
GRAINS: Generative Recursive Autoencoders for INdoor Scenes

MANYI LI, Shandong University and Simon Fraser University
AKSHAY GADI PATIL, Simon Fraser University
KAI XU∗, National University of Defense Technology
SIDDHARTHA CHAUDHURI, Adobe Research and IIT Bombay
OWAIS KHAN, IIT Bombay
ARIEL SHAMIR, The Interdisciplinary Center
CHANGHE TU, Shandong University
BAOQUAN CHEN, Peking University
DANIEL COHEN-OR, Tel Aviv University
HAO ZHANG, Simon Fraser University

Bedrooms Living rooms Kitchen

Fig. 1. We present a generative recursive neural network (RvNN) based on a variational autoencoder (VAE) to learn hierarchical scene structures, enabling us
to easily generate plausible 3D indoor scenes in large quantities and varieties (see scenes of kitchen, bedroom, office, and living room generated). Using the
trained RvNN-VAE, a novel 3D scene can be generated from a random vector drawn from a Gaussian distribution in a fraction of a second.

We present a generative neural network which enables us to generate plau-
sible 3D indoor scenes in large quantities and varieties, easily and highly
efficiently. Our key observation is that indoor scene structures are inherently
hierarchical. Hence, our network is not convolutional; it is a recursive neural
network or RvNN. Using a dataset of annotated scene hierarchies, we train
a variational recursive autoencoder , or RvNN-VAE, which performs scene
object grouping during its encoding phase and scene generation during
decoding. Specifically, a set of encoders are recursively applied to group
3D objects based on support, surround, and co-occurrence relations in a
scene, encoding information about objects’ spatial properties, semantics, and
their relative positioning with respect to other objects in the hierarchy. By
training a variational autoencoder (VAE), the resulting fixed-length codes
roughly follow a Gaussian distribution. A novel 3D scene can be gener-
ated hierarchically by the decoder from a randomly sampled code from the

∗Corresponding author: kevin.kai.xu@gmail.com

Authors’ addresses: Manyi Li, Shandong University and Simon Fraser University;
Akshay Gadi Patil, Simon Fraser University; Kai Xu, National University of Defense
Technology; Siddhartha Chaudhuri, Adobe Research and IIT Bombay; Owais Khan, IIT
Bombay; Ariel Shamir, The Interdisciplinary Center; Changhe Tu, Shandong University;
Baoquan Chen, Peking University; Daniel Cohen-Or, Tel Aviv University; Hao Zhang,
Simon Fraser University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2018/12-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

learned distribution. We coin our method GRAINS, for Generative Recursive
Autoencoders for INdoor Scenes. We demonstrate the capability of GRAINS
to generate plausible and diverse 3D indoor scenes and compare with ex-
isting methods for 3D scene synthesis. We show applications of GRAINS
including 3D scene modeling from 2D layouts, scene editing, and semantic
scene segmentation via PointNet whose performance is boosted by the large
quantity and variety of 3D scenes generated by our method.

CCS Concepts: • Computing methodologies → Computer graphics;
Shape analysis;

Additional Key Words and Phrases: 3D indoor scene generation, recursive
neural network, variational autoencoder

ACM Reference Format:
Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan,
Ariel Shamir, Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang.
2018. GRAINS: Generative Recursive Autoencoders for INdoor Scenes. 1, 1
(December 2018), 17 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
With the resurgence of virtual and augmented reality (VR/AR), ro-
botics, surveillance, and smart homes, there has been an increasing
demand for virtual models of 3D indoor environments. At the same
time, modern approaches to solving many scene analysis and model-
ing problems have been data-driven, resorting to machine learning.
More training data, in the form of structured and annotated 3D
indoor scenes, can directly boost the performance of learning-based
methods. All in all, the era of “big data” for 3D indoor scenes is seem-
ingly upon us. Recent works have shown that generative neural

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • M. Li et al

networks can be trained to synthesize images, speech, and 3D shapes.
An obvious question is whether similar success can be achieved
with 3D indoor scenes, enabling us to easily generate a large number
of 3D scenes that are realistic and diverse.

The basic building blocks of an indoor scene are 3D objects whose
semantic or functional composition and spatial arrangements fol-
low clear patterns, but still exhibit rich structural variations even
within the same scene category (e.g., think of the layout varieties
of kitchens or bedrooms). Highly structured models, including in-
door scenes and many man-made objects, could be represented as a
volume or using multi-view images and undergo conventional con-
volutionary operations. However, such operations are oblivious to
the underlying structures in the data which often play an essential
role in scene understanding. This may explain in part why deep con-
volutional neural networks (CNNs), which have been so successful
in processing natural images, have not been widely adopted for the
analysis or synthesis of 3D indoor scenes.
In this paper, we present a generative neural network which en-

ables us to easily generate plausible 3D indoor scenes in large quanti-
ties and varieties; see Figure 1. Using our approach, a novel 3D scene
can be generated from a random vector drawn from a Gaussian in a
fraction of a second, following the pipeline shown in Figure 3. Our
key observation is that indoor scene structures are inherently hier-
archical. Hence, our network is not convolutional; it is a recursive
neural network [Socher et al. 2011] or RvNN1.

Using a dataset of annotated scene hierarchies, we train a varia-
tional recursive autoencoder , or RvNN-VAE, which performs scene
object grouping during its encoding phase and scene generation dur-
ing decoding, as shown in Figure 2. Specifically, a set of encoders are
recursively applied to group 3D objects in a scene, bottom up, and
encode information about the objects and their relations, where the
resulting fixed-length codes roughly follow a Gaussian distribution.
A new scene can then be generated top-down, i.e., hierarchically,
by decoding from a randomly generated code.
Our approach is inspired by the recent work of Li et al. [2017],

coined GRASS, which develops a generative recursive autoencoder
for learning shape structures. Specifically, they model the part struc-
ture of a 3D object using a hierarchical organization of assembly and
symmetry groupings over the object parts and train an RvNN built
on autoencoders to learn hierarchical grouping rules. Like GRASS,
our neural network for indoor scenes, which we call GRAINS, is also
an RvNN-based generative autoencoder. But the data representation,
network architecture, and training mechanism all have to be altered
in fundamental ways to meet the unique challenges arising from
learning indoor scene structures and object-object relations.

On a superficial level, one may regard parts in a 3D object as the
same as objects in a 3D scene. While part-part and object-object rela-
tions, for objects and scenes respectively, are both highly structured,
there are several critical distinctions between them:

• Predominantly, the constituent parts of a 3D object are strictly
governed by connectivity and symmetry [Wang et al. 2011]. In
contrast, relations between objects in a scene are much looser .
The objects are almost never physically connected. As well,
due to perturbations arising from human usage, symmetries

1RvNNs are not to be confused with recurrent neural networks or RNNs.

In
p

u
t

H
ie

ra
rc

h
y

B
o

x
E

n
co

d
e

r

Supp Encoder

Co-oc Encoder

Surr Encoder

Wall Encoder

R
o

o
t

 E
n

co
d

e
r

S
a

m
p

le
d

 R
o

o
t

C
o

d
e

R
o

o
t

D
e

co
d

e
r

Supp Decoder

Co-oc Decoder

Surr Decoder

Wall Decoder

B
o

x
D

e
co

d
e

r

O
u

tp
u

t
H

ie
ra

rc
h

y

leaf node

internal node

Encoder Module Decoder Module

st
d

m
e

a
n

R
o

o
t

C
o

d
e

G
a

u
ss

ia
n

 D
is

tr
ib

u
ti

o
n

S
a

m
p

le
d

 v
e

ct
o

rf
µ

f

f
d

Sampler

Fig. 2. Architecture of our RvNN-VAE, which is trained to learn a generative
model of indoor scene structures. Input to the network is a scene hierar-
chy composed of labeled OBBs enclosing 3D scene objects. The boxes are
recursively grouped and codified by a set of encoders, resulting in a root
code. The root code is approximated by a Gaussian distribution, from which
a random vector is drawn and fed to the decoder. The recursive decoder
produces an output hierarchy to minimize a reconstruction+VAE loss.

(e.g., the rotational symmetry of dining chairs around a round
table) are often not strictly adhered to.

• Object-object relations in a scene are often more about se-
mantics or functionality than geometric proximity or fit, with
the latter being more prominent for part-part relations in 3D
object geometry. For example, a TV and a sofa are related
since they together serve the function of “watching TV", but
the two objects can be far apart in a scene. Unlike symmetry
and proximity, relations of this kind are much more difficult,
if not impossible, to infer based purely on geometric analysis
or by analyzing a given scene alone.

• Despite the rich intra-class structural variations that exist
with man-made objects, e.g., the variety of chairs or airplanes,
these objects can still be well aligned, at least globally. Such
an alignment offers predictability in the positioning of object
parts, which often plays an essential role in facilitating the
learning of models or templates for man-made shapes [Huang
et al. 2015; Kim et al. 2013; Li et al. 2017]. In contrast, it is
significantly more difficult to align scene layouts, even if they
are all of bedrooms or living rooms.

To address the new challenges as a result of these differences,
GRAINS differs from GRASS in several key aspects. First, we con-
struct our RvNN for indoor scenes using three grouping operations
(with their corresponding encoders and decoders as shown in Fig-
ure 2): support (e.g., desk supporting a computer), surround (e.g.,
nightstands surrounding a bed or dining chairs surrounding a table),
and co-occurrence (e.g., between sofa and coffee table or between
computer, keyboard, and mouse). In contrast, the GRASS RvNN for
3D shapes is defined by two grouping operations: symmetry and
connectivity. Generally speaking, the term “object co-occurrence”
would encompass both support and surround relations. However, in
our paper, co-occurrences is a “catch-all” entity that covers all the ge-
ometrically loose and functionality- or action-oriented object-object
relations that do not reflect physical support or surround.

Second, a proper grouping of 3D objects in a scene has to account
for object co-occurrences, which are inherently tied to the semantics
of the objects. Indeed, co-occurrence hinges mainly on what the
objects are, e.g., a computermonitor is almost always associatedwith

, Vol. 1, No. 1, Article . Publication date: December 2018.

GRAINS: Generative Recursive Autoencoders for INdoor Scenes • 3

level1

level2

level4 level5

level3

Reconstruct 3D scenes from the hierarchyDecoded hierarchy

level1

level2

level3

level4

level5 Generated

Scene

Sampled

Vector

Decoder

Module

G
a

u
ss

ia
n

D
is

tr
ib

u
ti

o
n

Sampled

Root Code

f
d

Fig. 3. Overall pipeline of our scene generation. The decoder of our trained RvNN-VAE turns a randomly sampled code from the learned distribution into a
plausible indoor scene hierarchy composed of OBBs with semantic labels. The labeled OBBs are used to retrieve 3D objects to form the final 3D scene.

a keyboard. Thus, unlike GRASS, our scene RvNN must encode and
decode both numerical (i.e., object positioning and spatial relations)
and categorical (i.e., object semantics) data. To this end, we use
labeled oriented bounding boxes (OBBs) to represent scene objects,
whose semantic labels are recorded by one-hot vectors.

Finally, GRASS encodes absolute part positions, since the global
alignment between 3D objects belonging to the same category leads
to predictability of their part positions. However, in the absence of
any sensible global scene alignment over our scene dataset, GRAINS
must resort to relative object positioning to reveal the predictability
of object placements in indoor scenes. In our work, we encode
the relative position of an OBB based on offset values from the
boundaries of a reference box, as well as alignment and orientation
attributes relative to this reference. Under this setting, room walls
serve as the initial reference objects (much like the ground plane for
3D objects) to set up the scene hierarchies. Subsequent reference
boxes are determined on-the-fly for nested substructures.

Figure 2 shows the high-level architecture of our RvNN-VAE and
Figure 3 outlines the process of scene generation. We demonstrate
that GRAINS enables us to generate a large number of plausible
and diverse 3D indoor scenes, easily and highly efficiently. Plausi-
bility tests are conducted via perceptual studies and comparisons
are made to existing 3D scene synthesis methods. Various network
design choices, e.g., semantic labels and relative positioning, are
validated by experiments. Finally, we show applications of GRAINS
including 3D scene modeling from 2D layouts, scene manipulation
via hierarchy editing, and semantic scene segmentation via Point-
Net [Qi et al. 2017] whose performance is clearly boosted by the
large quantity and variety of 3D scenes generated by GRAINS.

2 RELATED WORK
In recent years, much success has been achieved on developing deep
neural networks, in particular convolutional neural networks, for
pattern recognition and discriminative analysis of visual data. Some
recent works have also shown that generative neural networks
can be trained to synthesize images [van den Oord et al. 2016b],
speech [van den Oord et al. 2016a], and 3D shapes [Wu et al. 2016].
The work we present is an attempt at designing a generative neural
network for 3D indoor scenes. As such, we mainly cover related
works on modeling and synthesis of 3D shapes and 3D scenes.

Indoor scene synthesis. The modeling of indoor environments is
an important aspect of 3D content creation. The increasing demand
of 3D indoor scenes from AR/VR, movies, robotics, etc, calls for ef-
fective ways of automatic synthesis algorithms. Existing approaches
to scene synthesis mostly focus on probabilistic modeling of object
occurrence and placement. The technique of Fisher et al. [2012]
learns two probabilistic models for modeling sub-scenes (e.g. a table-
top scene): (1) object occurrence, indicating which objects should be
placed in the scene, and (2) layout optimization, indicating where
to place the objects. Given an example scene, new variants can be
synthesized based on the learned priors.

Graphical models are recently utilized to model global room lay-
out, e.g., [Kermani et al. 2016]. To ease the creation of guiding
examples, Xu et al. [2013] propose modeling 3D indoor scenes from
2D sketches, by leveraging a database of 3D scenes. Their method
jointly optimizes for sketch-guided co-retrieval and co-placement
of scene objects. Similar method is also used to synthesize indoor
scenes from videos or RGB-D images [Chen et al. 2014; Kermani
et al. 2016]. Some other works perform layout enhancement of a
user-provided initial layout [Merrell et al. 2011; Yu et al. 2011]. Fu
et al. [2017] show how to populate a given room with objects with
plausible layout. A recent work of Ma et al. [2018] uses language
as a prior to guide the scene synthesis process. Scene edits are per-
formed by first parsing a natural language command from the user
and transforming it into a semantic scene graph that is used to
retrieve corresponding sub-scenes from a database. This retrieved
sub-scene is then augmented by incorporating other objects that
may be implied by the scene context. A new 3D scene is synthesized
by aligning the augmented sub-scene with the current scene.

Human activity is another strong prior for modeling scene layout.
Based on an activity model trained from an annotated database
of scenes and 3D objects, Fisher et al. [2015] synthesize scenes to
fit incomplete 3D scans of real scenes. Ma et al. [2016] introduce
action-driven evolution of 3D indoor scenes, by simulating how
scenes are altered by human activities. The action model is learned
with annotated photos, from which a sequence of actions is sampled
to progressively evolve an initial clean 3D scene. Recently, human
activity is integrated with And-Or graphs, forming a probabilistic
grammar model for room layout synthesis [Qi et al. 2018].

, Vol. 1, No. 1, Article . Publication date: December 2018.

4 • M. Li et al

In a concurrently developed work, Wang et al. [2018] learn deep
convolutional priors for indoor scene synthesis. Their method en-
codes scene composition and layout using multi-channel top-view
depth images. A deep convolutional neural network is then trained
with these image channels to output object placement priors as a
2D distribution map. Scene synthesis is performed via a sequential
placement of objects, guided by the learned priors. The key differ-
ences between their and our scene synthesis frameworks include:
1) GRAINS produces 3D indoor scenes with object-on-furniture
support and is not limited to just floor-supported furniture layouts;
2) we model and learn scene hierarchies rather than a flat object lay-
out; 3) we adopt a structural representation of indoor scenes which
explicitly encode spatial relations and contextual information.

Generative 3D modeling. We focus on generative models for creat-
ing discrete variations of 3D models at the part level. Earlier models
are either based on hand-crafted shape grammars [Müller et al.
2006], or learned from a single or a few training examples [Bokeloh
et al. 2010; Talton et al. 2012]. More recent models are usually con-
structed from shape correlation across of a larger set of 3D models,
e.g., feature point correspondence [Kim et al. 2013] or part correspon-
dence [Xu et al. 2012]. Based on part correspondence, some works
explored the learning of part-based Bayesian networks [Chaudhuri
et al. 2011; Kalogerakis et al. 2012] or deformable templates [Fish
et al. 2014; Huang et al. 2015], to encode both continuous and dis-
crete variations. Such models have been successfully extended to
scene modeling [Fisher et al. 2012; Fu et al. 2017].

Deep generative models for 3D modeling. Deep generative net-
works including Variational Auto-Encoders (VAE) [Kingma and
Welling 2013] and generative adversarial nets (GAN) [Goodfellow
et al. 2014] have enabled effective modeling of high-dimensional
data with a low-dimensional latent space. New samples can be
drawn from the latent space and mapped back to the original data
space with high quality. Limited by the available vector represen-
tations, however deep generative models for 3D shapes have thus
far been focusing on the generation of objects or scenes in volumet-
ric representation [Girdhar et al. 2016; Song et al. 2017; Wu et al.
2016, 2015]. A major drawback of such models is the generated
volumes are structure-oblivious; There is no part information and
thus topology (e.g., connection) and structure (e.g, symmetry) are
not well-defined. To learn a structure-aware model, we need to look
into neural models for structural representations such as graphs.

Generative neural models for structures. To learn feature repre-
sentation for general structures, other than 1D or 2D grids, some
works attempted to extend convolutional neural networks to graph
data [Duvenaud et al. 2015; Henaff et al. 2015; Niepert et al. 2016].
However, it seems hard to utilize these networks to construct gener-
ative models since it is unclear whether and how the feature encod-
ings can be made invertible to support structure generation. Socher
et al. [2012; 2011] pursue a different approach to this problem, by
utilizing recursive neural networks (RvNN) which sequentially col-
lapses edges of a graph, yielding recursive structure encoding with
binary trees. Inspired by this work, Li et al. [2017] learn a generative
recursive auto-encoder for 3D shape structures. Our work adapts
this model for indoor scene generation with non-trivial extensions.

Pointer to the children

Leaf vector
Relative position vector

Fig. 4. A hierarchical vectorized encoding for an indoor scene. Leaf vectors
record object sizes and labels; internal nodes contain positional information
of the child nodes relative to that of the first child node.

3 OVERVIEW
Our RvNN-VAE framework for generating 3D indoor scenes is
trained on a large 3D scene dataset, where each scene is composed
of a set of labeled objects which are represented by bounding boxes
(OBBs). Once trained, the RvNN-VAE is used to generate new scenes
through decoding a randomly sampled noise vector into a hierarchy
of OBBs with object labels. The labeled OBBs are then replaced
with 3D objects retrieved from a 3D shape database based on object
category and model dimensions. Figure 2 shows the high-level ar-
chitecture of the RvNN-VAE and Figure 3 illustrates the generative
process enabled by the learned deep neural network.

Structural scene representation. Given an input 3D indoor scene
composed of a set of labeled objects, we organize the objects in-
cluding walls and floor of a scene into a hierarchy, based on their
spatial relations (Section 4). Objects are present at the leaf level in
the hierarchies, while each internal node represents a group of ob-
jects under its subtree. Figure 4 shows an illustration of hierarchical
structure for indoor scenes. The object labels and sizes are encoded
in the leaf vectors, and the spatial placement information is encoded
by relative positions between sibling nodes in the hierarchy.

Recursive VAE. To learn the layout of 3D indoor scenes, we train
a Variational Auto-Encoder (VAE) whose encoder maps an indoor
scene or more specifically, its OBB hierarchy, into a fixed length
root code in a bottom-up, recursive fashion and the decoder works
inversely (Section 5). This is illustrated in Figure 2. During encod-
ing, the box encoder is first applied to each of the leaf vectors, to
map them into fixed length leaf codes. Then, the RvNN repeatedly
invokes one of the four encoders and outputs a code until the code
for the root node is generated. The decoder module performs an
inverse process to reconstruct the hierarchy with the help of a node
classifier that is trained simultaneously to predict the node type.

Scene generation. Once trained, the network learns a distribution
of root codes that correspond to various scenes. Therefore, given a
root code sampled from the distribution, the trained decoder module
will decode the root code into a hierarchy of OBBs, as shown in
Figure 3. The decoded hierarchy includes the relative positions
between sibling nodes and the bounding boxes in the leaf nodes.

, Vol. 1, No. 1, Article . Publication date: December 2018.

GRAINS: Generative Recursive Autoencoders for INdoor Scenes • 5

4 STRUCTURAL SCENE REPRESENTATION
Indoor scenes are often characterized by their layouts and the classes
of objects present in them, which we represent using labeled ori-
ented bounding boxes (OBBs). For a generated scene to look realistic,
it should follow some common object placement patterns within its
subscenes. Object placement pattern involves both object classes
and the relative positions between the associated objects. We make
the key observation that such patterns are hierarchical, that is, they
follow grouping rules at multiple levels of abstraction. Hence, we
employ a hierarchical model to organize the objects in a scene and
record their relative positions. Figure 4 shows one such illustration.
Here, when merging several nodes into internal nodes, we take into
account their OBBs and the relative positions.
In this section, we describe the details of our structural scene

representation, where our key innovation is the design of relative
position encoding for object placements (Section 4.2).

4.1 Hierarchical scene structures
Given an indoor scene, we organize the constituent objects into
a hierarchy, where the objects and object groups are represented
by the leaf nodes and internal nodes, respectively. We observe that
the common features of indoor scenes lie within their correspond-
ing subscenes, that include the objects and their placement w.r.t
each other. To preserve these features, it is essential to build the
hierarchies based on these sub-scenes.

Pre-defining object relations. Our idea is to first merge the com-
monly perceived “relevant” objects into sub-scenes and group the
sub-scenes into a complete scene. However, because of the large
variation in the training data in terms of number of objects, their
geometry and placement across all the indoor scenes (even among
scenes within the same room type), there’s no consistent way of
defining the sub-scenes. In spite of such a large variation, the rele-
vant objects usually have consistent spatial relations among various
scenes. This can be taken as a heuristic rule to construct the hier-
archies for all the scenes. For example, a desk is likely to have a
chair nearby; a nightstand is likely to be placed adjacent to a bed;
the cabinets are placed against the walls, etc.

Therefore, we build our hierarchies based on the spatial relations.
To categorize these spatial relations, we characterize object-object
relations into three categories: support, surround and co-occur. The
support relation is defined for objects where one object is placed on
top of the other. A set of objects is said to form a surround relation
if they have similar size and same label, and are located around
a central object. The co-occurrence relation is used as a “catch-all”
relation. If two objects are not involved in a support or a surround
relation, they are considered using the co-occurrence relation. In our
hierarchies, we treat thewalls and the floor as special objects because
they serve as the “reference” for the scene layout. In particular, we
observe that the walls are responsible for the correct orientation of
objects in a scene.

Building training scene hierarchies. To build a scene hierarchy,
we first cluster the objects in the scene based on the closest walls
they are placed against. Then, we build a sub-tree using the object

surr node rug

co-oc nodewall2 co-oc nodewall4

wall nodewall1 wall3 wall node�oor

root node

bed supp node supp node

table lamp1stand1 table lamp2stand2

cabinet2cabinet1

Fig. 5. A bedroom from the training set and the corresponding scene hier-
archy. The root node always has a floor and four wall nodes as its children.
Each wall is merged with its associated object clusters, which are organized
into sub-trees based on finer-grained object-object relations.

relations in every cluster. The support relation has the highest pri-
ority, followed by the surround relation and then the co-occurrence
relation. Figure 5 shows a bedroom with various object relations
and the corresponding scene hierarchy. Leaf nodes correspond to
objects and non-leaf nodes represent object groups with certain
relations. We observe that the two pairs of nightstands and table
lamps are first merged by the support relation independently, and
then merged with the bed with the surround relation.

To highlight these features to the network, we place the children
of each kind of internal-node in a particular order. To elaborate, for
a support node, its second child (object or object group) is supported
by the first child (object). For a surround node, its first child is the
central object around which the other two objects (object groups)
are placed. For a co-occurrence node, the children are sorted based
on the sizes of their OBBs – the first child having the largest OBB.
These orders enhance the common features in the dataset, making
it easier for the network to learn.
Once the object clusters are available, we merge the walls and

the associated clusters to form the “wall nodes”. Then the floor
and all the “wall nodes” are merged to get the “root node”. Figure 5
shows the overall hierarchy for a bedroom. In the hierarchy, we have
different types of nodes (leaf nodes, support nodes, co-occurrence
nodes, surround nodes, wall nodes and root node), corresponding
to objects or object groups with different relations.

4.2 Scene object representation
We represent a 3D scene based on semantic and geometric infor-
mation about the objects therein and object-object relations, in a
scene hierarchy, as shown in Figure 4. Specifically, in each leaf node,
we record information about a 3D object, including the geometries
(e.g., length, height, etc.) of its 3D OBB, under a local frame, and the
object’s semantic label, encoded as a one-hot vector whose dimen-
sion equals to the number of object categories for the corresponding
scene type. In each internal node, we record the relative positioning
between the OBBs of two sibling child nodes. It suffices to encode

, Vol. 1, No. 1, Article . Publication date: December 2018.

6 • M. Li et al

o�set1
o�set2

angle

Fig. 6. Defining relative positions between a desk and a chair using one
rotation angle and two offsets between closest edges from the two OBBs.

xa1 xa2

xb1 xb2

xa1 xa2

xb1 xb2

xa1 xa2

xa1 xa2

xa1 xa2

xb1 xb2

Fig. 7. Along the horizontal direction, there are four cases of closest edge
pairs from two axis-aligned boxes (blue and orange). The corresponding
offset values are indicated by horizontal arrows.

2D layout information since object positioning along the height di-
mension can be defined by the support relation. Overall, the relative
(2D) object positioning is encoded in a 28-dimensional vector of real
numbers and bits, as we explain below.

Orientation and offsets. To encode the relative positioning of one
box, referred to as the target box, with respect to a reference box, we
first rotate the target box so that it is axis-aligned with the reference,
where the rotation angle is stored in the 28-D vector. Then we store
two offset values, each representing the distance between two closest
edges from the two boxes, one along the horizontal direction and
one along the vertical direction, as shown in Figure 6. In Figure 7,
we show that along the horizontal direction, there are 4 possible
cases for the pair of closest edges. Hence, we can use a 4×4 = 16-bit
“two-hot” indicator vector to identify which two pairs of edges from
the two boxes would define the two offset values.

Attachment and alignment. Certain object-object attachment or
alignment relations are rather strict, e.g., all beds have at least one
side leaning against a wall. However, such strict relations are diffi-
cult to enforce precisely using only the angle and offset values since
these values are easily affected by noise and one can always expect
variations in them from the training data. To allow precise attach-
ments and alignments in the generated scenes, we opt to encode

such relations explicitly using bit codes as a means of reinforcement
beyond encoding object positions using offsets and angles.

Specifically, attachment is encoded by a 4-bit one-hot vector indi-
cating whether and how the two boxes are attached. The first bit
is used to indicate whether or not the two boxes are attached, the
next two bits indicate whether the boxes are attached along any one
of the two axes, and the last bit indicates if the objects are aligned
along both the axes. Note that an attachment implies that the two
boxes are axis-aligned and that two of their edges either overlap or
lie along a line, e.g., the left edge of the target box overlaps with the
right edge of the reference box or the right edges of the two boxes
lie along a line without overlapping.

Alignment is encoded by a 5-bit one-hot vector to indicatewhether
the two boxes are oriented at an angle of 0◦, 90◦, 180◦, or 270◦ with
respect to one another, or none of the above. In the latter case,
note that the rotation angle is already stored in the 28-D vector. To
summarize, the 28-D vector contains three real numbers (rotation
angle and two offsets) and 25 binary indicators (16 bits for edge pair
identification; 4 bits for attachment; 5 bits for alignment).

5 RECURSIVE MODEL OF INDOOR SCENES
In this section, we describe our method to learn a representation of
indoor scenes, of varying complexity, as fixed-dimensional codes.
Our model is based on Recursive Autoencoders (RAE) for unlabeled
binary trees, developed by Socher et al. [Socher et al. 2011]. RAEs
were originally intended for parsing natural language sentences in a
discriminative setting, trained on unlabeled parse trees. It consists of
an encoder neural network that takes two n-dimensional inputs and
produces a single n-D output, and a decoder network that recovers
two n-D vectors from a single n-D vector. Given a binary tree with
n-D descriptors for leaves, the RAE is used to recursively compute
descriptors for the internal nodes, ending with a root code. The root
code can be inverted to recover the original tree using the decoder.
With an additional classifier that helps reconstruct the original tree
topology from a given root code, the decoding process does not
require access to the input hierarchy.

In our scenario, the primary goal of the scene encoder is to encode
the hierarchical organization of objects in a manner consistently
reflecting common patterns found in various scenes. We extend
the original RAE framework for the task of scene generation to
accommodate non-binary nodes (the surround and root nodes) and
multiple encoder-decoder pairs. In addition to the non-binary nodes,
our hierarchies are built based on various object-object relations
with different features, and therefore it is natural to use specific
encoder and decoder pair for each relation.

Autoencoder model: Our recursive autoencoder comprises six dis-
tinct encoder/decoder pairs. A box encoder is used to convert the
leaf vectors into codes. To handle the object-object relations, we
have support, co-occurrence and surround encoders. To group a clus-
ter with its corresponding wall, we devise a wall encoder. Finally,
a root encoder merges the four wall nodes with the floor. Figure 8
show the inputs and outputs of all these encoder/decoder pairs.
Below, we describe the encoders and decoders in detail. Each

encoder and decoder (except those for input/output boxes) is a multi-
layer perceptron (MLP) [Minsky and Papert 1969; Werbos 1974],

, Vol. 1, No. 1, Article . Publication date: December 2018.

GRAINS: Generative Recursive Autoencoders for INdoor Scenes • 7

k-D leaf-vector

Box Decoder

n-D code n-D code r-D vector

Supp Decoder

n-D code

Supp Encoder

n-D code n-D code r-D vector

Box Encoder

k-D leaf-vector

...

...

k-D leaf-vector

Box Decoder

n-D code n-D code r-D vector

Co-oc Decoder

n-D code

Co-oc Encoder

n-D code n-D code r-D vector

Box Encoder

k-D leaf-vector

...

...

k-D leaf-vector

Box Decoder

n-D code n-D code r-D vector

Surr Decoder

n-D code

Surr Encoder

n-D code n-D code r-D vector

Box Encoder

k-D leaf-vector

...

...

n-D code r-D vector

n-D code r-D vector

...

...

k-D leaf-vector

Box Decoder

n-D code n-D code r-D vector

Wall Decoder

n-D code

Wall Encoder

n-D code n-D code r-D vector

Box Encoder

k-D leaf-vector

...

...

k-D leaf-vector

Box Decoder

n-D code n-D code r-D vector

Root Decoder

n-D code

Root Encoder

n-D code n-D code r-D vector

Box Encoder

k-D leaf-vector

...

...

n-D code r-D vector

n-D code r-D vector

...

...

n-D code r-D vector n-D code r-D vector

n-D code r-D vector n-D code r-D vector

... ...

... ...

NodeClsfr

Leaf, Supp, Co-oc,
Surr or Wall node?

SUPPORT CO-OCCURRENCE SURROUND WALL

ROOT

root node

Root Encoder

Wall EncoderWall Encoder

Co-oc Encoder

Supp Encoder

wall1 r-D vector wall2 r-D vector wall node r-D vector wall node r-D vector

wall3 bed r-D vector wall4 co-oc node r-D vector

supp node chair r-D vector

desk laptop r-D vector

Encoding process for a given scene

Fig. 8. Autoencoder training setup. The r-D vectors are the relative position vector between the objects as explained in each Encoder/Decoder module. Ellipsis
dots indicate that the code could be either the output of BoxEnc, SuppEnc, Co-ocEnc or SurrEnc, or the inputs to BoxDec, SuppDec, Co-ocDec or SurrDec. The
encoding process for objects in a scene is shown on the bottom right.

defined as a neural network with a finite series of fully-connected
layers. Each layer l processes the output xl−1 of the previous layer
(or the input) using a weight matrixW (l) and bias vector b(l), to
produce the output xl . Specifically, the function is:

xl = tanh
(
W (l) · xl−1 + b

(l)
)
.

Below, we denote an MLP with weightsW = {W (1),W (2), . . . } and
biases b = {b(1),b(2), . . . } (aggregated over all layers), operating on
input x , as fW ,b (x). Each MLP in our model has one hidden layer.

Box. The input to the recursive merging process is a collection
of object bounding boxes plus the labels which are encoded as one-
hot vectors. They need to be mapped to n-D vectors before they
can be processed by different encoders. To this end, we employ an
additional single-layer neural network BoxEnc, which maps the k-D
leaf vectors of an object (concatenating object dimensions and the
one hot vectors for the labels) to a n-D code, and BoxDec, which
recovers the k-D leaf vectors from the n-D code. These networks
are non-recursive, used simply to translate the input to the code
representation at the beginning, and back again at the end. Each

network’s parameters comprise a single weight matrix, and a single
bias vector.

Support. The encoder for the support relation, SuppEnc, is an
MLP which merges codes of two objects (or object groups) x1, x2
and the relative position between their OBBs rx1x2 into one single
code y. In our hierarchy, we stipulate that the first child x1 supports
the second child x2. The encoder is formulated as:

y = fWSe ,bSe ([x1 x2 rx1x2])

The corresponding decoder SuppDec splits the parent code y back to
its children x ′1 and x

′
2 and the relative position between them r ′x ′

1x
′
2
,

using a reverse mapping as shown below:

[x ′1 x
′
2 r

′
x ′
1x

′
2
] = fWSd ,bSd (y)

Surround. SurrEnc, the encoder for the surround relation is an
MLPwhich merges codes for three objects x1,x2,x3 and two relative
positions rx1x2 , rx1x3 into one single code y. In surround relation,
we have one central object around which the other two objects are
placed on either side. So we calculate the relative position for the
two surrounding objects w.r.t the central object. This module can

, Vol. 1, No. 1, Article . Publication date: December 2018.

8 • M. Li et al

be extended to take more than three children nodes but in our case,
we only consider three. The encoder is formulated as:

y = fWSRe ,bSRe
(
[x1 x2 rx1x2 x3 rx1x3]

)
The corresponding decoder SurrDec splits the parent code y back to
children codes x ′1, x

′
2 and x

′
3 and their relative positions r ′x ′

1x
′
2
, r ′x ′

1x
′
3

using a reverse mapping, as shown below:

[x ′1 x
′
2 r

′
x ′
1x

′
2
x ′3 r

′
x ′
1x

′
3
] = fWSRd ,bSRd (y)

Co-occurrence. The encoder for the co-occurrence relation, Co-
ocEnc, is an MLP which merges codes for two objects (or object
groups) x1,x2 and the relative position rx1x2 between them into one
single code y. In our structural scene hierarchies, the first child x1
corresponds to the object (or object group) with the larger OBB,
than that of x2. The Co-ocEnc is formulated as:

y = fWCOe ,bCOe

(
[x1 x2 rx1x2]

)
The corresponding decoder Co-ocDec splits the parent code y back
to its children x ′1 and x ′2 and the relative position between them
r ′x ′

1x
′
2
, using a reverse mapping, given as:

[x ′1 x
′
2 r

′
x ′
1x

′
2
] = fWCOd ,bCOd (y)

Wall. The wall encoder, WallEnc, is an MLP that merges two
codes, x2 for an object (or object group) and x1 for the object/group’s
nearest wall, along with the relative position rx1x2 , into one single
code. In our hierarchy, a wall code is always the left child for the
wall encoder, which is formulated as:

y = fWWe ,bWe

(
[x1 x2 rx1x2]

)
The corresponding decoderWallDec splits the parent code y back to
its children x ′1 and x

′
2 and the relative position between them r ′x ′

1x
′
2
,

using a reverse mapping, as shown below:

[x ′1 x
′
2 r

′
x ′
1x

′
2
] = fWWd ,bWd (y)

Root. The final encoder is the root module which outputs the
root code. The root encoder, RootEnc, is an MLP which merges codes
for 5 objects x1,x2,x3,x4,x5 and 4 relative positions rx1x2 , rx1x3 ,
rx1x4 and rx1x5 into one single code. In our scene hierarchies, floor
is always the first child x1 and the remaining four child nodes
correspond to four walls nodes in an anti-clockwise ordering (as
seen from the top-view). The root encoder is formulated as:

y = fWRe ,bRe
(
[x1 x2 rx1x2 x3 rx1x3 x4 rx1x4 x5 rx1x5]

)
The corresponding decoder RootDec splits the parent code y back
to child codes x ′1, x

′
2 x ′3, x

′
4 and x ′5 and the 4 relative positions

r ′x ′
1x

′
2
, r ′x ′

1x
′
3
, r ′x ′

1x
′
4
, r ′x ′

1x
′
5
using a reverse mapping, as shown below:

[x ′1 x
′
2 r

′
x ′
1x

′
2
x ′3 r

′
x ′
1x

′
3
x ′4 r

′
x ′
1x

′
4
x ′5 r

′
x ′
1x5

] = fWRd ,bRd (y)

The dimensions of the hidden and output layers for RootEnc and
RootDec are 1,050 and 350, respectively. For the other modules, the
dimensions are 750 and 250, respectively. This is because the root
node has to accommodate more information compared to other
nodes.

Lastly, we jointly train an auxiliary node classifier, NodeClsfr, to
determine which module to apply at each recursive decoding step.
This classifier is a neural network with one hidden layer that takes

as input the code of a node in the hierarchy, and outputs whether
the node represents a box, support, co-occurrence, surround or wall
node. Depending on the output of the classifier, either WallDec,
SuppDec, SurrDec, Co-ocDec or BoxDec is invoked.

Training. To train our RvNN-VAE network, we randomly initialize
the weights sampled from a Gaussian distribution. Given a training
hierarchy, we first encode each leaf-level object using BoxEnc. Next,
we recursively apply the corresponding encoder (SuppEnc, SurrEnc,
Co-ocEnc,WallEnc or RootEnc) at each internal node until we obtain
the root. The root codes are approximated to a Gaussian distribution
by the VAE. A code is randomly sampled from this distribution and
fed to the decoder. Finally, we invert the process, by first applying the
RootDec to the sampled root vector, and then recursively applying
the decoders WallDec, SuppDec, SurrDec and Co-ocDec, followed by
a final application of BoxDec to recover the leaf vectors.
The reconstruction loss is formulated as the sum of squared dif-

ferences between the input and output leaf vectors and the relative
position vectors. The total loss is then formulated as the sum of
reconstruction loss and the classifier loss, and Kullback-Leibler (KL)
divergence loss for VAE. We simultaneously train NodeClsfr, with a
five class softmax classification with cross entropy loss to infer the
tree topology at the decoder end during testing.

Testing. During testing, we must address the issue of decoding a
given root code to recover the constituent bounding boxes, relative
positions, and object labels. To do so, we need to infer a plausible
decoding hierarchy for a new scene. To decode a root code, we
recursively invoke the NodeClsfr to decide which decoder to be used
to expand the node. The corresponding decoder (WallDec, SuppDec,
SurrDec, Co-ocDec or BoxDec) is used to recover the codes for the
children nodes until the full hierarchy has been expanded to the
leaves. Since the leaf vectors output by BoxDec are continuous, we
convert them to one-hot vectors by setting the maximum value to
one and the rest to zeros. In this way, we decode the root code into a
full hierarchy and generate a scene based on the inferred hierarchy.

Constructing the final scene. After decoding, we need to transform
the hierarchical representation to 3D indoor scenes. With the object
information present in leaf nodes and relative position information
at every internal node, we first recover the bounding boxes for
the non-leaf (internal) nodes in a bottom-up manner. By setting a
specific position and orientation for the floor, we can compute the
placement of the walls and their associated object groups, aided by
the relative position information available at every internal node.
When we reach the leaf level with a top-down traversal, we obtain
the placement of each object, as shown in Figure 3(right most). The
labeled OBBs are then replaced with 3D objects retrieved from a 3D
shape database based on object category and model dimensions.

6 RESULTS, EVALUATION, AND APPLICATIONS
In this section, we explain our experimental settings, show results
of scene generation, evaluate our method over different options of
network design and scene representation, and make comparisons
to close alternatives. The evaluation has been carried out with both
qualitative and quantitative analyses, as well as perceptual studies.
Finally, we demonstrate several applications.

, Vol. 1, No. 1, Article . Publication date: December 2018.

GRAINS: Generative Recursive Autoencoders for INdoor Scenes • 9

Room type # Scenes # Object categories
Bedroom 18,763 20

Living room 4,440 24
Kitchen 5,974 14
Office 3,774 16

Table 1. Some statistics for the training dataset used in our experiments. The
object categories included in the table cover the most frequently appearing
objects in SUNCG. The remaining, infrequent, objects were removed.

TV stand TV

supp nodewall2 co-oc nodewall3

wall nodewall1 wall node wall node

root node

co-oc nodewall4

chairsupp node standbed

co-oc nodedesk

laptoptable lamp

Fig. 9. A scene generated by our method and its corresponding decoded
hierarchy, which defines the scene structure.

Dataset and training. The training data for our method is ex-
tracted from SUNCG [Song et al. 2017], a large and diverse collec-
tion of realistic indoor scenes encompassing scene types such as
bedroom, living room, kitchen, and office. In our experiments, we
only consider rooms with a floor and rectangular wall boundaries,
without considering wall-mounted objects. Also, to facilitate the
network training, we remove the most infrequently appearing ob-
ject categories over all scenes in every room type, as well as rooms
with too few or too many objects, resulting in a training set with
statistics shown in Table 1. Note that such a filtering of the scene
dataset for network training is fairly standard, e.g., see [Wang et al.
2018]. Our training is based on PyTorch [Paszke et al. 2017], using
Adam optimizer [Kingma and Ba 2014] and batch normalization.
For each room type, we adopt a batch size that is 1/10 the size of
the training set and we train for 500 epochs. The code is available
on the project page.

6.1 Scene generation results
Using our method, a 3D indoor scene can be generated from a ran-
dom vector by our trained RvNN-VAE network. The vector is first
decoded into a structural scene hierarchy (e.g., see Figure 9), and
then converted into a scene via object retrieval. We shall demon-
strate that the scenes generated by our method are plausible and
diverse, while exhibiting some levels of novelty.

To assess the diversity and novelty of the scenes, we need a scene
similarity measure. To this end, we adopt graph kernels [Fisher
et al. 2011], whose definition depends on object labels, sizes, and
object-object relations in a scene. Figure 10 shows the three nearest
neighbors, via graph kernels, in the training dataset to a given scene.
These results are quite representative and indicative of the diversity

(a) Sampled scenes (b) Closest scenes from the training set

Fig. 10. Top three closest scenes from the training set, based on graph kernel,
showing diversity of scenes from the training set.

of the training scenes, which makes the learning problem more
challenging.

Scene generation. Figure 11 presents a sampling of bedrooms gen-
erated by our method, which were randomly selected from a pool
of 1,000 generated scenes, over three levels of scene complexity
based simply on object counts. We can first observe that these
scenes are plausible as exemplified by proper object placements
against the walls and frequent object co-occurrences, e.g., TV+TV
stand, bed+nightstands, desk+chair+computer combinations, etc. To
demonstrate that our generative network does not simply memorize
training scenes, we show the closest scene, based on graph kernels,
from the training set. Also, we show the closest scene from the
pool of generated scenes to assess diversity of the scenes generated.
Figure 12 shows several scenes generated for the other room types.
More results can be found in the supplementary material.

Timing. After training, our method can generate a 3D scene in
a fraction of a second. In comparison, recent work by Wang et
al. [2018] reports a generation time of 4 minutes. More specifically,
our generative network was able to produce 10K bedroom scene
hierarchies in a total of 94 seconds on a GPU. Then, it took 933
seconds to convert the hierarchies to 3D scenes with object place-
ments in MATLAB running on a CPU. Hence, it takes 0.1027s to
generate a 3D bedroom scene, on average. The timings are reported
on a machine with one NVIDIA GeForce GTX 1080 Ti GPU and an
Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, with 64GB of memory.
The training time depends on the size of the dataset and scene com-
plexity. Running 500 epochs, it took 36 hours to train the RvNN-VAE
for bedrooms and about 7-12 hours for the other room types.

Object co-occurrence. One possible way to validate our learning
framework is to examine its ability to reproduce the probabilities
of object co-occurrences in the training scenes. For this purpose,
we define a conditional probability for two object categories c1 and
c2: P(c1 |c2) = N (c1,c2)

N (c2)
, where N (c1, c2) is the number of scenes

with at least one object belonging to category c1 and one object
belonging to category c2, and N (c) is the number of scenes with at
least one object belonging to category c . Figure 13 plots similarities
between the P(c1 |c2)’s over object category pairs for bedrooms
and living rooms, where the similarity is measured between the
conditional probabilities over the entire training set of scenes and

, Vol. 1, No. 1, Article . Publication date: December 2018.

10 • M. Li et al

Random samples from
our generated scenes

Closest scene from
the training set

Closest scene from our
1K generated scenes

Random samples from
our generated scenes

Closest scene from
the training set

Closest scene from our
1K generated scenes

(a) (b) (c) (a) (b) (c)

Fig. 11. Bedrooms generated by our method (a), in comparison to (b) closest scene from the training set, to show novelty, and to (c) closest scene from among
1,000 generated results, to show diversity. Different rows show generated scenes at varying complexity, i.e., object counts.

1, 000 randomly generated scenes of the same room type. With the
exception of the TV-floor lamp pair for living rooms, the strong
similarities indicate that our learned RvNN is able to generate scenes
with similar object co-occurrences compared to the training scenes.

6.2 Comparisons
The most popular approach to 3D scene synthesis has so far been
based on probabilistic graphical models [Fisher et al. 2012; Kermani
et al. 2016; Qi et al. 2018], which learn a joint conditional distribution
of object co-occurrence from an exemplar dataset and generate novel
scenes by sampling from the learned model.

, Vol. 1, No. 1, Article . Publication date: December 2018.

GRAINS: Generative Recursive Autoencoders for INdoor Scenes • 11

(a) Generated living rooms.

(b) Generated kitchens.

Fig. 12. Several living room, kitchen, and office scenes generated by our
method. More results can be found in the supplementary material.

Bed
Stand

TV Chair
TV

stand
Computer

Desk Table

lamp

Bed

Stand

TV

Chair
TV stand

Computer
Desk

Table

lamp

Chair
Sofa

Table
TV

TV

stand Floor

lamp
Vase

Desk

Chair

Sofa
Table

TV
TV stand

Floor

lamp

Vase
Desk

Bedrooms Living rooms

Fig. 13. Similarity plots between object co-occurrences in the training set
vs. in the RvNN-generated scenes. Left: bedrooms; right: living rooms. Higher
levels of similarity correspond to warmer colors. Note that we only plot simi-
larities for pairs of categories with sufficiently high levels of co-occurrences;
category pairs that rarely co-occur are discarded.

To compare with the state-of-the-art, we take the closest work of
Kermani et al. [2016] which does not rely on human-activities [Qi
et al. 2018] or other auxiliary priors. In order to make a fair compar-
ison, we implement their algorithm on the same set of scenes from
SUNCG dataset that were used to train our RvNN-VAE network. In
Figure 14, we present three randomly selected synthesized scenes
using their approach and ours, with the same set of object models.
Their method generates a valid set of objects but produces many
invalid arrangements and object orientations, affecting the plausibil-
ity of synthesized scenes. These are a result of their relative position
encoding scheme and the underlying Monte-Carlo Markov Chain
(MCMC) sampling model, which requires thousands of iterations to
generate one plausible scene. Another drawback of using sampling
based techniques for scene synthesis is that there is no guarantee on

(a) [Kermani et al. 2016].

(b) Our results.

Fig. 14. Comparison of scene generation with [Kermani et al. 2016].

exact alignment between objects in the synthesized scenes, unlike
ours. While our method generates large number of plausible, diverse
scenes in seconds (e.g., 10K bedroom scenes in 94 seconds), it takes
anywhere from a few minutes to tens of minutes to synthesize one
scene (depending upon the complexity) using their approach.

To better compare the two methods, we perform a subjective anal-
ysis over the scenes generated by both methods, as well as those
from the training set. In particular, we design two perceptual studies.
In the first study, we ask the participants to select from a triplet of
scenes the most plausible one. The triplet consists of scenes from
the training set and results generated by the two methods (ours and
[Kermani et al. 2016]), presented in a random order. In the second
study, the same set of participants are asked to rate each of the three
scenes in the triplets based on their plausibility, on a scale of 1 to 5
(5 being most plausible). The two studies are conducted separately,
to minimize their mutual influence. The study employed 50 partici-
pants with different backgrounds - 30 graphics/vision researchers,
10 non-graphics researchers and 10 non-technical subjects. Each
participant is presented with 10 sets of triplets. Therefore, we collect
feedbacks from 50 participants on 10 × 3 scenes for each study.
Figure 15 and 16 plot the statistics from the perceptual studies.

From Figure 15, we see that the participants mostly think that the
training scenes are more plausible, since these scenes are human
designed. The scenes generated by our method are also frequently
chosen, especially by Graphics/Vision researchers, achieving a com-
parable level with training scenes. Figure 16 shows the statistics of
plausibility rating. We observe a comparable rating for scenes from
the training set and our results, demonstrating the high quality of
our results. We also ask for free-text responses from the participants
to understand their basis of making a choice in the studies. From
the feedback, participants without technical background tend to
judge the scene plausibility based on their intuition on real world
scenes. Therefore, they are more sensitive to object shapes (e.g.,
relative size) than object relations and overall layout. On the other
hand, Graphics/Vision researchers pay more attention to object
placements such as their orientation and their relative positions.
This is why they tend to give slightly higher scores to all scenes.

, Vol. 1, No. 1, Article . Publication date: December 2018.

12 • M. Li et al

40%
48%

35%

44%
37%

29%

11.30%
14%

21%

5% 1%

15%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Graphics researchers Non-graphics researchers Non-technical subjects

Plausible scene selection

Training set Ours [Kermani et al. 2016] Cannot tell

Fig. 15. Statistics on plausible scene selection from the perceptual studies :
The participants are asked to select the most plausible scene for each triplet,
consisting of bedroom scenes from the training set, our results and the
results from [Kermani et al. 2016]. The plots show the percentage of rated
plausible scenes for each method.

3.72

3.11

3.613.64

3.24

3.56

2.67 2.63

2.94

1

1.5

2

2.5

3

3.5

4

4.5

5

Graphics researchers Non-graphics researchers Non-technical subjects

Scene scoring

Training set Ours [Kermani et al. 2016]

Fig. 16. Results of plausibility rating by participants for bedrooms: The
participants are asked to rate a scene based on their plausibility on a scale
of 1 to 5 (5 being the most plausible). The values are the average scores for
scenes from the training set, our results and the results by [Kermani et al.
2016].

Moreover, non-(Graphics/Vision) researchers tend to give higher
scores to our results even though they believed the scenes from the
training set are generally more plausible than ours in the first study.

Comparing scene plausibility to concurrent works. Concurrent
works by Qi et al. [2018] and Wang et al. [2018] are also trained on
SUNCG for scene synthesis, but their scene generations are under
certain constraints. Specifically, Qi et al. [2018] use object sizes,
object positions, orientations and human positions interacting with
entities in a scene as inputs and rely on MCMC sampling to synthe-
size new scene layouts. On the other hand, the work by Wang et
al. [2018] takes as input a partial scene geometry and synthesizes
new layouts learned from CNNs trained on 2D top-view images of
3D scenes. Since GRAINS is an unconditional scene generator, we
cannot directly compare it with these two works. Instead, we focus
the comparison on plausibility of the scene layouts generated by the
different methods, through pairwise perceptual studies.

37%
44%

63%
56%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Against [Qi et al. 2018] Against [Wang et al. 2018]

Scene Plausibility Comparison

Ours

Fig. 17. Percentage ratings in the pairwise perceptual studies, based on the
votes for the plausibility comparisons between GRAINS and two state-of-
the-art 3D scene synthesis methods, namely [Qi et al. 2018] and [Wang
et al. 2018]. In each comparison, our method received a higher percentage
of votes from 20 participants.

To make the comparisons fair, we ensure that each pair of scenes
compared contain the same or similar objects as follows. We take
a scene generated by a competing method (either [Qi et al. 2018]
or [Wang et al. 2018]) and use it as a query to retrieve a scene
generated (unconditionally) by GRAINSwhichmost closely matches
the query scene in terms of object counts over all object categories
present in the query, e.g., number of tables, chairs, beds, etc. The
query and retrieved scenes are paired up to set up a comparison.
For consistency, we remove doors and windows from the generated
scenes, if any. Furthermore, we adjust the 3D objects in the compared
scenes so that they are either the same or similar in style. Hence,
our focus is on comparing how well the methods were able to
learn 3D scene layouts from (the same) SUNCG training data. Each
comparative study consists of 15 pairs of scenes, with 5 pairs each
from bedrooms, living rooms, and offices. Each pair of scenes is
rendered from the same viewpoint and presented in a random order
to 20 participants involved in the perceptual study.
In Figure 17, we show the percentages of participants based on

how they voted for the plausibility comparisons between GRAINS
and [Qi et al. 2018] and [Wang et al. 2018], respectively. We can see
that our method received 63% of the total votes, over 37% for Qi et
al. [2018]. This suggests that there is a higher uncertainty in the
convergence of the scene layouts synthesized by their method, as
it relies on MCMC sampling. It is also worth noting that it takes
around 22 minutes to synthesize one scene using their method
as opposed to 102.7ms using GRAINS. The vote percentages for
GRAINS and [Wang et al. 2018] are more comparable. However,
aside from a gap in scene generation times (around 4 minutes by
their method), we note that [Wang et al. 2018] cannot produce
scenes with 3D objects supported on top of other furniture, since
their layout method was trained using top-view images. This may
explain why GRAINS was slightly favored in the comparisons.

6.3 Validation of network design and scene encoding
To validate several important choices in our network design and
scene encoding, we show experimental results with vs. without

, Vol. 1, No. 1, Article . Publication date: December 2018.

GRAINS: Generative Recursive Autoencoders for INdoor Scenes • 13

these design decisions. Note that these choices also highlight key
differences between GRAINS and GRASS [Li et al. 2017], which is
the prior RvNN-VAE designed for learning shape structures.

(b) (c) (a)

Fig. 18. Typical bedroom scenes generated by our RvNN-VAE with various
options involving wall and root encoders and decoders. (a) Without wall or
root encoders and decoders. (b) With wall encoders and decoders, but not
for root. (c) With both types of encoders and decoders.

Wall and root encoders/decoders. By designating wall and root
encoders and decoders with the last grouping operations in our
RvNN and carrying them out in a fixed order, we follow the premise
that walls should serve a similar role as floors, i.e., to “ground” the
placements of objects in a room. Treating walls and floors just like
any other objects, i.e., without wall or root encoders and decoders,
would lead to an RvNN that is much like GRASS but with symmetry
and assembly operations between shape parts replaced by object
support, co-occurrences, etc. Under this setting, walls are merely
objects that have a high occurrence frequency. It is difficult to train
the network to always produce the correct number and placements
of walls, as shown by a typical result in Figure 18(a). In fact, only
36.9% of 1K generated scenes have exactly four walls, with most of
these rooms having incorrect wall placements in the layout.
In Figure 18(b), we show a typical scene generated using our

method where wall encoders and decoders are incorporated, but
not the root encoder. As we can observe, this time the network is
able to properly learn the positioning of objects against each wall.
However, without the root encoder, which accounts for and learns
the relative positions of the four walls with respect to the floor, the
placements of the walls can be quite off. Without the designated
root encoder, we must resort to some alternative way to merge the
walls and floors. When generating the result shown in Figure 18(b),
we applied the wall encoders to merge two opposite walls, and then
the two pairs of walls. Finally, the combined node representing four
walls is merged with the floor using a support relation.

Encoding of relative object positions. With the key observation that
predictabilities in object positions in a 3D scene are manifested in
relative, and not absolute, terms, we encode relative object positions
using angles and offsets, which are complemented with attachment
and alignment bits to reinforce placement precisions. To contrast
this with the use of absolute object positions in the network, we
show in the first row of Figure 19 several typical bedrooms generated
with this latter option. We can see that our RvNN-VAEwas unable to
learn plausible object placements: most objects are placed somewhat
randomly without proper attachments or alignments, due to the
lack of predictability in their absolute positions.

In the second row of Figure 19, we show results of scene genera-
tion using our relative position encoding but without alignment or

(a) Absolute object positions; no attachment or alignment bits.

(b) Our relative object positions; no attachment or alignment bits.

(c) Relative positions using box transforms; with attachment and alignment bits.

Fig. 19. Typical bedrooms generated using our method, but with alternate
encodings of object position.

Fig. 20. Typical bedroom scenes generated by our method when semantic
labels are not included in object encodings in the leaf vectors, where 3D
objects were retrieved based only on geometric information about the OBBs.

attachment bits. As expected, while the rough relative positioning
of objects may be plausible, e.g., nightstands do surround the bed,
precise alignments and attachments, e.g., bed against the wall or
nightstands against the bed, are not fulfilled.
In the final row of Figure 19, we show scenes generated using

our RvNN-VAE, with relative position encoding as described in Sec-
tion 4.2, except that the position of the target box is encoded using
a single translation vector between the centers of the target and
reference boxes. The results show that this alternative is problem-
atic since box-to-box translations can vary greatly, e.g., dressers can
be placed in all directions around a bed. In such cases, the trained
network has the tendency to generate “average” translation vectors.
This is why the dressers tend to be placed near the center of the
beds. In contrast, our representation which utilizes a binary indi-
cator vector to identify the closest edge pairs for offset encoding
avoids the generation of average offset values.
Semantic labels. We incorporate semantic labels into the object

encodings since object co-occurrences are necessarily character-
ized by semantics, not purely geometric information such as OBB

, Vol. 1, No. 1, Article . Publication date: December 2018.

14 • M. Li et al

dimensions and positions. As expected, removing semantic labels
from the object encodings would make it difficult for the network
to learn proper object co-occurrences. As well, without semantic
information associated with the OBB’s generated by the RvNN-VAE,
object retrieval based on OBB geometries would also lead to clearly
implausible scenes, as shown by examples in Figure 20.

6.4 Applications
Wepresent three representative applications of our generativemodel
for 3D indoor scenes, highlighting its several advantages: 1) cross-
modality scene generation; 2) generation of scene hierarchies; and
3) fast synthesis of large volumes of scene data.

2D layout guided 3D scene modeling. Several applications such
as interior design heavily use 2D house plan, which is a top-view
2D box layout of an indoor scene. Automatically generating a 3D
scene model from such 2D layout would be very useful in practice.
Creating a 3D scene from labeled boxes would be trivial. Our goal is
to generate a series of 3D scenes whose layout is close to the input
boxes without semantic labels, while ensuring a plausible composi-
tion and placement of objects. To do so, we encode each input 2D
box into a leaf vector with unknown class (uniform probability for
all object classes). We then construct a hierarchy based on the leaves,
obtaining a root code encoding the entire 2D layout. Note that the
support relation changes to overlap in 2D layout encoding. The root
code is then mapped into a Gaussian based on the learned VAE. A
sample from the Gaussian can be decoded into a hierarchy of 3D
boxes with labels by the decoder, resulting in a 3D scene. Thus, a set
of scenes can be generated, whose spatial layouts closely resemble
the input 2D layout. A noteworthy fact is that both the encoder and
decoder used here are pretrained on 3D scenes; no extra training is
required for this 2D-to-3D generation task. This is because 2D box
layout is equivalent to 3D one in terms of representing spatial layout
and support relations, which makes the learned network reusable
for cross-modality generation.
Figure 21 shows a few examples of 2D layout guided 3D scene

generation, where no label information was used. The missing label
information is recovered in the generated scenes. In the generated
3D scenes, many common sub-scenes observed from the training
dataset are preserved while fitting to the input 2D layout.

Hierarchy-guided scene editing. During scene modeling, it is de-
sirable for the users to edit the generated scenes to reflect their
intent. With the hierarchies accompanied by the generated scenes,
our method enables the user to easily edit a scene at different gran-
ularities in an organized manner. Both object level and sub-scene
level edits are supported. Specifically, the users can select a node or
a group of nodes in the hierarchy to alter the scene. Once the node(s)
is selected, the user can simply delete or replace the subtree of the
selected nodes, or move them spatially, as shown in Figure 22. To
replace a subtree, colored in Figure 22(a), the user can simply reuse
a subtree chosen from another automatically generated hierarchy;
see Figure 22(b). To prepare candidate subtrees used to replace the
selected one, we retrieve, from other hierarchies, the subtrees whose
sibling subtrees are similar to that of the selected one.

TRAINING DATA TEST DATA Accuracy
SUNCG, 12K SUNCG, 4K 76.29%
SUNCG, 12K Ours, 4K 41.21%
Ours, 12K SUNCG, 4K 58.04%
Ours, 12K Ours, 4K 77.03%

SUNCG, 6K + Ours, 6K SUNCG, 4K 70.19%
SUNCG, 6K + Ours, 6K Ours, 4K 77.57%
SUNCG, 12K + Ours, 12K SUNCG, 4K 74.35%
SUNCG, 12K + Ours, 12K Ours, 4K 82.01%

Table 2. Performance of semantic scene segmentation using PointNet
trained and tested on different datasets. Our generated scenes can be used
to augment SUNCG to generalize better.

Data enhancement for training deepmodels. Efficient generation of
large volumes of diverse 3D indoor scenes provides a means of data
enhancement for training deep models, potentially boosting their
performance for scene understanding tasks. To test this argument,
we train PointNet [Qi et al. 2017], which was originally designed for
shape classification and segmentation, for the task of semantic scene
segmentation. Using the same network design and other settings as
in the original work, we train PointNet on scenes both from SUNCG
dataset and those generated by our method. To adapt to PointNet
training, each scene is sliced into 16 patches containing 4, 096 points,
similar to [Qi et al. 2017]. For each experiment, we randomly select
the training and testing data (non-overlapping), perform five trials
and report the average results.
Table 2 presents a mix of experiments performed on SUNCG

dataset and our generated scenes. When the network is trained on
one kind of data (either SUNCG or Ours) and tested on the other
data, the accuracies on scene segmentation task tend to be lower
than when tested on the same kind of data. This is because our
generated scenes are novel, compared to SUNCG dataset, as claimed
in Section 6.1. However, when we combine the data from the two
sets (SUNCG + Ours), and test on each of them individually, the gap
between the percentage accuracies on the two test sets (SUNCG and
Ours, individually) narrows down. A special case can be seen for
testing on SUNCG data where the performance decreases slightly
when we train on the combined data, compared to training on pure
SUNCG. One reason that explains this phenomenon is that the
network is overfitting on pure SUNCG data. So the network’s ability
to generalize better is aided when the two datasets are combined. In
other words, the network becomes robust to diversity in the scenes.
Thus, instead of randomly enhancing the scene data, one can use
our generated scenes (which are novel, diverse and plausible) as a
reserve set for data enhancement to efficiently train deep models.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK
Our work makes a first attempt at developing a generative neural
network to learn hierarchical structures of 3D indoor scenes. The
network, coined GRAINS, integrates a recursive neural network
with a variational autoencoder, enabling us to generate a novel,
plausible 3D scene from a random vector in less than a second.
The network design consists of several unique elements catered to
learning scene structures for rectangular rooms, e.g., relative object
positioning, encoding of object semantics, and use of wall objects

, Vol. 1, No. 1, Article . Publication date: December 2018.

GRAINS: Generative Recursive Autoencoders for INdoor Scenes • 15

(a) Input 2D layouts (b) Mean (c) Randomly sampled

Fig. 21. 3D scene generation from 2D box layouts. Our trained RvNN-VAE can convert a 2D box layout representing the top-view of a scene (a) into a root code
and then decode it into a 3D scene structure that closely resembles the 2D layout. (b) shows scenes decoded from the mean of the Gaussian of the latent
vector and (c) shows scenes generated from latent vectors randomly sampled from the Gaussian.

cabinet co-oc node

co-oc nodewall4co-oc nodewall1

wall nodewall nodewall node wall node

root node

supp nodewall2

chair1co-oc node table lamp2stand2

supp nodebed1

table lamp1stand1

bed2 chair2

co-oc nodewall3

chair3supp node

computerdesk

supp node

TVTV stand
supp node

table lampstand

co-oc node

bed

(a) (b)

Fig. 22. Hierarchy-guided scene editing. Given a generated scene and its hierarchy (a), user can select a subtree (colored in green or blue) corresponding to a
sub-scene (objects colored similarly). The subtree (sub-scene) can be replaced by another from other generated hierarchies, resulting in an edited scene (b).

as initial references, distinguishing itself from previous generative
networks for 3D shapes [Li et al. 2017; Wu et al. 2016].
As shown in Section 6.3, the aforementioned design choices in

GRAINS are responsible for improving the plausibility of the gener-
ated scenes. However, one could also argue that they are introducing
certain “handcrafting” into the scene encoding and learning frame-
work. It would have been ideal if the RvNN could: a) learn the various
types of object-object relations on its own from the data instead
of being designed with three pre-defined grouping operations; b)
rely only on the extracted relations to infer all the object semantics,
instead of encoding them explicitly; and c) work with a more generic
representation of object positions than our current special-purpose
encoding of relative positionings. At this point, these are all tall
challenges to overcome. An end-to-end, fully convolutional network

that can work at the voxel level while being capable of generating
clean and plausible scene structures also remains elusive.

Another major limitation of GRAINS, and of generative recursive
autoencoders such as GRASS [Li et al. 2017], is that we do not have
direct control over objects in the generated scene. For example,
we cannot specify object counts or constrain the scene to contain
a subset of objects. Also, since our generative network produces
only labeled OBBs and we rely on a fairly rudimentary scheme to
retrieve 3D objects to fill the scene, there is no precise control over
the shapes of the scene objects or any fine-grained scene semantics,
e.g., style compatibility. It is possible to employ a suggestive interface
to allow the user to select the final 3D objects. Constrained scene
generation, e.g., by taking as input a partial scene or hierarchy, is
also an interesting future problem to investigate.

, Vol. 1, No. 1, Article . Publication date: December 2018.

16 • M. Li et al

Modeling indoor scene structures in a hierarchical way does hold
its merits, as demonstrated in this work; it is also a natural fit to
RvNNs. However, hierarchies can also be limiting, compared to
a more flexible graph representation of scene object relations. For
example, it is unclear whether there is always a sensible hierarchical
organization among objects which may populate a messy office desk
including computer equipments, piles of books, and other office
essentials. Also, in many instances, it can be debatable what the best
hierarchy for a given scene is. To this end, recent works on learning
generative models of graphs may be worth looking into.

Finally, as a data-driven method, GRAINS can certainly produce
unnatural object placements and orientations. A few notable failure
cases can be observed in Figure 11, e.g., a computer display and a
swivel chair facing the wall, shown in the fifth row of column (a).
One obvious reason is that the training data is far from perfect. For
example, object placements in some of the SUNCG scenes can be
unnatural, as shown in the last row of column (b), where a bed is
placed in the middle of the room. More critically, the training scene
hierarchies in our work were produced heuristically based on spatial
object relations and as such, there is no assurance of consistency
even among similar scenes belonging to the same scene category.
In general, computing consistent hierarchies over a diverse set of
scenes is far from straightforward. Comparatively, annotations for
pairwise or group-wise object relations are more reliable. An in-
triguing problem for future work is to develop a generative network,
possibly still based on RvNNs and autoencoders, that are built on
learning subscene structures rather than global scene hierarchies.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments.
This work was supported, in parts, by an NSERC grant (611370), the
973 Program of China under Grant 2015CB352502, key program of
NSFC (61332015), NSFC programs (61772318, 61532003, 61572507,
61622212), ISF grant 2366/16 and gift funds from Adobe. Manyi Li
was supported by the China Scholarship Council.

REFERENCES
Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. 2010. A Connection Between

Partial Symmetry and Inverse Procedural Modeling. In Proc. of SIGGRAPH.
Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun.

2011. Probabilistic Reasoning for Assembly-Based 3D Modeling. In Proc. of SIG-
GRAPH.

Kang Chen, Yu-Kun Lai, Yu-XinWu, Ralph Martin, and Shi-Min Hu. 2014. Automatic Se-
mantic Modeling of Indoor Scenes from Low-quality RGB-D Data using Contextual
Information. ACM Trans. on Graph. 33, 6 (2014), 208:1–12.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
Bombarelli, Timothy Hirzel, Al’an Aspuru-Guzik, and Ryan P. Adams. 2015. Convo-
lutional Networks on Graphs for Learning Molecular Fingerprints.

Noa Fish, Melinos Averkiou, Oliver van Kaick, Olga Sorkine-Hornung, Daniel Cohen-
Or, and Niloy J. Mitra. 2014. Meta-representation of Shape Families. In Proc. of
SIGGRAPH.

Matthew Fisher, Yangyan Li, Manolis Savva, Pat Hanrahan, and Matthias Nießner. 2015.
Activity-centric Scene Synthesis for Functional 3D Scene Modeling. ACM Trans. on
Graph. 34, 6 (2015), 212:1–10.

Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Hanrahan.
2012. Example-based synthesis of 3D object arrangements. ACM Trans. on Graph.
31, 6 (2012), 135:1–11.

Matthew Fisher, Manolis Savva, and Pat Hanrahan. 2011. Characterizing structural
relationships in scenes using graph kernels. 30, 4 (2011), 34.

Qiang Fu, Xiaowu Chen, Xiaotian Wang, Sijia Wen, Bin Zhou, and FU Hongbo. 2017.
Adaptive synthesis of indoor scenes via activity-associated object relation graphs.
ACM Trans. on Graphics (Proc. of SIGGRAPH Asia) 36, 6 (2017).

Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. 2016. Learning a
predictable and generative vector representation for objects. In ECCV.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In
Advances in neural information processing systems. 2672–2680.

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks on
Graph-Structured Data. CoRR abs/1506.05163 (2015). http://arxiv.org/abs/1506.05163

Haibin Huang, Evangelos Kalogerakis, and Benjamin Marlin. 2015. Analysis and
synthesis of 3D shape families via deep-learned generative models of surfaces.
Computer Graphics Forum (SGP) 34, 5 (2015), 25–38.

Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun.
2012. A probabilistic model for component-based shape synthesis. ACM Trans. on
Graphics (Proc. of SIGGRAPH) 31, 4 (2012).

Z Sadeghipour Kermani, Zicheng Liao, Ping Tan, and H Zhang. 2016. Learning 3D Scene
Synthesis from Annotated RGB-D Images. In Computer Graphics Forum, Vol. 35.
Wiley Online Library, 197–206.

Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen DiVerdi, and
Thomas Funkhouser. 2013. Learning Part-based Templates from Large Collections
of 3D Shapes. ACM Trans. on Graph. 32, 4 (2013), 70:1–70:12.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas.
2017. GRASS: Generative Recursive Autoencoders for Shape Structures. ACM Trans.
on Graph. 36, 4 (2017), 52:1–52:14.

Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li, Sören Pirk, Binh-Son Hua, Sai-
Kit Yeung, Xin Tong, Leonidas Guibas, and Hao Zhang. 2018. Language-Driven
Synthesis of 3D Scenes from Scene Databases. ACM Transactions on Graphics (Proc.
SIGGRAPH ASIA) 37, 6 (2018), 212:1–212:16.

Rui Ma, Honghua Li, Changqing Zou, Zicheng Liao, Xin Tong, and Hao Zhang. 2016.
Action-Driven 3D Indoor Scene Evolution. ACM Trans. on Graph. 35, 6 (2016).

Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen Koltun. 2011.
Interactive Furniture Layout Using Interior Design Guidelines. ACM Trans. on
Graph. 30, 4 (2011), 87:1–10.

MarvinMinsky and Seymour Papert. 1969. Perceptrons: An Introduction to Computational
Geometry. MIT Press.

Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006.
Procedural Modeling of Buildings. In Proc. of SIGGRAPH.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning Convolu-
tional Neural Networks for Graphs. In Proc. ICML.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in pytorch. (2017).

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 652–660.

Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu. 2018.
Human-centric Indoor Scene Synthesis Using Stochastic Grammar. In Conference on
Computer Vision and Pattern Recognition (CVPR).

Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, and Andrew Y.
Ng. 2012. Convolutional-Recursive Deep Learning for 3D Object Classification.

Richard Socher, Cliff C. Lin, Andrew Y. Ng, and Christopher D. Manning. 2011. Parsing
Natural Scenes and Natural Language with Recursive Neural Networks. In Proc.
ICML.

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. 2017. Semantic Scene Completion from a Single Depth Image. IEEE
Conference on Computer Vision and Pattern Recognition (2017).

Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman, and Radomír
Měch. 2012. Learning Design Patterns with Bayesian Grammar Induction. In Proc.
UIST. 63–74.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. 2016a.
WaveNet: A Generative Model for Raw Audio. CoRR abs/1609.03499 (2016). http:
//arxiv.org/abs/1609.03499

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016b. Pixel Recurrent
Neural Networks. CoRR abs/1601.06759 (2016). http://arxiv.org/abs/1601.06759

Kai Wang, Manolis Savva, Angel X. Chang, and Daniel Ritchie. 2018. Deep Convolu-
tional Priors for Indoor Scene Synthesis. ACMTrans. on Graphics (Proc. of SIGGRAPH)
37, 4 (2018).

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan Cheng,
and Yueshan Xiong. 2011. Symmetry Hierarchy of Man-Made Objects. Computer
Graphics Forum (Eurographics) 30, 2 (2011), 287–296.

Paul J. Werbos. 1974. Beyond regression: New tools for predicting and analysis in the
behavioral sciences. Ph.D. Dissertation. Harvard University.

, Vol. 1, No. 1, Article . Publication date: December 2018.

http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1601.06759

GRAINS: Generative Recursive Autoencoders for INdoor Scenes • 17

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B. Tenen-
baum. 2016. Learning a Probabilistic Latent Space of Object Shapes via 3D
Generative-Adversarial Modeling.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric
shapes. In IEEE CVPR.

Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. 2013. Sketch2Scene:
sketch-based co-retrieval and co-placement of 3D models. ACM Transactions on
Graphics (TOG) 32, 4 (2013), 123.

Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2012. Fit and Diverse: Set
Evolution for Inspiring 3D Shape Galleries. ACM Trans. on Graph. 31, 4 (2012),
57:1–10.

Lap-Fai Yu, Sai Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F. Chan, and
Stanley Osher. 2011. Make it home: automatic optimization of furniture arrangement.
ACM Trans. on Graph. 30, 4 (2011), 86:1–12.

, Vol. 1, No. 1, Article . Publication date: December 2018.

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	4 Structural Scene Representation
	4.1 Hierarchical scene structures
	4.2 Scene object representation

	5 Recursive Model of Indoor Scenes
	6 Results, evaluation, and applications
	6.1 Scene generation results
	6.2 Comparisons
	6.3 Validation of network design and scene encoding
	6.4 Applications

	7 Discussion, Limitations, and Future Work
	Acknowledgments
	References

