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Abstract

Defocus blur correction for projectors using a camera is
useful when the projector is used in ad hoc environments.
However, past literature has not explicitly considered the
common situation when the projection surface includes a
corner made up of two planar surfaces that abut each other,
such as the ubiquitous office cubicle.

In this paper, we advance the state of the art by demon-
strating defocus correction in a non-parametric setting.
Our method differs from prior methods in that (a) the lu-
minance and chrominance channels are independently con-
sidered, and (b) a sparse sampling of the surface is used to
discover the spatially varying defocus kernel.

1. Introduction

Projectors are designed to create large, bright and
sharply focused image on a single plane perpendicular to the
axis of projection. The large aperture used for maximum en-
ergy ‘throw’ across large distances in projectors comes with
the rider that the depth of field (dof) is small. When projec-
tors are deployed in ad hoc environments, it is difficult to
avoid blurred effects as shown in Fig. 1. The focus of this
paper is in developing techniques to combat the effects of
blur when the only available physical screen is made up of
multiple planar surfaces that offer varying depth to the cen-
ter of projection of the projector. A space varying, surface
savvy, depth compensated deblur correction can be discov-
ered, and computationally applied resulting in (our method)
a focused image.

We first note that the question posed here is quite differ-
ent from the classical deblur problem in image processing;

even a well focused input image (seen, say on a laptop dis-
play) when sent to a projector can appear blurred due to the
physical screen position. Stated equivalently but differently,
one may want to see on the screen a deliberately created
blurred input image using a projector; however, the display
should be as is; neither sharpened nor further blurred.

Hardware focus can at best be set to a single depth.
Software solutions to the problem of dealing with de-
blurs caused by projectors have been considered before
[2, 5, 6, 1]. The flavour of most of the solution strategies
is briefly described here. The blur at a particular location
on the physical screen is modeled by a Gaussian blur of the
corresponding pixel location in the input image. The param-
eters of this Gaussian can be obtained by projecting a test
calibration image such as a chessboard, and then observing
the blur through a camera. This, in turn, calls for obtain-
ing the homography between the camera and the projector,
and color correction. Once the Gaussian parameters are es-
timated, a suitable deblurring technique, such as Wiener fil-
tering can be applied to prewarp the image.

1.1. Contributions

We extend the state of the art in software projector defo-
cus correction in the following ways.

• Unlike the method in [2], [5], [6] our blur estimation
is non-parametric in nature. We do not need the as-
sumption made earlier of Gaussian-only blur. The non-
parametric method is inspired from [9] (see below).

• Unlike the method in [2], we do not assume the exis-
tence of any exemplar point in focus. In other words,
we permit the input image to be displayed to be blurred
in the first place, and the goal is to show the image on
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(e) (f)

Figure 1. Deblur correction in action. (a) Input image to be shown.
Note that many parts of the input image itself are not in focus. (b)
A section of the zoomed input image is shown. (c) When pro-
jected, the observed image (captured by a camera) is geometri-
cally distorted (horizontal lines are bent). In addition to the lumi-
nance mismatch, we also see a blur – see zoomed version in (e).
Our corrected output in (d) Although smaller, the proportions are
maintained; notice the horizontal line at the bottom is straight. The
resultant image is crisp. (f) Zoomed version of our output clearly
shows the defocus compensation. Note that the images are cap-
tured by a low cost web camera, and are not (intentionally) color
compensated.

the displayed screen to have high fidelity to the origi-
nal input.

Unlike prior methods we demand more from the soft-
ware solution by making the display surface consisting of
dual planar surfaces that abut each other. Such surfaces (e.g.
Fig. 3) have the property that neither of the two surfaces is
orthogonal to the line of projection. Thus, neither surfaces
are in focus, and furthermore, at the intersection of the two
surfaces, an abrupt change is seen. This work is contrasted
with [9] in the following ways:

• While defocus correction is demonstrated in [9], the
surfaces on which the compensation is shown, do not

abut each other. They are simply at different depths.
Our scenario is far more common (e.g. office cubi-
cles). The other type of surface demonstrated in [9] is
a smoothly varying hemisphere, and definitely useful,
but distinct from our application domain.

• While depth estimation is treated comprehensively in
[9], it is not used per se in defocus compensation. Our
work also does not explicitly compute depth; however,
the depth discontinuity is subtly used in developing
the defocus kernel. More specifically, the kernel com-
putation are computed far more sparsely than in [9]
enabling faster correction. In other words, the appar-
ent scene geometry in the image space detected by our
technique aids in selecting very few key points to infer
overall defocus blur measurement.

• Instead of compensating for each color channel sepa-
rately at individual pixel level [9], our algorithm uses a
better distance metric based on [8] that recognizes that
the human eye is biased w.r.t. to luminance changes as
compared to chrominance changes. Specifically the al-
gorithm treats both luminance and chrominance chan-
nels together holistically.

In summary, we implement a fast and efficient geometric
correction technique [7] and use this to correct defocus in
dual-planar environments. The primary point to be noted
is that the discovered knowledge of the surface geometry is
leveraged to densely measure defocus kernels near regions
where naive methods cannot compute correct values (e.g.
near the intersection of two plane surfaces in a multi-planar
environment).

1.2. Scope and Limitations

The work presented in this paper has a few limitations.
Fortunately many of these have already been considered in
the literature before, and therefore, we believe, do not serve
as bottlenecks. Specifically, we do not solve color compen-
sation; this has been addressed in [4]. We do not need to
do depth estimation explicitly; this has been done in [9]. As
seen in our setup, the exposition in this paper deals only
with two surfaces. We do not present the details of geomet-
ric correction; this has been considered in [7]. The exten-
sion of geometric correction to multiple surfaces has been
considered elsewhere. We do assume that the depth from
the center of projection in each of the planar surface indi-
vidually changes smoothly; this follows trivially from the
definition of planar; we state this explicitly to indicate that
surface deformities such as cavities in the surface are not
considered.
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Figure 2. An ad hoc environment with piece-wise planar display
surfaces depicting in-focus and out-of-focus planar surfaces, with
overlapping blur circles on out-of-focus surface

2. Solution
Projectors have large apertures with narrow depths of

field, hence traditionally they have been used to created fo-
cused image on a single planar surface perpendicular to the
axis of projection. When projectors are deployed in envi-
ronments that have non-planar, or piecewise planar surface
attributes they create blurred images. We call such environ-
ments ad hoc environments.

Consider a multi-planar display surface formed by jux-
taposition of three planar surface as shown in Fig. 2. We
use the modeling in [9]. To summarize, for a point q, that is
in focus, rays of light emitted from a single projector pixel
converge, creating a sharp image. For another point, a, that
is not in focus, rays of light are distributed in a small area
called the circle-of confusion (PSF), creating a blurred im-
age.

Therefore, irradiance at point a, equals the convolution
of its defocus kernel with the light rays from projector. If
we assume that the display scene is Lambertian then the ra-
diance Iop of a along any given outgoing direction can be
written as Iop = αf(x; z)∗P (x)+Γ. where ∗ denotes con-
volution, α is a factor that depends on surface albedo (ρ),
Γ is a matrix that represents radiance due to ambient light,
f(x; z) is the defocus kernel, and P (x) is the projector in-
put. The defocus kernel f depends on the depth z of display
surface from the projector lens.

The relationship between radius of blur rb and distance
D of a display surface from the camera lens is derived in
[3]. The relationship is given by

rb = r0v0(1/Fl − 1/D)− r0 (1)

where, r0 is the radius of the aperture, v0 is the distance
of image plane from the lens and Fl is the focal length of
the lens. Since a projector can be considered as a dual of
camera, a similar relationship holds for projected images.

As the distance of display surface from projector in-
creases, i.e., becomes substantially greater than the focal
length of the projector lens , the variation in radius can be
assumed to be linear with respect to the distance. In a typ-

ical projector camera setup, the distance between display
surface and projector is generally such that the linear radius
variation assumption can be used. This enables the sparsity
feature of our method as described in Sec. 2.4.

In general, projection in ad hoc environments result in
geometric distortion too. For certain ad hoc environments,
like the one shown in Fig. 2, that are piece-wise planar,
computations done to correct geometric distortion can be
leveraged to expedite computations required for defocus
blur correction.

In the following sub-sections we first look at the geo-
metric distortion compensation method [7] that is used to in
sparsely measuring defocus blur kernels. We then describe
the defocus correction algorithm, followed by kernel esti-
mation.

2.1. Geometric compensation

[7] uses uncalibrated structured light technique to seg-
ment the unknown projection area into piece-wise planar
surfaces. The advantage of using this technique is that it
is simple, efficient, and produces accurate results. As a
by-product of this computation we get individual homo-
graphies for mapping between projector and camera pixels
through each of the planar surfaces. We use the planar sur-
faces geometry and these homographies to efficiently com-
pute defocus kernels at all projector points by measuring
defocus kernels at very few points in projector space.

2.2. Defocus correction algorithm

We model the defocus compensation algorithm as de-
fined in [9]. In [9] the problem of computing a compen-
sation image is cast as a constrained optimization problem
as shown in Eq. 2.

P ∗ = arg min{d(αf ∗ P + Γ, Iip)|∀x, 0 ≤ P (x) ≤ 255},
(2)

where, x is the projector pixel coordinate and d(., .) is an
image distance metric. P ∗ will have all its intensity values
within the projector’s dynamic range and it will not have
any ringing artifacts. The defocus convolution, αf ∗ P , is
represented as a matrix multiplication, FP . P is generally
set to Iip at the start of optimization procedure.

2.3. Distance metric

The distance metric proposed in [9] uses the sum of
squares of difference between the observed image and the
desired output image for each pixel. It can be written as

||FP + Γ− Iop||2 or (FP + Γ− Iop)T (FP + Γ− Iop)
(3)

In the RGB color space, the constrained optimization
problem is solved for each color channel independently in
[9]. Considering the fact that humans are differently sen-
sitive to luminance changes as compared to chrominance

3



changes it would be useful to move to a different color space
like YCbCr to separate luminance and chrominance.

A distance metric proposed in [8] for spatially aug-
mented reality (SAR) environment is useful. Here the au-
thors aim to make the physical environment appear similar
to the virtual environment. Their physical and virtual envi-
ronments are modeled as consisting of small planar patches.
In our formulation we model the input image as the virtual
environment and the observed image as the real environ-
ment with pixels in each image taking the roles of patches
in SAR. The new distance metric aims to minimize

• Absolute error for luminance and chrominance per
pixel

• Spatial error for luminance and chrominance disconti-
nuities in the neighborhood of each pixel

The distance function can be written as,

d(. , .) = w1fl + w2fc + w3fsl + w4fsc (4)

where, fl =
∑

i

(Y i
ip − Y i

op)2 is the absolute luminance er-

ror,
fc =

∑
i

[(Cbiip − Cbiop)2 + (Cri
ip − Cri

op)2] is the ab-

solute chrominance error,
fsl =

∑
(i,j)∈nbd

[(Y i
ip−Y

j
ip) + (Y i

op−Y j
op)]2 is the spatial

luminance discontinuities error,
fsc =

∑
(i,j)∈nbd

[(Cbiip − Cbjip) + (Cbiop − Cbjop)]2 +

[(Cri
ip − Cr

j
ip) + (Cri

op − Crj
op)]2 is the spatial chromi-

nance discontinuities error, andw1, w2, w3, and w4 are non-
negative weighting parameters.

2.4. Kernel estimation

We now describe how to obtain F for piece-wise planar
surfaces, given the planar surface geometry available in the
camera space, and, with the homographies that map projec-
tor pixels to camera pixels, the projector space.

For each planar region in projector space, four distinct
points are selected (no three of which are collinear) that are
significantly far apart in the plane (ideally four corner points
of the plane in projector space can be selected). We project
a dot at each of these four points, and the PSFs for these
points is captured by the camera. For the rest of the pixels in
the same projected plane the PSFs are computed by bilinear
interpolation of the four measured PSFs.

However, the defocus kernels can vary considerably near
the intersection of two planar surfaces. To account for this,
two additional points on the surface edge are illuminated.
This is possible because we have the edge in the camera
space, and with the homographies, we can turn on corre-
sponding edge pixels in the projector space. The PSFs for

edge pixels are observed in the camera. These PSFs for
edge pixels along with the previously computed PSFs on ei-
ther side of the edge are used to compute PSF for points in
the immediate vicinity of the edge using bilinear interpola-
tion. Each PSF represents one column of the F matrix and
the rows of the matrix represent the defocus kernel of the
corresponding pixel modulated by its albedo i.e. αf(x; z).

3. Experiments and Results
We have implemented our software for two planar sur-

faces. The implementation can be extended to cater to more
than two planar surfaces. For our experiments we use off-
the-shelf hardware components. One of the goals is to make
the system deployable in real world environments. We used
a Logitech Quick Cam Pro webcam and a Sharp XR-1X
Multimedia Projector, brightness 1100 ANSI Lumens and
native resolution 800× 600 as shown in Fig. 3.

Figure 3. A typical experimental setup.

(a) (b) (c)

Figure 4. (a) & (b) Structured light patterns, (c) Computed left and
right rectified planar surfaces in camera space.

3.1. Geometric correction

As per [7], we detect individual planar surfaces in cam-
era space by finding the intersection line of these surfaces.
To find the intersection line, a set of structured light pat-
terns (in two directions) is projected onto the display sur-
face and captured using camera as shown in Fig. 4 (a & b).
If a projected straight line is detected with a bend in the
camera space then that point lies on the intersection line.
Identifying several such points we fit the intersection line
through these kink points using least squares. The intersec-
tion line divides the camera space into two planar regions
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Fig. 4(c) corresponding to the two planar surfaces shown in
Fig. 3. Using the intersection points of the projected hori-
zontal and vertical structured lines, forward and inverse ho-
mographies for each plane is computed. The projector space
is accordingly partitioned into two planar surfaces and the
corresponding image segments are warped using respective
homographies and stitched together to form a composite
warped image, which when projected compensates for geo-
metric distortion. The above procedure is done in an offline
mode and computed homographies and intersection line are
stored. At the time of projecting an image only inverse ho-
mography needs to be applied along with stitching of the
two partial images.

This step is a one-time effort and takes about 1 minute
(on a low end 2007 vintage laptop) to detect the kink and
compute homographies. If the system setup is changed then
this step should be done again.

Figure 5. Patterns for defocus kernel measurement for planar sur-
faces.

3.2. Defocus correction

Defocus correction is done in the following two steps.
1. Computation of F
We now know the geometry of the display surface. For

purposes of brevity, we measure PSF at four points on each
planar surface and at other points along the kink as shown
in 5. Using these PSFs we estimate PSF for all other points
on that plane using bilinear interpolation. We warp these
kernels from camera domain to projector domain (and nor-
malize them) so that the defocused compensation image
FP+β can be compared conveniently with the input image
Iip. Note that we have to do computations in the projector
domain,since we don’t know the ideal camera output image.

This is also a one-time step that takes approximately 2
mins to measure defocus kernels at various points and per-

form bilinear interpolation. If the setup is changed then we
need to run this step again.

2. Computation of compensation image
We have applied an iterative, constrained, steepest-

descent algorithm. The defocus convolution, αf ∗ P , is
represented as a matrix multiplication, FP , where each row
of F is the defocus kernel of the corresponding pixel mod-
ulated by its albedo. The algorithm starts with Pj=0 = Iip
and iterates to compute Pj+1. Output at each iteration is
clamped so that it lies within the dynamic range of projec-
tor (0:255).

After loading the defocus kernel matrix and input images
in memory; per iteration of the optimization algorithm takes
about 10-12 seconds to compute the compensation image.
This optimization code runs on a single core machine with
2.8GB RAM.

3.3. Observations

As shown in Fig. 6, we tested our system on a range
of input images. We observe that the output produced by
our method compensates for both geometric distortion and
defocus blur. The defocus blur compensation is spatially
varying. Table 1 shows a count of the number of edge pix-
els in the warped camera output image against the defocus
corrected camera output image. We see that there is a sig-
nificant increase in number of pixels in defocus corrected
input and output images. Clearly, defocus blur corrected
images are more sharper than only geometrically corrected
images.

4. Summary
We have presented a novel technique to correct blur in-

duced due to projection in dual planar environments. Our
technique leverages the surface geometry information and
homographies computed for geometric compensation to ac-
curately compute defocus kernels across the planar regions
in the projector space. These kernels are then used to com-
pute the corrected input image by solving the minimization
equation Eq. 2. Our results demonstrate that projection of
the corrected image essentially reduces the effects of defo-
cus blur, thereby extending the depth of field of the projec-
tor. While the presentation has been for dual planar sur-
faces, there is no fundamental limitation in the approach to
consider more than two planar surfaces.
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