one of the symme-
try planes of the seat. Note that these relationships are a property of
the seat and not of the legs, thus different legs in a new chair can be
placed consistently around the same seat. This gives us a determin-
istic procedure for placing each component vis-a-vis its adjacent
components by matching slots and applying the stored symmetry
transforms. If a component has multiple adjacent components, its
placement at this initial stage is determined by the largest adjacent
component.

This initial placement is further refined by an optimization step that
aligns all pairs of adjacent components at their points of contact.
The optimization minimizes a squared error term over the slots,
which penalizes discrepancies of position and relative size between
each pair of adjacent slots, expressed as a function of the transla-
tion and scaling parameters of the corresponding components. To
ensure that components are not drastically distorted in scale, the op-
timization penalizes deviation from the original component scales,
weighting the error in each parameter by a learned variance in scale.
Finally, the error term also penalizes deviations from symmetry and
ground contact. (Ground contact points are extracted as described
in Appendix A.) We used the same objective term weights for all
domains in our evaluation. A linear least-squares solver, with non-
negativity constraints for the scaling parameters, is used to mini-
mize the error. To enhance the visual appearance of synthesized
shapes, we glue adjacent components of organic shapes by match-
ing adjacent edge loops, shifting local neighborhoods with a smooth
falloff, and applying a final Laplacian smoothing filter. A more so-
phisticated implementation could benefit from more advanced glu-
ing techniques [Sharf et al. 2006].



planes c. vehicles chairs ships creatures
# of training shapes 100 22 88 42 69
# of categories 14 7 11 30 11
# of components 881 122 504 639 593
# of synth. shapes 1267 253 870 199 563

Table 1: Datasets used in the evaluation.
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Figure 5: Left: histogram of number of components used per syn-
thesized shape. Right: histogram of number of source shapes con-
tributing components per synthesized shape.

6 Applications

We describe two applications of the presented model. The first is
amplification of an input shape database and the second is con-
strained shape synthesis based on high-level specifications provided
interactively by a user.

Shape database amplification. The first application is a direct re-
sult of applying the learning and inference procedures described
in the preceding sections. Given an input dataset of compatibly
segmented and labeled shapes, we train the model as described in
Section 4. We then synthesize all instantiations of the model that
have non-negligible probability and optimize the resulting shapes,
as described in Section 5. We identify and reject instantiations that
are very similar to shapes in the input dataset or to previous in-
stantiations. This is achieved by summing over the distances of the
geometric feature vectors of the corresponding components in the
respective shapes, weighted by the sum of the component areas, and
rejecting new instantiations that have a below-threshold distance to
an input shape or to previous instantiations. Note that this pruning
is optional, since these instantiations still correspond to plausible
shapes in our experiments; we simply seek to avoid visually redun-
dant shapes generated by shuffling very similar components around.
We also reject synthesized shapes for which the component place-
ment optimization fails.

Constrained shape synthesis. Our model can also be used to syn-
thesize shapes subject to interactively specified constraints. For ex-
ample, the user may want to synthesize shapes that have specific
components, or components from particular categories, or compo-
nents from some of the learned latent styles; or she may want to
synthesize shapes that belong to some of the learned latent shape
styles. To this end, we have created an interactive interface for vi-
sually specifying such constraints. The interface allows combining
multiple types of constraints and is demonstrated in the accompany-
ing video. To synthesize shapes subject to the provided constraints,
we perform the deterministic search procedure described in Section
5.1 with the modification that partial assignments to constrained
random variables assume values only from the range correspond-
ing to the specified constraints. For example, if the user wishes to
synthesize animal shapes with torsos from particular styles, the de-
terministic search will consider only the corresponding values for
the torso style variable during the tree expansion.
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Figure 6: Quantitative evaluation of generalization performance.
Negative log-likelihood of our model (Model A) compared to
weaker versions of the model. Lower negative log-likelihood in-
dicates better generalization performance. Model B uses CPTs in-
stead of sigmoid functions. Model C is trained with maximum like-
lihood instead of MAP. Model D does not use lateral edges between
observed variables. Model E does not use latent variables, akin to
Chaudhuri et al. [2011]. Our model achieves the best generaliza-
tion across all datasets.
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Figure 7: Generalization performance with impoverished training
sets. Performance decreases as the training set becomes less repre-
sentative of the domain.

7 Evaluation

We evaluated the presented model on five shape datasets obtained
from publicly available 3D model libraries (Digimation Model
Bank, Dosch 3D, and the furniture database ofWessel et al. [2009]).
The datasets were compatibly segmented and labeled using the
technique of Kalogerakis et al. [2010], assisted by manual segmen-
tation and labeling. Table 1 gives the number of shapes in each
dataset, the number of component categories, the number of indi-
vidual components extracted from each dataset, and the number of
new shapes synthesized for each dataset by our model. These syn-
thesized shapes are shown alongside the training shapes in Figures
1, 14, 15, 16, and 17, as well as in the accompanying video. Figure
5 shows a histogram of the number of components used per syn-
thesized shape and a histogram of the number of source shapes that
contributed components per synthesized shape.

Generalization performance. A key question in the evaluation
of a probabilistic model is how well it generalizes from the train-
ing data. A successful generative model will be able to not only
reproduce instances from the training data, but synthesize gen-
uinely novel plausible instances from the domain exemplified by
the dataset. A standard technique for evaluating generalization per-
formance is holdout validation, where the dataset is randomly split
into a training set and a test set. The test set is withheld and only
the training set is used for training the model. The trained model
is then evaluated on the test set, by computing the probability as-
signed by the model to instances in the test set. Higher probability
on the test set corresponds to better generalization performance. We



Figure 8: Qualitative demonstration of generalization. Compo-
nents from multiple source shapes (right) are combined by the prob-
abilistic model to yield plausible new shapes (left, blue). Utilized
components are highlighted in color in the source shapes.

repeat the procedure with three random 80-20 training-test splits of
the dataset, and take the geometric mean of the resulting probabil-
ities. We compare the presented model to weaker models in which
some of the components of the presented model are disabled. The
results are shown in Figure 6. Each bar in the figure corresponds to
the negative logarithm of the probability assigned to the test data by
our model or a weaker variant; a lower value corresponds to better
generalization performance.

We have also evaluated the performance of the model with impov-
erished datasets. To this end, we gradually changed the split ratios
from 80-20 (train on 80% of the data, test on the remaining 20%) to
20-80 (train on 20% of the data, test on the remaining 80%). The re-
sults are plotted in Figure 7. Generalization performance degraded
when the dataset made available for training became less represen-
tative of the overall domain. The rapid degradation for construction
vehicles is due to the small size of the dataset: 20% of the data in
this case corresponds to having only four examples.

Comparison to prior work. The probabilistic model developed
by Chaudhuri et al. [2011] can also be used to synthesize com-
plete novel shapes, although it was not designed for this purpose
and in our experiments generally produced shapes of low plausibil-
ity (Figure 9). For quantitative evaluation against this prior model,
we could not use holdout validation, since the model of Chaud-
huri et al. has a different parameterization from ours and the log-
probabilities of their model and ours are not directly comparable.

(a) Chaudhuri et al. (b) No latent variables (c) No lateral edges

Figure 9: Examples of shapes synthesized with alternative proba-
bilistic models. (a) Shapes generated by the model of Chaudhuri
et al. (b) Shapes generated by a variant of our model that has the
same observed random variables and learning procedure but no
latent variables. (c) Shapes generated by a variant of our model
that has no lateral edges between observed random variables. The
shapes have missing components or implausible combinations of
components.

Instead, we conducted an informal perceptual evaluation with 107
student volunteers recruited through a university mailing list. Each
volunteer performed 30 pairwise comparisons in a Web-based sur-
vey. Each comparison was between images of two shapes from the
same randomly chosen domain. The shapes were randomly sam-
pled from three sets: original training shapes, shapes synthesized
by our model and optimized by the procedure described in Section
5.2, and shapes synthesized by the model of Chaudhuri et al. and
optimized by the same procedure. Each comparison involved im-
ages of shapes from two of these three sets. The images were sam-
pled from the complete set of 321 images of training shapes, the
complete set of 3152 images of shapes synthesized by our model,
and 672 images of shapes synthesized by the model of Chaudhuri
et al. The participants were asked to choose which of the two pre-
sented objects was more plausible, or indicate lack of preference.
A total of 3210 pairwise comparisons were performed. The results
are visualized in Figure 10. Shapes produced by our model were
seen as more plausible than shapes produced by the prior model,
with strong statistical significance.

Content of learned latent variables. Our model is distinguished
by its use of latent variables to compactly parameterize the under-
lying causes of structural variability in complex domains. The do-
mains of these variables are learned from data and different values
of the variables are intended to represent different underlying styles
of shapes and shape components. We visualize the styles learned
by two of the variables for the set of chairs in Figures 12 and 13.
Figure 12 shows high-probability shapes sampled by fixing the root
variable in the learned model to each of its possible values. Figure
13 shows high-probability components sampled by fixing one of
the lower-level latent variables (corresponding to backs of chairs)
to each of its values.
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Figure 10: Evaluation against prior work. 107 volunteers per-
formed pairwise comparisons to evaluate the plausibility of shapes
produced by our model against original training shapes and the
shapes produced by the prior model of Chaudhuri et al. Results
marked with a � are strongly statistically significant (p < 10−7),
according to a two-tailed single sample t-test.

Lateral edges. Lateral edges capture strong correlations between
features of different component categories. For example, in the case
of construction vehicles, one of the learned lateral edges connects
geometric features of the front tool with geometric features of the
cabin. The construction vehicle shown in Figure 9(c) was synthe-
sized by a model without lateral edges and has a bumper instead of
a front scoop or another appropriate front tool. Likewise, for the
chairs dataset, a learned lateral edge connects geometric features of
the front legs with geometric features of the back legs. The chair in
Figure 9(c) was synthesized by a model without lateral edges and
has incompatible front and back legs. Overall, the number of lat-
eral edges learned by the full model correlates with the number of
component categories and the complexity of the domain. There are
9 learned edges for vehicles, 24 for creatures, 35 for chairs, 36 for
planes, and 89 for ships.

Computational complexity and running times. The score eval-
uation (including parameter estimation) has complexity O(LK),
where L is the number of component categories andK is the num-
ber of input shapes. The total complexity of learning is O(L3K),
taking into account the greedy search for the domain sizes of the
hidden variables and the lateral edges. Our implementation is not
parallelized, and was executed on a single core of an Intel i7-740
CPU. Learning took about 0.5 hours for construction vehicles, 3
hours for creatures, 8 hours for chairs, 20 hours for planes, and 70
hours for ships. For shape synthesis, enumerating all possible in-
stantiations of a learned model takes less than an hour in all cases,
and final assembly of each shape takes a few seconds.

8 Discussion

We presented a probabilistic model of component-based shape
structure that can be used to synthesize new shapes from a do-
main demonstrated by a set of example shapes. Our process-
ing pipeline assumes that the training shapes are compatibly seg-
mented. Furthermore, the extraction of geometric features used
for training assumes that the shapes are upright-oriented and front-
facing. We employed semi-automatic procedures to segment and
orient shapes, but the preprocessing stage still required manual ef-
fort. Advances upon current compatible shape segmentation and
orientation techniques would be broadly beneficial [Fu et al. 2008;
Kalogerakis et al. 2010; Huang et al. 2011; Sidi et al. 2011].

Our model also uses the simplifying assumption that the geometric
features of components are normally distributed. This simplifies the
learning procedure, but does not capture more complex variability
of geometric features. Further, the model only learns linear cor-
relations between component features. In addition, the component
placement approach described in Section 5.2 is heuristic and can
fail to produce visually pleasing results. Specifically, it does not

Figure 11: The optimization procedure described in Section 5.2
may fail to yield plausible configurations of components. Some
ropes on the left ship are misaligned because they are treated as
a single component, and some components on the right ship inter-
sect inappropriately.

optimize the orientation of components and does not prevent inter-
sections between components, as shown in Figure 11. The develop-
ment of more sophisticated approaches to component placement is
thus an interesting avenue for future work. Analysis of the function
of shapes is likewise an interesting direction that can enhance shape
synthesis.

Finally, a significant avenue for future work is joint modeling of
discrete structural variability together with continuous variability at
the level of individual components. This can lead to learned models
of continuous shape variability in increasingly complex real-world
domains, which can enable new capabilities for shape reconstruc-
tion.
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A Geometric Preprocessing for Components

First, the meshes are oriented so that +Z is the upward di-
rection and +Y is the front-facing direction. Sparse-PCA
[Chennubhotla and Jepson 2001] on surface samples of a specified
component is used to extract principal axes of each mesh. Sparse-
PCA tends to choose axes that align with the latent XY Z frame,
which is appropriate since the meshes are usually already oriented
to some permutation of the latent axes. Specified principal axes
are aligned to +Z and +Y . For example, the upward direction
of chairs is determined by the SPCA axis that corresponds to the
smallest variance in the points of the seats and for which the center
of mass of backs has positive y-axis value. If this process fails, the
meshes are oriented manually.

Then, for each shape component c from each source mesh m in
the repository, we extract a high-dimensional feature vector con-
taining: a) the 3D scale vector of the oriented bounding box of the
component; b) histograms of 4, 8 and 16 uniform bins for prin-
cipal curvatures κ1 and κ2 (the curvatures are estimated at multi-
ple scales over neighborhoods of point samples of increasing radii:
1%, 2%, 5% and 10% relative to the median geodesic distance
between all pairs of point samples on the surface of m); c) his-
tograms of 4, 8 and 16 uniform bins of the shape diameter over
the surface of c, and of its logarithmized versions w.r.t. normaliz-
ing parameters 1, 2, 4 and 8; d) the following entries, derived from
the singular values {s1, s2, s3} of the covariance matrix of sam-
ple positions on the surface of c: s1/

∑
i
si, s2/

∑
i
si, s3/

∑
i
si,

(s1+s2)/
∑

i
si, (s1+s3)/

∑
i
si, (s2+s3)/

∑
i
si, s1/s2, s1/s3,

s2/s3, s1/s2 + s1/s3, s1/s2 + s2/s3, s1/s3 + s2/s3; e) light-
field descriptor values computed as in [Chen et al. 2003] (since the
meshes are oriented consistently, these descriptors can be compared
without searching over aligning transforms).

We take the average of the above feature vectors of the shape com-
ponents belonging to the same category. We perform PCA on the
matrix of lightfield features, and also on the matrix containing the
descriptors (b-d) to reduce the overall dimensionality of the features
(retaining 75% of the variance in the data). The final feature vector
Cl contains the 3D scale vector and the projected low-dimensional
features.

Finally, for each component we detect slots that connect them to
other components (Figure 4(a)). For components obtained by cut-
ting topologically manifold meshes along edge loops, the slots are
simply these edge loops. For all other components, we mark ver-
tices close to a component of a different category as slot vertices,
using a threshold equal to 1/64 of the radius of the bounding sphere
of the mesh. If no such vertices are found, the threshold is dou-
bled until at least ten slot vertices are found. We also automatically
extract ground contacts for each component, if these exist. These
contacts are extracted by finding the vertices whose distance to the
ground plane is below the threshold used to detect slot vertices.
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Likelihood evaluation and parameter estimation. The first
task in evaluating the score for a test structure G is to estimate the
MAP parameters Θ̃G by maximizing the product

Θ̃G = argmax
Θ

P (O | G,Θ)P (Θ | G).

Here, the first term is the likelihood function and the second term is
the parameter prior. Unfortunately, the product cannot be optimized
in closed form, because the likelihood is a function of the unknown
values of the hidden random variables:

P (O | G,Θ) =
∏
k

∑
Rk,Sk

P (Ok, Rk,Sk | Θ).

Therefore, we use the expectation-maximization (EM) algorithm to
optimize the parameters iteratively. The algorithm starts with an
initial assignment to the values of the shape styleR and component
style Sl for each category label l. The initial assignment is ob-
tained by k-means clustering on the feature space {Cl,Dl} under
the Euclidean metric to obtain initial values of Sl for each training
example. Then we perform k-medoids on the feature space {S,N}
under the Hamming metric to get initial values for the shape style
R for each training example. In both cases, we repeat the clustering
with random starting points until we find the assignments that min-
imize the sum of distances of the data points to their closest cluster
centers.

The EM algorithm alternates between two steps: the M-step in
which the parameters Θ̃G are re-estimated based on the current as-
signments to the hidden random variables, and the E-step in which
the algorithm performs inference to find probabilistic assignments
to the hidden variables for each training example. In the M-step, the
MAP estimates are computed using a Dirichlet prior distribution for
the parameters of the CPDs of the discrete random variables and a
normal-Wishart distribution for the parameters of the CPDs of the
continuous random variables. The updates to the parameters are
computed as follows:

Given the probabilities estimated in the previous E-step, we com-
pute for each shape k:

M [R = r] =
∑
k

P (Rk = r | Ok),

M [Sl = s] =
∑
k

P (Sl,k = s | Ok),

M [Sl = s,R = r] =
∑
k

P (Sl,k = s,Rk = r | Ok).

The parameters for the probability table for R are estimated as:

qr =
M [R = r] + α

K + α|R|
,

where the hyperparameter α is set to 0.1. Then for each remaining
discrete random variable T with a single parent U and every value
u of U , the corresponding CPT parameters are estimated:

qt|u =
M [T = t, U = u] + α

M [U = u] + α|T |
.

For discrete random variables with multiple parents U, we fit sig-
moid CPDs using iterative reweighted least-squares [Bishop 2006].
Then we compute for every value u in the value space U ofU:

qt|u =
P (T = t | U = u) + α/K

1 + α|T |/K
,

where P (T = t | U = u) is the output of the estimated sigmoid
functions.

For the case of a continuous random variable Cl with no
continuous parents, the parameters of its conditional lin-
ear Gaussians are updated as follows [Gauvain and Lee 1994;
Geiger and Heckerman 1994; Koller and Friedman 2009] (we omit
the conditioning on discrete parents for notational clarity):

φl =

μl +
K∑

k=1

P (Sl,k = s)Cl,k

1 +M [Sl = s]
,

Σl ≡ Σll =

Ω+
K∑

k=1

P (Sl,k = s)(Cl,k − φl)(Cl,k − φl)
T

1 +M [Sl = s]

+
(μl − φl)(μl − φl)

T

1 +M [Sl = s]
.

where Ω = 10−4I is a regularization parameter. If the number of
the above parameters is larger than the number of training instances,
we only consider diagonal covariance matrices. The parameter μl

is set to be the mean of the features in the component category l. If
Cl has continuous parents {Cl′}, then the parameters are updated
as follows:

Σll′ =

K∑
k=1

P (Sl,k = s)(Cl,k − φl)(Cl′,k − φl′)
T

M [Sl = s]
,

φl,0 = φl − Σll′Σ
−1
l′l′φl′ ,

φl,l′ = Σll′Σ
−1
l′l′

Σl = Σll − Σll′Σ
−1
l′l′Σl′l.

If the number of the parameters in φl,l′ is larger than the number
of training instances, we use only the three first scale features inCl

for estimating φl,l′ .

In the E-step, inference is performed to estimate probabilities of as-
signments P (Rk | Ok) and P (Sl,k | Ok) for each training data
instance. Inference for the hidden random variables can be per-
formed using variable elimination. Given observed data Ok for a
source shape k, we compute P (R,Sl | Ok) for a label l ∈ L using
the following formula:

P (R,Sl | Ok) =
P (R,Sl, Ok)

P (Ok)
,



where

P (R,Sl, Ok) =
∑

S\{Sl}

P (R)
∏
l′∈L

P (Sl′ | R)P (Nl′,k | R, π(Nl′))

P (Cl′,k | Sl′ , π(Cl′))∏
l∗ adj l′

P (Dl′,l∗,k | Sl′ , π(Dl′,l∗))

= P (R) P (Sl | R) P (Nl,k | R, π(Nl))

P (Cl,k | Sl, π(Cl))
∏

l′ adj l

P (Dl,l′,k | Sl, π(Dl,l′))

∏
l∗∈L,l∗ �=l

∑
Sl∗

P (Sl∗ | R)P (Nl∗,k | R, π(Nl∗))

P (Cl∗,k | Sl∗ , π(Cl∗))∏
l∗∗adj.l∗

P (Dl∗,l∗∗,k | Sl∗ , π(Dl∗,l∗∗)).

and

P (Ok) =
∑
R,Sl

P (R,Sl, Ok).

In the above formulas π(.) denotes the parents of a variable and
Dl = {Dl,l∗} represents the discrete features for each label l -
in our case, these discrete features store the number of adjacent
components for each label l∗ adjacent to label l.

The EM algorithm iterates until convergence: it is stopped when
the parameters differ less than 0.001% at maximum compared to
the previous iteration.

Likelihood of the fictitious dataset O∗. The term
P (O∗ | G, Θ̃G) is the likelihood of the estimated MAP pa-
rameters assuming the training dataset was completed with
probabilistic assignments to the hidden random variables. Given
these probabilistic assignments found in the last step of the EM
algorithm, the likelihood is computed as follows:

P (O∗ | G, Θ̃G) =
∏
R

P (R)M [R]

∏
l∈L

⎡
⎣∏

R

∏
Sl

P (Sl | R)M [Sl,R]

∏
R,π(Nl)

∏
Nl

P (Nl | R, π(Nl))
M [Nl,R,π(Nl)]

∏
l′ adj l

∏
Sl,π(D

l,l′
)

∏
D

l,l′

P (Dl,l′ | Sl, π(Dl,l′))
M [D

l,l′
,Sl,π(D

l,l′
)]

∏
Sl,π(Cl)

∏
k

P (Cl,k | Sl, π(Cl,k))
P (Sl,k|Ok)

⎤
⎦ ,

where M [·] measures the number of times one or more discrete
random variables take particular values. For the case of hidden
random variables, this is replaced by the expected counts, e.g.
M [R = r] =

∑
k
P (Rk = r | Ok).

Marginal likelihood of the fictitious datasetO∗. The marginal
likelihood P (O∗ | G) is the likelihood times the parameter prior
integrated over the parameter space, assuming the training dataset

was completed with probabilistic assignments to the hidden ran-
dom variables. For complete datasets, the marginal likelihood can
be evaluated analytically in the case of Dirichlet priors for the dis-
crete random variables and normal-Wishart priors for the condi-
tional Gaussian random variables [Geiger and Heckerman 1994]:

P (O∗ | G) =

∫
Θ

P (O∗ | Θ, G)P (Θ | G) dΘ

=
Γ(|R|α)

Γ(|R|α+K)

∏
R

Γ(α+M [R])

Γ(α)

∏
l∈L

⎡
⎣∏

R

Γ(|Sl|α)

Γ(|Sl|α+M [R])

∏
Sl

Γ(α+M [Sl, R])

Γ(α)⎛
⎝ ∏

R,π(Nl)

Γ(|Nl|α)

Γ(|Nl|α+M [R, π(Nl)])

∏
Nl

Γ(α+M [Nl, R, π(Nl)])

Γ(α)

⎞
⎠

⎛
⎝ ∏

l′ adj l

∏
Sl,π(D

l,l′
)

Γ(|Dl,l′ |α)

Γ(|Dl,l′ |α+M [Sl, π(Nl)])

∏
D

l,l′

Γ(α+M [Dl,l′ , Sl, π(Nl)])

Γ(α)

⎞
⎠

∏
Sl,π(Cl)

TCl
(Cl, Sl, π(Cl))

TCl
(π(Cl), Sl, π(Cl))

⎤
⎦ ,

where Γ(·) is the gamma function, and

TC(u, Sl,v) = 2π(−pM [Sl,π(C)=v]/2)

(
1

1 +M [Sl, π(C) = v]

) p

2

·
c(p, p)

c(p, p+M [Sl, π(C) = v])
|Ω|

p

2 |Σu|
−(p+M [Sl,π(C)=v])/2.

Here p is the number of dimensions of u, and

c(p, t) =

[
2

dt

2 π
p(p−1)

4

p∏
i=1

Γ

(
t+ 1− i

2

)]−1

.
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