
Lecture 04/01/24

Optimization Problems

↳ NP-optimization problems

Set of instances (finite)

For
every

instance there is an associated set ofsolutions" for the instance
,

cost assigned to every
solution

Number of solutions for a given instance is finite but
may be very large(in termsois

instance)
Optimization problem : Find a solution with minimum/maximum cost

NP : Given a possible sol" it can be verified in polynomial time if it's actually a

valid sol"
,

cost can be computed in poly time.

The decision problem of
Trivial : Enumerate over sol"

, so much decidable problems·
deciding whether I

But
,

bottleneck-time . sol" with cost

Finding E

NP-complete problems are not equivalent optimal for an instance 1 and
solution is

W . r. t . approx ·
Some problems are v . hard MP-hard

.

number K is NP-complete

to approximate
partitionproblem : If &Si = 2 C

① n objects .
it object size si

then pack all objects if 7 S
Two bags with capacityCeach. -

J

Pack maximum objects in the two St. Si = Cie partitioning
bags.

P-hard oft problem·
into two equal subsets

ALG : Order objects so that $ -Se E .... Su

At ith step put object ? in bag 1 if fits
,

of -matleast3
put in bag 2 o/w

discard all remaining objects.

2 2 3 3

-

I
SOy clearlyS 5 not optimal.
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Approximation algorithm :

A polytime algorithm that outputs a solution for each instance along with

a guarantee or bound on how good the solution is.

A (1) = cost of solution given by algorithm for instance I

opt(1) = opt" - "I

Bound on 1ACI)-Opt(I)/ Absolute error Bounded ideally
by a"constant 37

~

OC) Relative eri

This algorithm satisfies ACI) > Opt(1) - 1 for all instances
.

k instead of
%per bound on opt : max St. & si < 2C

i = 14 using the OCF
take objects which is unknown

ie.[ 20
greedily .

bound error by
comparing to

=> OPTEK . upper bound for

max , power bound

aim : ACIJ k-1 for min problem

If : Suppose Sk-1 was not included

< 7-
CI

⑧ I
C

( + Sk- 1
>

=> 4 + (2 + 25k + > 2C< Sk-1
( + Sk + > C

---
C 4 + 2 > 4 + x +

> 2

(2 <Sky
+ Sk - 1 + Sk 25k +

This contradicts the fact that

[1, = 2C .

Edge-coloring
Instance is a graph and a solution is a coloring of edges st edges with

common endpoints have different colors. Cost= no · of colors used to minimize .

Max degree= = Y distinct. Opt (E)a



vizing thm : It is always possible to color such a graph with A + 1 colors.

Deciding if opt = 1 or A+I is NP-complete .

Given a graph ,
soln is a spanning

tree
.

Cost is the maximum degree
of a vertex - Hamiltonian path. (NP-hard)

Non-trivial aly (end of course)

↳
Always find a spanning tree with max degree one more than optimal.

Logistics
1
. The design of approximation algorithms : Shmoys & Williamson (primary reference)

2. Approximation algorithms : Vazirani (problems + more examples)

Evaluation

Assignments + Midsem + Endsem

(Problems from)books

Vertex Cover problem :

GE find smallest subset of vertices covering all edges.

aim : There cannot be an algorithm with A() = Opt(1) + 1 for all I

unless P = NP .

show if such an algorithm exists
, we can find optimum in polynomial time.

give input- two copies Idea :

construct instances where next suboptimum
G G

solution is far
away

from optimum.

Approx => exact

can repeat this constant times
,

to retute any additive approx.

ACI) EO(I) + 1 (using may-match) Question not studied
well for additive .

A(I) = O(I) +

1 ?



(Amplification of) 8/24
gaps

If 7 k-constant approx
= subset with val V

(E ,) + -' (mult by 1+)

yes ->OPT+

no -> Opt = (k+1)(x - 1) = (k + ) X - (k + 1)

Run
approx algo onE

=> Ans to I is yes iff the sol" obtained has value (KH) X - K

yes , no instance have

In general for problems with weights, absolute gap K)
.

approximation is usually reluted will scaling arguments.

Special case of Integer linear program

i - takes value 0 or 1

indicates whether ith object

is included or not

H

[sii = C Any ILP reduces to

i= 1

max vii integer
variables restricteda

be 0, 1 in constraints

and objective

i EEo
, 17 &indicators using bitsy

LP relaxation (pretty bad. High density high size objects)
--

↳
:El

Allow variables to take fractional

values between O and 1

optimal value of LP will be an upper bound (maximization)

on the optimal integral solution.

optimal tractional obtained by a greedy algorithm. Sort objects such

... and at it step as large a fraction of ith object as posiblea



Challenge : Come up with ILP so that integrality gap is less.

Modification : Remove objects with SiC.
-

2 C
V

-# S 1 C

cap = C

Greedy : value = 2

opt = C .

A > Opt - Vi

Fractional object
can contribute atmost is

e.

Opt A + Vi

Fix ?
-

Take another solution as object with maximum value ! (out of six2)

output-larger of these two solutions.

Still.... Opt < A + Vi

A > Vi

=> A > Exopt (E-approximation algorithm)

An algorithm for a maximization problem is an X-approx algorithm if for

every instance I,
ACE) > X · Opt (E) ·

Where a El

For a minimization problem,

A(I) & & . Opt(E) where /

Instance where Aly gives t the optimum integer sol"

c = a
[v

= 9

c = 1 v+ 8 HS V 2

d.⑳ v =11 ( = 10

+E E E-E-

-iV =

Sopzre



Further improvements ?

Opt = A + Vi
-

ensure this has

small value

1 .

Take all possible subsets of size atmost k which are feasible & select these object.

"Cardinality" I colog7

2. For remaining objects remove objects with value, min value of K
, ow

objects

capacity > rem . cap.

If Opt has K objects ,
we get exact opt.

If opt has H objects ,
we get maximum value dements (fistk) and

then greedy is applied.

Let Vi be missed. Then opt/UX is feasible.

value
x+ 1 .Fractional object in

greedyoration.As S
* LP bound
-

Opt E A+ Vi

=> A = op+()

Lecture 9/1/24

polynomial-time approximation scheme

It is a family of approximation algorithms parametrized by an error parameter

& >O
,

such that algorithm runs in polynomial time for
any
fixed a > O and

has error bounded by E . opt.

Minimization : A(E)() = (1 + 2) Opt (1) for
any

instance #

Maximization : A(E)(1) > (1 = 2) Opt (E)

↓
tractional object in

greedyoration
.

LP bound

Opt E A+ Vi

↓
To get better approximations ,

ensure that U : is "small

compared to Opt.



PTAS k largest valued in opt
Fix a parameter > 1

--

For all subsets S of size atmost K

that are feasible

(sum of sizes [C) greeling set

1) select all objects in S
It K objects in Opt ,

-

we get optimum.

2) Remove all objects whose value > the minvalue of S when S = largest valued
objects in Optimum,

3) For remaining objects fill using greedy this step doesn't change opt.

output will be the best solution over all choices of S
Every remaining object
has value=opt

This gives
a solution with value, Opt

greedy solution k+ 1 .

> Opt

Runningtime : O(nk) -> polynomial time for -value of
any fixed K. fractional obje

k+ / objects
opt.

-

k+1a Eight exampleoone
-

approximation ratio

* opt will not include

this object.
Alg Opt but greedy alg . always does !

Ce C

Euclidean TSP Euclidean
dist

O Simple polygon with

minimum perimeter
[Sanjeev Arora] O I

with given points
to O

as corners

Gave a PTAS

for enclidean O

O For Arbitrary graph ,
no PAS is known

TSP . E

(104-approx is best)
[to be done] But no proof that PTAS don't exist

D

for metric SP -



Fully Polynomial time approximation scheme (FPTAS) PTASFPTAS .

ACE) should have running time which is polynomial in both n and Ye.
E

our earlier alg was O) - not an FPTAS
.

Si Sa S3 ... Sn

YI v2 - - .. Yn

If all values are 1
, we have a simple greedy algorithm.

If all values are bounded by some constant B and B is a small number.

max possible value is B . n

Use dynamic programming
For each value On find smallest size subset whose value is V

.

S (i, ) = smallest size of objects that are subset of first objects with

value> V.

O v= 0S(x,y) =

E
S1 if > 0.

s(i+ 1 , x) = min[S(i ,) , Six + S(i , y - YiH) Y
- include it I .

exclude it

Runningtime =
0 (Bn2)

Si S3 ... Reduce values of these

.... 3 objects by scaling them with

YI an appropriate factor

i =1ext 2Bis
seboundedby
polynomial in n

max

value of an object.
=

(ax) number ot
henits

.

question : How bad is the approximation

i'max =

s

For this instance ,
B = A . We can find optimum for this in 0 ()



By taking floor
, amount lost from value of each object is at most Emax

(in modified instance) N

Hence
,

amount lost in total

EnXEry- S opt

Opt (1) > Opt (1)
- E . Umax.

↑
modified > (1 - 3) Opt (I)
instance

Lecture 11/1/24

Set cover

Given a set U = Se, 22, ..., en called the universe and collection C of

subsets of U, C = Es, S, ... , Sm3
. Si & U and each Si has weight wi

umsi = U
. every

element in universe is contained in some set in C.

Solution : A subset C'of C such that union ofsets in C' is also V.

c -> set cover. the sets in 'cover V .

Cost = the sum of weights.

choose min cost sol" CNP-hard reduce from vertex cover)

Min . wit
spanning

tree Special case (PTUME solvable)

Connected subgraph with minimum weight
Need to cover all cuts in a graph

05
& at least one included

in spanning tree.

Approximation Algorithm
1 . Try greedy algorithm .(doesn't work exactly , but great for approximation



1
. Pick the set for which the ratio of wt/no of new elements covered

is as small as possible

2. Repeat this till all elements are covered

For VC problem· / edges left i.e. pick max degree and do repreally,

o opt Hence ,
not an optimum algorithm clearly .

O chosen.

How bad is this algorithm 2 [Analysis]

Whenever a set is picked in algorithm assign a cost of m(Si)/#new elements
covered

To each of the new elements covered.

An element will be assigned cost only once when it gets covered in algorithm.

000000000 00 P

Adding cost of all elements> total cost Sequalityifsett,e
and sum over all sets

For any set S in C
, let cost of 5 = sum of costs of

elements S

A(1) = sum of costs of all elements

For any optimal solution C

sum of costs of sets in sum of costs of
Idea: Cost isn't

much more than

all elements the weight
= A(I)

To get a bound
, we bound the cost of any set in C in terms of weight

S1

extraGO 0 % 0 O 0G
5 : cost = 27

, basically , sum of extra parts is not too much



Let S be
any

set in C with 1S = K

W

EX ratio
.

This is smallest or something else covers X with

a smaller ratio.

i. e. cost W.

cost(s) = w(s)(1 + E + 1 + .. . + +)
--

why ? = Pn(k) = In (1)
Divide into groups

based

on when it got covered
First iteration

=
k,

(S)

E i
cost

=> w(s) ( + + ...

-i)... 2
nd

-
> 42wee

cost w mang interationa = w(s) ( + + - .. + v

k- KI k -k
, k2
+ ,

Total cost = W(s) (1 +Et ... + )
- ...

of all elements
-

H= kth Harmonic number = In (k)

[ w(s) k
>

sum of costs of
> ALF)

S
sets in C

SECI

If
every set has size atmost K

, Hi In (k)

[I]HKALL)
=> A(I) &OPT X HK # In general not a

constant factor approx

In so n-approximate algorithm

-
O Idea : Only RHS vertices are chosen !

O

-

-
- ·degreenty of degree : 3 K such groups

· O
on right hand side => kn edges removed .

for i= 1 to n.

O- O

N vt X
#vertices in RHS = In = nHn .

of degree En nedges



At each step there is a max degree vertex in RMS !

Note
So

, analysis is tight.
-

If we have better than logn-approx for setcover we get an quasi-polynomial (nlogn)

algorithm for any NP-complete problem
not believed to be truely

15/1/24
VertexCover

U = Est of edges in an undirected graphy each vertex has a

weight .

C = [Si/corresponding to Vertex i contains J
Previous greedy alg.

all edges with i as an endpoint
gives logA approx .

↳
every element in U contained in exactly I sets

more general case
, every element is contained in atmost- sets

, for some constantof

ILP formulation

:E [0, 17 for each set Si

i = 1 If Si included in set-cover

For every
element e in U

, 11 = 1
,

IC1 = m O

->[xj > 1
LP E ,e

j , e esj relaxation

dropiEl minmWii

min Im Wic: i without changing
Optimum

suppose we have an optimal solution for the LP (polynomial time)

↳ convert fractional values to integers in a suitable way
whose cost is not too

far from LP optimal [Rounding]

set cover instance where every
element is in atmosto sets (For Vertex cover, there(

are exactly two

xi
, + ic + .. . + k

,y > 1

Every :1 ,
round up to 1

,
others round down to zero.

Gives a fvalid solution
,

and cost is multiplied by atmost Fo

xi' = f xi
Ewici' & f LP-opt = f . Opt

So
, this is anf approximation. [Iterated rounding is also an idea here]



Use a lower bound on the cost of the optimal solution and find an integer solution

whose cost is not much more than the bound.
times

-L
> Algorithmic integer

Lower Opt < Opt Integer
solution

bound fractional
A Sol
I #

using dual

of the LP k times

Dual of an LP

Multiply each inequality in original LP by a dual variable corresponding to in equality

and add all the resulting inequalities to get a bound on the cost of

the LP

Ye = corresponding to each inequality
Ye O

Ye I ea
Add up all of these

[m(2x)xj = Eye
C

ezSj
j= 1

-

wi

Ensure that ye satisfyIye o ,

since j,
0

,

I w; ele
Note :

Analysis of
Dual Algorithm for set cover

assign non-negative values to elements in U gave costs to elements,

-> For a set S;
in C

,
sum of values of actually a dual solution

elements in Sj is at most the weight of

the set

-> sum of values of all elements is a lower

bound on the optimal fractional solution



Primal Dual Algorithms
Use dual variables to compute a bound on the fractional LP solution and

try to construct an integer solution whose cost is not much more than the dual cost

While there exists an uncovered element e

Initially Ye = 0 for all

-> increase dual value of variable till the elements
,

the set cover

inequality for some set containing it to be empty
becomes tight . ↑ Ye until some dual

-> Include all such sets in the set cover .

inequality becomes tight
Repeat till all elements have been covered for some set

Chappen for sets that contain e and

compare cost of integer solution to the dual solution. have minimum weight amongst them)
dual constraint

cost of
= Ew(s) (e) f I ye

solution
for all

Obtained
Sin solution solution ↑

-

A particular cost
ofe

Ye appears atmost

- times

Gives an f-approximation

Idea : Bound # sets with ye O

& .g. Dijkstra Ye to then there is only one set containing
Kruskal that e (gives exact solution)

shortest Path

Reverse deletion

↓ set cover obtained by greedy algorithm may contain redundant sets

In reverse order in which the sets were selected,

delete a set if it does not cover any element

not covered by the others.

Directedgraph with the integer weights to edges and two vertices St .
Find

min not path from s to to



An s-t cut is a subset of vertices that includes s but not to

edge covers the

to cut

U V · t
O

S

Elements of universe are s-t cuts
,

sets correspond to edges and an edge
(U, y) covers all cuts S .

t. UES , S

Assuming tre weights , minut . Set cover Ex min-wt . path

Dual variables= cuts [Ys = We

inequalities for edges .

e cover s

Increase the dual

S 7

Os
value for cut ES]

- till it becomes equal
O->
- to min weight edge↓

reducta leaving S .

Include all min weight edges leaving s.

Reduce the remaining weight of these edges by min not edge leaving S.

Increase the dual for this cut

-> update step in·
I T

S = [s]V sallvertice etos]
&

dijkstra's algorithm

↓ 5
-crease in dual variable will be equal to difference

in distances between vertices at level 2 and level 1
.

* and , repeat the procedure.

·
continue till you get an s-t path

->



Applying reverse deletion, delete all redundant edges ,
till you are left with a

-

single path .

->.......t
Now

, every cut with a non-zero value is covered by exactly one edge in the path.

idual)

Weight of the path = total increase in dual variables

=> optimal fractional solution -> optimal integral

Se
Si·O- te : A similar analysis works for the min-cost flowG......

primal-dual algorithm.

solution.

Min-wt spanning tree

For any partition
of vertices into two parts S

,
T

⑤ Fedge joining a vertex in S to a vertex in T
.

Exercise : Find

Footed spanning tree

Elements to be covered= all such partitions (2-1) at u in a directed

graph (same algo
-0 covers all partitions with u,x in different

works)
U V

parts. 24-2 different such partitions

· Increase all dual values of uncovered elements by equal amount & till some

inequality becomes right.

· Include that set

[Ys = We
e covers

If everything inc . by S
,

increase for each edge is equal .

So
, right first for minwot

edge . Choose S
,=

Inequality becomes tight for all min weight edges.



- ↑ Already increased dual cost by
% I
-

O S
=min

for all cutso

- O

Include all edges with min weight
& contract all connected components

&

⑧ of that to a single vertex.

Consider this as a smaller graph
Effective weight = Woriginal - dual cost

⑧ & 1 already
& ⑧

vertices assignec

& ⑳

= Woriginal-Wa
⑧

O

Pick minimum weight edges again.

Creverse deletion)

Finally, use a tree in each connected component gives a min weight St.

So
,
Kruskal algorithm = primal dual set cover algorithm. Note:Inminse

deletion doesn't

Counting #min wt spanning trees ⑫ matter
,

but
n1

-can be done using counting STO n , 1243 here it does.

Every cut is covered by atleast two edges
↳ min wt 2-edge-connected subgraph hardu cycle is a min

& general
Wit 2-edge-connected

Network Design
problem .

[ref : Vazirani]
subgraph)

For some pairs of vertices - atleast some paths blw those pairs in minuot

subgraph
2-approx algorithm is known

, try primal-dual algorithm.



18/1/24
Integrality Gap

Complete graph will all edges of weight 1

.

Ine > 1 [ setcoveron] K n - k

max

x)
excut O

-

assign t to each edge , gives Ofworst n - 1

a valid fractional sol" with cost = Y
case

s
Integer optimal = n-1

So
,

we can say
Kruskal algorithm is 2-approximate using this LP

↓
Integrality gap

of an LP relaxation of an ILP problem
max ratio of optimalintegral sol"

= r

optimal fractional sol"

We cannot prove an approximation ratio better than r
,
if the optimal fractional

solution is used as a bound.

#cuts = 2-1 excludeaset

Every edge covers exactly 22-2 cuts . Assign its to every
cut then all (dual

inequalities become tight -> dual cost=n 2 which is much less than dulhe

optimal =

1 .

Hence ,
those algorithms = Kruskal but optimality is yet to be shown

using better LPS.

↳
Isolating cuts :

0 g There aren such cuts
,

increase dual value

One vertex one side,
for each of these

all others on other side.

T-nclude all min weight
edges .

00 belongs to

2 cuts. * Dual cost increases by
Increase value of each isolating cut - in n min/2-



Finally tree has only n-1 edges by reverse deletion

-wmin Reduce the weights of all other edges by

! &. min ,
contract connected components,

repeat

Dual cost of tree = (n-1) Wmin for 1st step .

-

edges in tree

: (n-1)Win

Excess cost = Ave .

cost :

no 2 appra
Idea : Add more constraints to 2p which step-

-

eliminate fractional bound. [Generalises
isolating cuts]

sample

& OK
parts

Jan orations
o

O O I i

O'
↓ Singleton
n - 1

&n + partitions
For any partition

of vertices intoK parts ,

this fractional-Ice for e with end points in different parts
solution is ruled

out
- k - 1 ting planes solutions

/lim
tractional

With these constraints
,

the optimal fractional solution-optimal integral solution

and shows optimality of Kruskal algorithm.

1
1. Consider partition with all singleton vertices and increase dual variable for

that (feeE ,
I partition = We]

partition - e

Every edge crosses this partition ,
so increase this by min weight edge.

All min wt edge tight.



↑ parti . [xen-1 Dual cost = RHSXS ,(
expartition ( so increases dual cost by (wmin

counting min
for every

edge in ST.

Whin contracted
, weights of all other edges reduced by womin

Easy argument by induction
,

dual cost= weight of minimum ST.

in
&

Remaining dlg gives cost of St for

& remaining components ,
add wmin edges

⑥ - ⑧
to get must for larger graph.

C
Note : This is not possible for 2-edge connected subgraph problem

En > 2

3 Has an integrality 2-approx algorithm
etcut gap of 2.

Problem is NP-hard

OkeEl : E22(1) is actually
2 disjoint ST problem ,

has

Exercise : 2-edge connected by deleting edges an efficient algorithm using
until 2-edge connected is 2-approx similar techniques)

But better ratios known.

In general if constraints for each pair,

set cover formulation is best known.

Feedback Vertex Set P-hard Vertex covery
to

Undirected Graph with weights assigned,
vertices.

min not subset of vertices whose removal destroys all cycles

i
.

e. every cycle must contain a vertex from that subset-

x
x
-> 50, 13

U = Ecycles in the graphy
Every cycle [x1

S;- > corresponds to a Vertex V; C
EC

it covers all cycles -Vi

min WVv



Integrality Gap = & (log n) where n = #vertices .

Construct an example where optimal integer sol ,
fraction solf

3 - regular

For all g > 3 there exists a cubic graph with 29 vertices and no cycles has

length less than g. (g =girth of the graph = length of smallest cycle) #do
:

Show construction

y * v .

is a feasible solution
;

cost = 2
Optimal integral sol" contains &9 vertices atleast - counting argument

FY set of size
,

then n-kvertices don't have a cycle
=> n-k-1 edges left atmost

edgeseted =
nX = - (n - k - 1) = 3k

2
#utx removed·

=> 1 + 1 = 2k

=> k I
4

Hence integrality gap /4
= A =

(g)

29/9
which is Clogn) , n = #vertices -

te : You can get an LP with integrality gap of 2 using additional constraints

Remark : Small integrality gap formulation doesn't guarantee an algorithm with that

approx ratio
, but it does turn out that

way
for a lot of cases

Exercise : Construct algorithm attaining (logn) approximation algorithm



Lecture 23/1/24

u = Ee, ..., eny Maximum CNP-hard)

eachi has weight wi coverage

c = &S, s ...

Smy ,
Si U

FindK subsets in C st - sum of weights of elements covered is maximized

Greedy algo :

choose the set St . sum of weights of newly covered
elements is as large

as possible. Repeat till k sets are
selected

Sopt = optimal collection with weight Wopt

↑ * (K sets)

fatleast one set utwopt <firststel,e
(i++ step of greedy. Let : = cot of elements already covered in greedy
There must exist a set s .t . weight of uncovered elements in that set

> Wopt-Wi
-

K

=> With Witwopt-w
Wopt-Wit = Wopt-Wi -(wwi)

E=>

Wopt-Wi (wopta
reduced by 1- t

=> Wopt-Wk = Wopt (1-1)
Wx = Wopt (1 - (1 -

- ( x) > Wopt (1 - E)



Float optimization problem
elements

-

sets ->
I Wig indicates how well the

set Si covers element eg

choose a set S of K rows such that[
E may swijl is maximizedto

-

all columns
of j

Previous problem had
wij = 1 if jeSi else wij = 0

,
so is a special case of this

.

At ith step choose a row that increases the objective function as much as possible

Exact same argument as before works
, weget 1- approx algorithm using

a greedy approach.

f(s) = I
:
max 3 wi) o

1

. f (s) is monotone : if S
,
&S2 ,

f(S1) =f (S2)

2 .
submodular : If AB and B then f(AU3) - f (A)

-> f (BU3) - F(B) Idecreasing marginal return]

MAMB

a 11 p B

1= + s
+ s↓

Cmax)
↑

higher increase

by adding row

to A

Wopt is the optimal value , wi is the current value7 a row such that

it increases the value by wowe holds for
any

monotone ,
submodular +"

* No approx algo

opt = 54 , vz ,
... , Y ] Known for note

monotone
Wi Si ↳ This gives an increase of submodular f

↓
atleast Wopt - Wi

adding all rows in opt to

Si gives weight opt (monotone)



S SUV Surv ...
Suv,

u ... uYk
->

We ->
-> > Wopt

k steps ·

one of these steps must have increased fr

bywotw
a

by submodularitySu,
u ... u

H
-> then

, w

He : For an arbitrary submodular function
,

better than -E) approx is NP-hard .

Minimizing submodular f" has a PTIME algorithm , but maximization is hard .

↑ Learymax
in a dim with

Cut-function [Max-cut]
may · many vertices.

f : defined on subset of vertices

F(S) = # edges with one end point in S not monotone ( (0) = F(X) = 0

but is submodular
other not in S

7

↳
non-neg active .

E-approx-
if diff < game ,

Onift
Switch vertex to the other side,

keeping all other vertices the

same

↑

atleast I the edges are in the cut

Cardinality : size of set is at most k

& each element has a cost
,

find subset with cost - C having maximum value

↑

I knapsack constraint] where f is monotone ,
submodular.

also has a constant

factor approx.

Just greedy doesn't work,

need to compare
two different

solutions.

(Analogous to knapsack)



Lecture 25/1/24

k-centres

Metric space : Finite set of points with distance

d(u , ) specified for each pair of points

(1) d(u , y) > O complete graph with
#

(2)d(u, x) = d(X , u) weights dij assigned

(3) d(u(y) + d(x ,
w) > d(u, ) to edges

Choose K points (centres) such that maximum distance of a point from set

of centres is minimized

d(u,
5) = min d(u , x) radius is the minimum value.

ES

Find S s .

t. /S/K
,

max mind(u,) is minimized

VEV UES

- Dominating set
not in S

Krows ->

I
SEV S . t . every vertex is

-> M

S . t . max

entry in each
-> adjacent to some vertex in the

column is -> subset
minimized

- Existence of Dominating Set of size

N k is NP-complete .

Now, dij = 1 if elicj) otherwise dij = 2

If we have better than 2-approximation , dominating set would be

solved . ( "gap" = 2)

Dominating set of size K iff Fk-centres such that distance is 1 .

So, better than 2-approximation is NP-hard.

Algorithm (2-approx)

Initially pick an arbitrary Vertex

At each step pick a vertex that is furthest away
from currently selected

till k vertices are selected



Optimal Radius is Ropt

/Rope
· O O Groups formed in Opt by

X Y X associating point with nearest point in S
.

distance b/w any pair in the same group
is atmost 2 Ropt.

If greedy picks one point from each cluster then distance of every point is atmost 2 Ropt

from greedy centres.

If not ,
it picks 2 points from same cluster

. At the moment of picking 2nd point ,

its dist 2 Ropt hence
,
all other points are at distance =2 Ropt from currently

Selected centres
.

Guess the optimum value R

either show there is no solution with cost < R or find a solution with cost

atmost 2R

Pick arbitrary point ,
remove all points
with distance - &R

% IR Repeat until all points are deleted

If F a solution w/cost &R then atmost k points will be selected by
this algorithm.

If more are selected -> no solution with cost ER

-

Te to U I &
-# [ 0, ...R.

max distance] deletes the entire cluster !

Eve need to find ,optimal radiusy

There is no solution wh cost = 1 and 7 a solution with cost = 2U.

Now
, do binary search till length of interval becomes one.

-
-> Ropt = R** 2 Ropt



weighted K-center

Each Vertex has a cost for selecting
We consider only subsets of vertices s . t . cost = some specified cost C

Sort all edges in non-decreasing order of distances

-> bottleneck problems (e .9· min of max

d(e) = d(ez) = .. .. = d(e(z) weight edge in

ST

k-center problem > Finding smallest index i st . the graph Gi formed

by the first i edges has dominationset of size = K

↑
hardness comes from here.

dominating (size()
set

Hi = Gp
2
- G &

2-

-

Two vertices are

adjacent ifFa of Y Y X

-
-

path of length 2

-
-

Independent set in 62
-between them. - becomes a clique has size atmost K

If Gi has a dominating set of size K, Get cannot have an independent

set of size >K.
no xtx can be added Initially MIS has size n

#maximal indep set
to it .

to

Find the smallest i such that MTS in 62 has size K n - 1
-

so , Gi has MIS of size > k F
Gi-1 doesn't have

optimal radius C
is atleast cost(ei) dominating set

E-> ei must be ther

cost(ei) is a lower bound on optimal solution.
in radius)

-

We use the maximalind set in Gi to geta 2
mis is a dominating set

=>7 a path of length 2

solution of cost atmost 2 ei)
in Gi

, by A ineq

gives a dominating set = 2 cost(ei) of that

in G i w/ distance & 2 Ropt . edge .

Subsets of cost< W

In 42 find a maximal independent set
, replace each vertex by its lowest weight

neighbor if any-aim : Weight of modified set C if 5 a dominating set

Including in Ge with cost - C in Gi
itself)



~ replaced by this.
-

& so
, after modification

, weight =WMO↓ Now ,
7 a path of length = 3 · b/w centre

,
vtx .

=> 3-approximation. I Shmoys]
(but best bound for

(not the best approx.)
this algorithm)

te : IfI a dominating set of size in Gi

then all independent sets have size K in Gp2

Lecture 29/1/24

Travelling Salesman Problem (TSP)

Given a metric space , n points with distances
,

find a cycle passing

through all the points having
minimum total distance

Imin. weight hamiltonian cycle]

A lower bound on this is given by minimum weight spanning
tree

MWST 1 OPT

But
, this turns out to be a 2-approximation i

. e.

OPT E 2 x MUST.

roof : Take the min . ~t . spanning
tree and take vertices in order of of minut spanning

tree. Now
,

because of A ineq,

length of cycle - Rength of pre-order traversal
= 2 MUST

#ask : Proof ?
use

a ineqo
&

&

O

lightness
1

1 Opt-TSP = 2x 5 + 2

MWST = 6.

2

1

2 +
12

So , 2-approx is tight.

2

2
2



Christofide's Algorithm
Add edges to the min wt . spanning tree to get an eulerian graph. Now,

traverse the Eulerian graph to get a cycle by jumping over already visited edges.

1. Find min wt spanning tree

2. Look at the subset of vertices with odd degree (say S)

3. We need to add one edge to each vertex in S to make the graph Ederian.

So, add a perfect matching in the graph formed by S and add it to the tree.

Iwe allow duplicate edges as well I

4. We find a minut perfect matching in the graph formed by S and add it to tree

This gives an Enerian graph with weight = wt . of tree + ct .
of matching

-> cost of the Hamiltonian cycle

Now
,
t of perfect matching O (since Op Hamiltonian cycle can be split

into two perfect matchings and choose the

one with lower weight)
=> ut . of tree + wit of matching [ Op7 + zopt = 30pt

=> A(l) = & x Opt

Hence
,

this gives a -approximation
for TSP.

Hote : Finding an enterian graph is enough since an culerian tour can be converted to

cycle using a skip of already visited edges/vertices.

↑
...

-
E

shortcut)..
O

.

Graphical Metric : (best approx .
is 104)

Arbitrary undirected graph with unit weight edges,

dij-weight of shortest path from i to j

TSP for graphical metric is equivalent to a closed walk in the graph where each vertex

is visited at least once.



Bottleneck TSP
Hamiltonian

· Find a cycle st . max weight of an edge in cycle is minimized

· Better than 2-approx not possible ,
else hamiltonian cycle can be reduced

to this

consider kn with wij = 37 ,
(i ,j) + E(G)

2
,

otherwise.

Opt = 1 iff 7 a hamiltonian cycle in G.

otherwise Opt = 2
.

2-approximation
d(e) = d(ez) ....

[d(em)

Gi = include first i edges in graph .

Optimal at smallest i for whichGi has a hamiltonian cycle .

Vertex

IfGi has a hamiltonian cycle ,
it must be 2-connected Ican't be disconnected

1

by removing any
one vertexs

2-connectedness can be checked by using DFS in linear time

Now
,

find smallest i for which i is 2-connected

=> opt > dlei) -

may or may
not have a hamiltonian cycle.

but previous his definitely don't

Fleischner's Theorem : If G is connected then G2 has a hamiltonian cycle.

Hence, G2 contains a hamiltonian cycle ,
and weight of any edge in Gi2

= 2d(ei) &D inequality Int of edge (isj) = length of shortest 2-hop]

Hamiltonian cycle in Gi2 uses 2-hops in Gi

= d(ei)
·(ei)

->

E2d(ei]
in original graph !

=> dei Opt2dlei)

Hence
,

we get a 2-approximation for bottleneck TSP.



3-approximation

Stop as soon as Gi is connected and for any tree T
,

+3 contains a

Hamiltonian cycle

Steiner Tree

Given a metric space and a subset S of points ,
find the min . wt . tree that contains

all points in S (may/may not contain other points)

Minimum weight ST with vertices in S is not optimal always.
show that this gives a 2-approximation .

Lecture 31/1/24

Scheduling
· MinimizingRateness
· n tasks ,

each task i has a release time ri and execution time ti ,
deadline

· One machine available ,
one task at a time ,

no task can be interrupted once

started.

Find a schedule (an order of executing tasks) to minimize max lateness over all tasks

Lateness = max 10 , completion time - deadline

· Deciding if - a solution of lateness O is itself NP-complete

=>We cannot hope to get an approximation algorithm , since any such algorithm would

have to output a solution of lateness 0.

So
, we assume that each V:

0 and di < 0 . ( Ensures that objective function of

2-approximation

Algorithm : Whenever the machine is free and a task is available
,

start executing

any available task

Consider task j with maximum lateness [in the algorithm]. If it finishes at
J,

then lateness = <j + dj (deadline is -dj).



Let of be theeast time before a; when machine was idle for sometime just before to

Let S be the set of tasks executed in the time from Ef to <;

=> All tasks inS have release time ty ,
and the total execution time of

-

-these tasks = C - tf
(if release before If could have

tf Cj started the task earlier
!
)

I !
- dj idle

=> One of these tasks has to finish at timej in any scheduling

Ef

N i
La

idle !

=> Since its deadline O
,

lateness in any
schedule L;

Also
,

in
any

schedule
,

the max lateness dj (since release o lateness; dj)

=> A(l) = (j + dj = op+ +Opt = 2 x Opt (gives a 2-approx algorithm)

Tight example
Vi O E => max lateness = IT + E

di 0 -T
- T E

I I

Up -E
-

T;
T E

T

Another version of Scheduling
Completion time= Time at which

execution is

v ->
Pre-processing

time

-> can happen completed
ti parallel + delivery time

di-
> Post processing

time
- in

Minimize max completion time

· Executing any
available task gives a 2-approximation in this case as well

Iftheithjobhasmax completiontimethes after and opt > dj ask : why ?

=> A (1) = 2 x Opt (1)



· m identical machines

· n tasks with ith task having execution task ti

↳> Assign tasks to the machines to minimize the makespan

Makespan = max completion time

of a machine

This is NP-hard even for 2 machines
,

since if makespan = then it would be

same as dividing set into a set into 2 with equal sums.

· Topt > Tmax = max (ti)
3 simplee bounds .

· Topt Etih
2 approximation

·Select the tasks in any
order . At ith step , assign task to to the machine

which currently has the least load [current finish time is min]

· If j
is the task that finishes last

,
then the corresponding machine had the

least load before tj was assigned
=> All machines were executing until atleast T-tj

=> TopEm+; = T-(M

1: Topt > +j)
> T -

Top

=> Talg 2 Topt

= -

approx algorithm [LPT : longest processing time first]

order the tasks in non-increasing
order of execution time

t, xtz7 ... xtn

Let tj be the last task to finish .
We can assume that tj = En ,

since otherwise

We can delete all tasks after tj ,
which does not change Talg and does not increase

Topt .



Case 1 : En > opt
3

then
, every

task > Topt/3 => optimal schedule has atmost 2 tasks

per machine. In such cases ,
LPT gives the optimal solution

Sort times for each machine in desc .
order for Opt Solution.

=> LPT schedules firstm largest times ,
followed by rest in next tasks inE reverse order

.

* 2

-

& can swap to reduce 3=

-- makespan
I 2

Case 2 : n Topt/3

Topt Ei > m Ftnttn T- (m) Topa

=> Tag = (* ) Top

For large m
,

this is a 4/3-approximation.

For m = 2
, m = ,

which is attained by T: = (3 , 3 ,
2

,
2

, 2)

3 2( 2 3 3

3 21 2 2 2

Talg = = Opt = G

Lecture 1/2/23

Scheduling identical machines

FPTAS if no of machines is fixed
,

not part of input (m)

If execution times are bounded by B
,

a (Bn)"n time dp algorithm

f(T, T2 , i) : tre if first i tasks can be scheduled st .
machine i finishes at

time & Ti

f(T,, Tz ,
i) = f (T,

- tifl <Tz,
i) V + (T

, 2 - tin(i)

Use this by scaling the execution times max

objective+" values
Modified execution time =/E y scaleon a

using this.

So
,

find optimal to this in polynomial time. Use the same solution for original

task



Every processor has atmost n tasks => increase in value by atmost nx Tmax

after scaling back

=>We get a (IE) Top makespan.

If m is part of input ,
no FPTAS possible since the problem is strongly NP-complete

PTAS (poly in n
, expin/ is ok .) #machines is also part of input

for (1 + E) - approximation - is fixed parameter = [E]
Guess an optimum

T

. depending on E

↳ Either find a schedule with completion time = (1+). Sea:

DobinaneT

(or) show there is no solution with completion time = T

consider jobs with ; as small jobs.

↳ ifFa solution with completion time T
,

then

scheduling small jobs greedily will give a solution

with completion time [T(1 + 1)

Large jobs + > I

Each machine can execute atmostK large jobs if it completes at time F

-> scale the jobs by I2 sie . i' = (a) It: <T %W output

no schedule withT

possible)
Now

, maximum possible value of any large job
is atmost ?

. atleast
I

We have an instance st .

every task has execution time bloo k and K2 ,

each machine executes at most K tasks.

0 1 ....

K2
= #tasks with execution

time i <K2
Hi 12 ... 4k2

The choice for each machine can be described by a similar vector

E. g . 0 1 5 6 ...
-

Valid configuration if

total execution time in the

modified instance is = 2 -/
ie . (no m . . . +2) S . t . [ini2



Find minimum number of machines to complete all the jobs.

There are only a constant number of choices for each machine

configurations (sinceK is constant)

min (10 , , . . . ., 2) = min (no- mo ,
n

,
- mic .... , a(2 -micz) + 1

(Mo .
. . . , mx2)

imi2

There are~n/2 possible vectors for inputs ,
but possible choices for machine

bounded by a constant

This recurrence give~k time algorithm.

Error term jobs per machine = E

small objects (ti < #)

We have a solution for large objects with < T(1+)

-

If greedy filling
of green (small) objects

-

crosses T for all machines > sum of times T

=> no solution with makespan T is possible.

Now
, amount exceeded by filling greedily

size of last object crossing blueline

+ T(1 + 1) E I
ACI) = T (1 + +)

Now , binary search over T
, we get

initial -> [ Iti , Eti + Tmax] Clength ~ Tmaxo

use binary search on this interval to get the approximate solution
.

Time = log(Tmax) . . . . > & so
,

we get Poly but not

-

strongly polynomial algorithm.
#bits in input



Eg : Max Cardinality subset St

sum of sizes S
,

sum of weights =W
(reduce from subsetsum

=k)

-> solve the LP
,

nuke fractional valuess

max E; 5 opt with at most two fractional ,

sili ES (if three tractional i , augment them to make one of

Ewii w them integer)
0 = xi)

s,
x ,

+ S2x2 + 53xz = S

↑ w .
x , + uzxz + >xz = W S,81 + S2fz +S

> &z=0

Gives an additive
↑ ↑ ↑

0
,

S
, + wz82 +23b =

approximationn.

Si S2
Sy

=> FS, - --by #O
.

but
, running time depends on change in cost = Si + 52 +83 · lifeev)

#bits in numbers for solving LP. cif-re , flip signs to get
inc in cost)

(not strongly polynomial time)

(1 + x2 < 2

=> integral solution discards both

=> additive approximation of 1 since A() > Opt - 2

> opt -
1
.

Lecture 5/2

· n tasks
,

ith task has release time i and execution time to

Single machine -> one task at a time

-> Task must be completed once started

[ no pre-emption]

·

Minimizing max finish time is easy
-> keep running any

available task .

Finish time> max over all subsets S of tasks (r(s) + t(S)

r(s) =

min ri , t(s) =E ti
I ES

If T is the finish time of algo ,
look at the latest time before which the processor

was free
.

Then no task executed after this was released before -> greedy is optimal



· Minimising the average completion time :

& Ci -> Ci = completion time of i

all tasks i

· If no pre-emption is allowed
,

then the problem is NP-hard.

· can be solved easily if pre-emption is allowed

-> scheduled as per min . remaining time

-> only need to check if a task finishes or a new task is released

At some point ,
ift had the least remaining time

,
and t was executed,

t2

I
+, 0tz+ t + +2

+
1 +2

1 + + t + +z (better)

If we first schedule ty in these slots and then dotz , total execution time increases

=> (min remaining time) is optimal

· Consider a non pre-emptive soln in which tasks are executed in the order in which

they complete in the pre-emptive schedule. The task is executed as early as

possible in this order.

Number the tasks 1 to n in the order in which they complete in the soln with pre-emption

If C is the completion time here
,

and :
* with pre-emption,

Ci = max((i
- 1 , Vi) + ti

Claim : For every task i
,

Ci2(
* -> A(l) = 2 Opt (1)

machine not idle
We know rj < C

;
*

( ;
* (because of chosen

rj
Ci order of exec . )

Last release time after Also
, :*[

,
j S best case scenario

which machine isn't idle Call tasks run without

(j< i) (i = max((i
- 1 ,

r; ) + +j
machine being idle (

Vi = rj = rj + zj ,
tj = ( :

* + (i
*

= 2;
*

If ri > r;
then

↑ ↑

tj
p

ti last release max

-I
time after running time

j riblast which not idle
release time !



weightedCompletion time

min zwi Ci

· Finding optimal schedule with pre-emption allowed is also NP-hard

· In this case ,
we formulate a linear program in which the completion times of the

tasks are variables.

C : are now variables.

Ciri vi I can also use (iritti]

We want to impose some ordering on the task St. completion time of the ith task is

atleast the sum of execution time of the tasks that come before it.

Consider a subset s of tasks,

ta ta +
3

·

+4 c = +1
0 · ⑧ · (2 = +1 + t2

C1 C 33 C4 (3 = +1 + +z+ tz

(4 = +z + +2 + tz + t4
=> isti E(iesti) + Fiest

includes +j j i

=> includes titj for

every pair (i , j) ES ,
and i i

=> Ziestici E(Ziesti)
=Eistici=(

So
,

we get an LP,

min IwiCi

Ci > Vi

esti(Et(s)2subset s of tasks- exponentiallymayo

· Even though there are exp . inequalities , there are solvers for this since in the dual,

there exists an optimal solution where most of the yars are zero [Ellipsoid method]

· If it is possible to check efficiently whether a given solution satisfies all constraints,

then we pick a subset of inequalities ,
and check if the resulting soln satisfies all constraints.

If we solve the LP finding the optimal(i values ((;* ) , construct the schedule by
executing in order of non-decreasing C ;*. Let c : be the completion time in this schedule.



Claim : Ci = 3; ** i

If machine was idle before ,

then r is the release time of some task

no idle time Ci
j = Cj

Tasks here must have j<i [ (, ** ( :
*]

Consider S to be the set of tasks with index- i

=> c :
*
Itj > jestj(

* +(S)2 [feasiblept in LP]
JES

-
-

= first I tasks+(S)

=> ( ;
* ) and (i * Vj ( : vj = c)

* ( :
*)

=> (i = v
j

+ +(s) = C :
* + 2( ;

* = Ci = 3C;*, hence gives a

3-approx algorithm

Worst Case of Approximation 6/2/24

m tasks questions: -approx
- tight example for

N O m2- 2 m2 + / m2+m

weighted case

t m2 1 1
2 .

Is weighted LP exact ?
To T1 T2 ... Tm+ 1

Are all sol" in it

feasible ?
pre-emptive schedule

3. Best bound on

O

N
To

↑
Tz

,
To

,
T2 ... My

I quality of the approx ?

O me -2
mz- 1 mz +

m2+ m + 1

without pre-emption
m2 - 2 m2 - 1

ToI I A
free ta 2 m2 - 1 2m2+ m - 1

O

Opt

I

O
To

m2
+1 m

+
...

m2+ m + 1

A(l)- > 2m3 + 2m2 + Bm = 2

Opt(1) => m3 + < ,
mz + B ,

m + Y
As m = 0

, )

- 2



Hence
,

this is the worst case instance for the given algorithm. The optimal feasible

soln must be close to the optimal relaxed soln but A(E) is far.

Quality of bound-instance where optimal feasible soln
. is far from the optimal

relaxed soln
.

Quality = Op7(#)/relaxed - Opt (E)
TT+ 1 T + T+ 1 = 27+ 1

! Opt :

I
1 mininmains

a

opt =
Hence

, quality of bound 413

Note : I an example where we get 18/13 in place of 4/3

LP relaxation for weighted scheduling
min I; Nici

Ci = ri i

For all subset 5 : Ziestili ((S)
2

A separation oracle is an algorithm such that given a particular soln c
,

either

shows that it is feasible or outputs a constraint that C violates.

Ellipsoid = Efficient separation=> efficient sona

Oracle of LP .

Given values of Ci ,
do they satisfy all inequalities ?

· Ciri checked easily
Order the sets s .

t. ( ,
= = ... En

consider the sets Si = &1 , 2, .... i)

Claim : If the constraints are satisfied for these n sets ,
then it implies

that they are satisfied for all sets
.

roof : If there is a set S for which the constraint is violated
,

then Si

for which it is violated .

↑ (to show)

Iti(i < E + (S)
2



Supposej is some object in S
,

and we remove j fromS

=> LHS decreases by tj(j ,
RHS decreases by +(s)

2
- E(t(s) -+j)

= E(t(s)
- +(5) - +j2+ 2 +(s) +j) = (2t(s) - tj)

If decrease in LHS > RHS ,
constraint is still violated .

+j (j > (2t(s) - tj) if (j > t(s) - Etj

ift (j > t (s - (j)) +z +(j)

Let I be the largest index in 5
.

If ( > (S - <13) + Ite we can remove

that index . Repeat until this does not hold.

Then ,

( = +(S - (ly) + te

↳ show that ifs does not contain all objects from 1 ... 1
, adding any

missing object gives a set that still violates the constraint

[(j = ( ,
+ (5) - 1+j > t(s) -E +e)

Note : We can't remove all the useless inequalities since we don't know the order

ofci's for Opt in general .

Prize Collecting Steiner Tree

Graph- > each edge has a the weight [Cc]

-> each vertex has a penalty , except a specified root r [I ; ]

Find a tree containing r that minimizes sum of weights of edges in the tree

+ sum of penalties of vertices not in the tree

FindIti = 00
,
the optimal solution is the min . ut . spanning tree .

Steiner tree-connect a specified set of vertices

↳ a for terminals
,

0 for others in this problem gives a steiner tree.



Find a tree + S . t .

8/2

Opt will be a tree

& Ce + [Iv is minimized if not prune off cycles !

eET V T

:
- > for each Vertex i

Yi = - Vertex i is in the tree

- for each edge e

A s St · separatesr from Vi

Exe Yi S(S) - set of edges with

ecS(S) exactly one endpoint in S

LP-relaxation

= Cele + [ti(l-yi) # not exact

formulation.

edges vertices i

I > y;
where s separates

root a from us

exp. many
constraints

effCS)

e0 , Yi < 1

Given a solution ,y it can be checked efficiently if it satisfies all constraints,

and if not a violated constraint must be found

L Take ce values as capacity- of edges and check that
-

· Vi
max flow from ~ to

: is
⑧ =

2 atleast :'
-

-

checking feasibility reduces to finding max flow
. (strongly polynomial

Hence ,
LP can be solved using ellipsoid algorithm

.

in polynomial-time

↳ rounding to get an integer solution

· 1

Yi E threshold rounding

00



Threshold rounding :
If : X

,
round it up to 1

otherwise
,

round it down to 0.

In this case , take < = E3
Include all vertices with: in the tree

Penalty = I. it; Penalty in = I
,
:la

by algorithmic :
soln > I kill -yi) > & I

; i

Yi < 2 yi < 23

> Algo penalty/3
te : Rounding has limited choices for yi . Arrange in↑ order and

threshold choices are only values of :

↑ o I M

Y7 / Y2 33 In

Chosen the set of vertices of vertices to include Chas a 2-approx

-> finds a steiner tree with r and selected vertices on terminal

S · ti y 1 2/3 .

In LP solution for any
selected

⑧
o + 2

vertex ti and any
cut S separating

& r and ti

· + 4

t
Exe = yi = z
ecS(S)

But for Steiner tree
,

we need

Multiplying each e by 3/2 gives a valid Jesse
solution to the LP-relaxation of Steiner tree .

weightedener tree whose cost
=>We can

find an

is <2 x cost of LP-relaxation

i
. e. cost of Steiner tree -**

timesconnection cost inthee



=> cost of solution is atmost 3 times cost of the LP solution
.

(MST is 2-approx)

Steiner-tree approximation

(Primal-dual method for set cover)

Given a set of terminals in graph ,
find min-cost tree including all of them

· For
any set S

, separates some pair of terminals
,

atleast one edge in SCS)

must be included

minwo- Find a tree whose cost isO - -
- (OO

⑧ ·
atmost 2 x cost of dual

Increase dual variable for all

~..
↑

⑧ singleton cuts by an equal

⑧
amount S till some edge becomes

tight (constraint)

Algorithm
1
. Increase dual variable by S for all EYs E Ce

f(S)7e
singleton cuts

8 = min &W , way

We is min not edge joining
terminals,

We is min not edge joining
terminal to Non-term.

/terminals. -> Assume by induction you
-> Dual cost increases by S/T can find a tree in the

remaining graph with cost

↳ contract
any edge that becomes tight

atmost 2xdual solution

reduce weights of all edges incident with T by S ↓
i. e. in each step , increase

·% in cost<2 x increase in dual

/ Increase weight of all

edges incident with tin tree
contracted

by 8 and add cost of

contracted edge.



The tree obtained has only terminals as leaf vertices.

In
any tree if TEX including all leaves

,
then edges incident with T

is atmost 21T1-2 (easy to see)

Hence
, increase in cost= 21TI8 , showing the 2-approximation.

(primal) #
<

+S - Per pair we get + S ,

+ So for 171-1 pairs (upon contracting edges with one

↓ * non-term. end in arbitrary order)
we get at most 28/T1 increase.

#

*
*

Facility location
12/2/24

· Set F of facilities

· Set D of clients

·Cost fi of opening a facility
· cost Cij for connecting client j to facility i

Find a subset of facilities and connect the client to the nearest open facility to

minimize total cost

i. e. we need min isfi+ minS & F ↑
&

If Cij are arbitrary then set cover can be reduced to this

Greedy : Select a facility i which minimizes

min

subsets sof fies()
-> Open facility ; and connect

Over all non-empty all elements of S to facility i

-> Then remove s from clients and continue

Thiss can be found by sorting Cij



Analysis -For any facility ; and subset of clients,

O fi + jesij > sum of costs assigned [ same argument

"C2
o

to elements in S as set covery

-

& HisIEi as first dem covered -> cost assigned- > aug .
cost

Metric Facility Problem

· Facilities and clients are points in a metric space
· connection cost is the distance between points

jt

is Cija + Citiz + Cieje

ja
12

LP-Formulation

di- for facility i
, Ji = 1 if fi is open

- > client j is connected to facility i

min I ; Fii + [i] ijij

E: ij
= 1 j * each client connected to 1 facility

:-jo j
If client j connected to fi,

&; is open .

Clij , Ji e 0
, 13 relaxation x0 , yo

is just

In dual
,

for each client we have a variable vj (unconstrained since constraint

is an equality) and wij, 0

Dual LP-Opt = LP Opt .

Dual :

If a variable that is 0 has
-

max

je
Vj + ve value in LP-opt then corresponding

fi je Wij * i inequality in the dual must be

-

tight [complementary slackness]

Vj - Wij = (i) Hi , j

Wij O



Consider Optimal LP soln
. to the facility location problem. Then if j > 0

, 13/2/24

then we have j -Wij = Cij
Vertex with For facilities with ij > O

,
Y ,

o

I
O

min Pick facilities with min f (say (1)
OE 92

: ist

(say v , )
Dual opening cost of facilities in F

F -

sum

=
it

-

Y go
= fa

When ij > O
, j = Cij + Wij Cij

fa Connect 1
to fl and also connect all

O Y1

O
clients with <j > 0 to fi (x1j > 0)

fi - (to f1]
O

Algorithm
2

· While I an unconnected client j , pick the client

with min.value of y

· Let F be the set of facilities ; such that ij > 0

in the optimal solution

· Pick a facility m in F with minvalue of fi

· Connect all clients (unconnected) to the facility m

such that <ik > O for some i in F

·Repeat this.

Note : After this
, no unconnected clients have a non-zero

value to
any facility in F.

Claim : At each step ,
the total cost incurred in opening the facility and

connecting the clients to it is atmost 4[V values of clients connected.

If : The dual cost of opening facilities in F Li > 0 only if ij > o

for some facility i, given client j.

(ii)
if ii Emi fm Iij

= fun Im covers all clients coveredbyis
F , so only that is counted.

In this case
,

the total cost of opening the facility fo is atmost Zief Fill

=> Total cost of
opening

the facilities [
; Fili LP-opt



By complementary slackness , clij > 0 => j -wij = (ij => j > C ;j (since , wijo)

non-zero. Vj Clowest

fro unconnected)
F

I fi

Eili
- &

Joy
non-zero

K (((il > 0 , but mk is not nec> 0)

Connection cost of connecting j to m Vj ((j < Vj)
Cost of connecting to m <

mj
+ (ij + Lik [metric)

=
vj + vj + Vk

=> 3 Vk (Vj was lowest cost)

=>I (connection costs) - 3 [VK (each U cost is counted once due
to cover by facilities)

=> 3 Opt (1) (dual opt is [V)

=> ACI) = connection cost + Opening Cost

& 3 Opt (E) + Opt (1)

=> A (1) = 40pt (E)

Primal-dual Algorithm
keep increasing the v values for some subset of clients till some dual

inequality becomes tight I keep increasing all non-tight v together]

For each facility
i

,
;Wijfi j

-WijCij [max [Vj y

start with all Vi = 0
, Wij = 0

Assume we have a current dual solution . Define a facility i to be a neighbor
of clientj if XjCij · Also

,
a facility i contributes to client j if Wij > O

.

If facility i contributes to j ,
then it is a neighbor of j (by construction)

Since we increase wij only when the inequality becomes tight



The first iteration will stop when the dual inequality becomes tight
for some facility

For a tight facility ,
the value of u cannot

-

t be increased for
any neighbor. (u/ij)

There are 2 possibilities when we have to stop

increasing the dual (v) :

Stop increasinghe eeclient E 1

. If some client becomes a neighbor of a tight facility (j = (ij)

stop increasing the dual 42. Some new facility becomes tight
for all neighbors of this facility

Claim : I an integer solution whose cost is atmost 3 times the cost of the dual solution.

S=all clients for which dual variable is being increased 17/2

T = Set of all facilities for which dual inequality becomes tight

At the end
, every client will be a neighbour of some facility that is tight

↳ (ifj < Cij for all i,
(some facility in TC

increase v further)

For
any

Fift ,
fi = I Wij = [ j - Cij

jENCti) jeN(fi)

Suppose we connect all clients in N(fi) to fie

cost = fi + z(j = zvj
If N1fi) are disjoint , we get exactly

2
(of opening fi jEN(fi) jeN(fi) IXj

= Zvj = dual cost

Construction of solution : (Intuition)
jeN(fi) jED

=> primal cost

corresponds to optimal
· select any tight facility

and open it
primal

· Connect all neighbors of that facility to it (xj (ij)
· If one of these neighbors also has a non-zero Wij value for some other

facility ,
connect all neighbors of that facility to this

Iwe don't pick 2 facilities which have a non-zero contribution to 2 clients]

=> don't select 2 ,
connect C and 25 to f↓Note : If these are no clients with > 1 neighbors,heon

the algorithm gives the optimum value. (why ?)



Note : we can't use the same argument with the optimal LP dual solution,

since we can't argue Y in that case . [Orderingmatters].

· Consider a graph on T in which two are adjacent if some client has non-zero

value of Wij in both facilities

LetT be any maximal independent set in this graph . Open all facilities in T .

Any client that is a neighbor of
any facility in 7 => connect it to any one of them

For clients that are not in T= Let i be the facility that caused

the dual variable ; to stop increasing

If i is not in T
, 7 a client k that has the w values to i

and some facility in

TEsay
my o

>
o

Cmj = (i) + Lik + Cmk
i O

> 0 K* common Cij Vj [they are neighbors]
client

for w >0
Cik = VK

In
>O in T . Cm E Yk

Also, Y =Vi because j was removed from S because i became tightj

Wik >0 k can't become neighbor of Fi after it becomes tight .

Vj can't increase because fi became tight . Hence, Y j
[ by construction]

So I cannot increase after i became tight -> I was removed either before or

whenI became tight

=>I didn't increase after j stopped increasing

Hence
, Cmj 3;

Total cost = <
fitt, (fit) = I (2; + 3are

fiets directe
conn .

= 32yj = 30pt (1)



Scheduling Related Parallel Machines [Ref : Vazirani] 19/2

· n independent tasks

· m machines

· For every task i and machinej , tij is the time taken by task i on machine ;
· Find a schedule that minimizes the max completion time -> assigning tasks

to machines

j = [1 , task i assigned to machine ;
O

, otherwise

ILP Formulation

min t The problem in LP relaxation is that

I ijtij t machine j
it can distribute large tasks over all

machines so the LP-opt/Opt

Ig kij = 1 ↓ task i, assign to can be very small

exactly 1 machine

C(j t So, 1

: One task
, m machines, tj = m j Getting an m-approximate

is easy-schedule
optimal integral time = m

each task to the

Optimal relaxed, j =+j +1jE 1 j fastest machine .

#

Opt relaxed = 1

Using Binary Search : Guess a value T for the optimal .

Construct an algorithm that either shows that there is no solution with completion

time T or finds one with completion time atmost It.

Since Opt(I) E [Imigtij ,
Z , minjtij] ,

we can perform a binary search
M ↑ using this ↓

Total time N= opt > NY/m
a possible

assignment will give
Modified LP Formulation [modelling as LP feasibility problem] m-approximation

whenever tij > T => do not allow that assignment

gij = 1 task i
Hi ,j : Clijo

& ijtij T machine j
↑i : tij &T



claim : If this LP has a feasible solution
,

then we can find an assignment with

completion time atmost 25
,

and if not , there is no solution with

completion time [T.

If there is a feasible solution
,

there is also a basic feasible soln which is obtained

by selecting a set of constraints that are tight and solving the corresponding
linear system of equations

Suppose there arer valid pairs (i , j) such that tijT
# variables = r

# constraints = m + n + r

since there are variables

↑
If there exists a feasible solution obtained by choosing atmost v of these inequalities
to be tight => in any such set

, atleast -(n + m) inequalities must be

of the form j = 0

=> 7 a feasible soln in which atmost (m+n) variables are non-zero.
7

We are looking
at rounding

( "Corner") this feasible

In the basic feasible soln
,

a task i is fractionally assigned to machine
solution

- J ↑

if j < 1
,

and integrally assigned otherwise. "Corner"

If a task is fractionally assigned to one machine
,

then it must be fractionally
assigned to atleast 2 machines

=> If there ara factionally assigned tasks and (n-k) integrally assigned
tasks

, non-zero ij
is atleast (n+ k) => 2 + n-k

-

# non-zero hij max non-zero atleast integral
=> n + k = n + m j => k = m

2 lij > 0

per fractional task

=> The fractionally assigned tasks can be integrally to machines such that

every machines is assigned atmost one task.

HOW to
So we can round some of the fractional values to 1 1 . t ·

every machine gets 3 do this ?atmost one rounded (to 1) value
↓

=> Each machine's execution time increases by atmost T Next
page

-

=> Actual completion time2T Hij, tijT .

and LP ensures nijtij ; machine

i



construct a graph with tasks
,

machines as edges where (ti < mj) E

Iff Lij > 0
atmost ntm ij are non-zero. (Rounding
- Algorithm)=> Has (n+m) vertices

,
atmost (n+ m) edges

For tasks which are integrally assigned , just do that assignment and remove
Machines

those tasks from the graph. Tasks

#

&

D

=> New graph also has no of edges< no of vertices
to

xij > O

&

mj
&

A &

If the new graph has a matching ,
then we get the required assignment. xij = 1 X

If a machine has degree 1
, remove that and the task adjacent to it.

Now we have a graph with deg >, 2

In
every connected component of this graph ,

we have IEI = IV I

=> Each connected component is an even cycle that has a perfect matching- Picalternate
e

-

has min #edges given connected , IEI = I .

A

Claim : Any connected component of the graph has atmost as many 2012

edges as vertices

Proof : Choose a feasible solution with as few fractionally assigned as possible

I we just need a basic feasible solution]

Suppose we haven vertices and (n +) edges => There are atleast 2 cycles
The component has one of the following structures ->> Cases (a) , (b)

(a) + Si
A

If A is a task
,

for the new solution

B
+ 82

+ 83

to be feasible
,

we need S
,
+ 82 +

3
= 0

.

C Also
, in this case ,

B is a machine and C is a

282
task => For Itjj< T

,
BC needs to change

C
, 8 ,

X 2383 by - S
, AB

taB

We can similarly propogate the changes along the edges .

If X is a task- >(,
8

,
+ 1282 + (383 = 0

If X is a machine => tij (6, + taj(2fz + +zj(ybz = 0

In either case
,

we have 2 equations in 3 yars and this has a solution . (other than (0,
0

, 07



Also, (-8, , -52 , -83) also satisfies this

=> There is a solution that as a smaller no · of fractional edges.

(b)

Si S2
Here also

, we can propogate and get a solution.

O ⑧

+C, 8, 62 iss
,

83
#ask ?

Vertex Cover

min
;

Wil

xi + xj > 1X(i,j) + E

j) 0

Any basic feasible solution to this LP has only 50· 17 as values for i's -integrate
If any has weight Ge (0 , 7) , then

every neighborhood will have weight (1-5)

V

· > 1 - S
increasing#tight constraints

.

O

↑
0 < 8 ! · 1-8

Atleast one has (1-5)
,

else we can reduce 8

Still some &(1)

Look at connected component with vertices having S and 1-8
is tight (

- E
&

+ E

Increasing left side by -E and right

⑧ O
side by + E is still feasible.

Also
,

for small enough & , we can

O · increase the left by E and decrease

& · the right by E

1 - S => The soln is not basic

0 < St (since more constraints are becoming

[ no internal edges tight)
since weight <]



Solving the LP using max-flow # key : Opt is symmetric ,
so y , 2 = y21 = Ye .

UI

·

"

&

&

If (i,j) are adjacent
(ai/2

T ·

2

&
·

U2 -
Wil2

connect (1 , 42) and /2 , 41)
X

- -

⑳

-

->
O -2/2 : 212

-

wn/2 %&
↑ 5 Wy

min(2 ↓ ↑
↑

·

n

O
Flow capacity

Un

Optimal LP soln = value of max-flow -> -integer if i are integers < food
Zuckerson

19ith 0 . 5
LP for max flow- > max IJC as units.

& J y V dudafveree
e = f(v) S

Ye > O

=> They have the same optimal value

Rounding : [For bipartite graph >

In the fractional solution first pick all vertices with integer cost. For the

half integral weights ,

&
O

12 Total W .
= i

12. O

① O
=> Pick all vertices on the side with smaller weight

& ⑧ => gives the optimal soln
.

For 3-colorable graphs,
Picking2least

weight sides
-

E E Integral cost= 2 Iwi

=> Atmosttimes the fractional cost

fractional [pick the 2 least weight sides]
opt =

I wi
I
2



· For bipartite graphs ,

Optimal tractional soln-integral soln for an arbitrary
weight function

The converse is also true
, since if we have an odd cycle

~ /2
=> it = E but rounded is atleast 3

1/2 · Ye

·
212

· Given a weight function
,

is it true that optimal integral I don't know

=> optimal fractional for that weight function ?
the answer

· Optimal integral Vertex cover Optimal fractional vertex cover

INP-complete] = Optimal fractional matching
n

> optimal integral matching [Poly time]
A

check if the two are equal
to see if the solution is optimal.

Midsem Question Pattern

1

. One set cover= > Needs LP

2. Another knapsack kind of > probably DP



Lecture (Midsem Discussion ( 6/3/24

20 Co LP formulation LP dual

min I will ; max IeYe

* t : xe
,
+ xez + xey > + : We

ei o Yt = 0

First
,

remove all edges that are not part of
any trianglee.

Case 1 : He e > O in the optimal primal soln.

Because of compl .
slackness

,
He

, Zett = We

=> I We = [eltz et = 32yt

=> dual opt =

Ine
Since complement of bipartite graph from Cal has weight atmost Ive

=e-approximation .

Case2 : Fe : xe = 0

=> x = = zorxz > 1x1 x2 2

Round that e
-> 1 , remove the edge

O

=> In remaining graph ,
set of He still feasible

=>Opt (new) < Opt
-hee

removed edge
Induction hypothes is

A (F new) <2 Opt (new) < 2 Opt-We

Now , adding edge back

=> A(1) [ 2xOpt E



Lecture Randomization 10/3/24

Max-SAT

Given m clauses in n boolean variables ,
each clause has a weight

Find an assignment that maximises sum of weights of clauses that are satisfied.

1

. Each clause contains atleast 1 literal

2. Does not contain literal and its complement
3. No literal is repeated

Goal : Find a solution whose expected cost is close to the optimum.

We pick any assignment uniformly at random

Let Xi denote the random variable that takes value 1 If clause ei

is satisfied , O otherwise

Cost is also a random variable : I" iXi

=> # [cost] = I i IXi] = In
i

i Pr(Ci is satisfied)

= z, wi (1 - () (i))
and

, 1- (t)" E

=> Ecost] =E,
wi

↑

=>I- max-cost Elcost] > Iwi , i . e , gives a -approx
Ein expectation]

Derandomization (method of conditional expectations(

#[cost] = E (E[cost(x1 =] + ECcost(X 1
=0])

There x1 = 1 denotes value of

= max (E[C(X,
= 1]

,
E[CIX1 =0]) X1 set to

1
.

Select Xi = 1 or 0 St . E[CIX;] is higher and continue.

solution obtained has cost Zwi Hence
, gives a -approximationo



Relabel the literals so that weight of a clause with a single negative literal

& int of clause with a single positive literal . [ (i) < ( (Xi) I
if Xie C or Xi e C

Suppose no clauses with single negative literal · Suppose we set a variable to be

true with > E . What is the probability that a clause is satisfied ?

For a clause with single literal (because it is+ve) = ↑

For clauses with a ve literals
,
b-ve literals

Pr (C is satisfied) = 1 - (1-p> pb (p7 E)
- 1 - pa

+ b

= 1 - p2

Choose
p St . p = 1-p2 , p = E

if it , e , Pr (xi sat =P
j = 1 - p2

clauses Xi , Fi C
,

cost = Wh + <1 -4)(2

=> Ecost] = E => Better than E-approximation .

This can be derandomized in the same way as the previous algorithm.

Max-Bipartite Subgraph [MAX-CUT]

Algorithm : Put a vertex in A or B with equal probability , include all edges between A , B

Expected cost = wi

Derandomization

Place X1 in set which gives higher E [C/X1]
.



(1 - 7/) Approximation (using Randomized Rounding) 11/03

1
. Interpret relaxed Lp soln . as the probability that the variable takes value 1

.

2.Compare expected cost with the optimal LP-cost

The ILP formulation of MAX-SAT is

Hi -> 1 if ; is true

zj -> 1 if clausej is satisfied

max [ wj j

[ : + z (1 - yi) > Ej #clausej
IEPj it Nj

relax .

-j , yi t 20 , 17 -> 0 = zj , yi = l

Consider the optimal soln . ;*, 2 .
*

to this LPJ

LP-cost = Ijjzj

Rounding scheme : set Ji to 1 with prob . y :
* (independently

Expected cost after rounding = j Pr(clause ; satisfied)

Pr (clause ; not satisfied) = It (1-y,*) It
i &Pj inj]

: *

Literals= [iepj4 - yi)
*

+ [
i en;;

* (j = no . of

ej

= = -

z,
=

Ijj = -

7 -

z*
Need to show that Pr (clause is satisfied) (; * C x Opt- Lp cost

Since , 1-(1- is concave for 0** 1
, using jensen

1 - (1 - zj(j - (1 - zj) (0) + zj(1 - (1 - jj)()
- (t -

E)zj *
-> (1 - z)2jwjzj

*
- (7 - E) (p - op + > E - E)opt .



If we take max of solutions obtained by setting each variable true with prob . E

by rounding the LP.

max (E, , #2) E

Expected value of F= = [mj(1 - (z)9) = zwjzj
* (1 - (z)())

Expected value of E2 = [wj (1-(1 - ↑j)()) *

=> * (2 - (j - (e)
->

Lp - Opt (lj = In)

Gives a -approximation algorithm .

The same bound can be obtained by rounding the solution differently
Round a variable y :* to 1 with prob · fly ;

*)

choose f s .

t.

1 - = = f(y) = 4) [Hy + [0,1
,

1 - 4 3
= 43

- /]
47

ieny
43 :

*
-1

Pr (clause; not satisfied) = Tip
;
(1-fly :

*)in; (
*)

iep
;

4-:*

= (ziepjy :
*

+ zien;
(1 - y ;

+ ))
= 4

- zj
*

↑r (clause ; satisfied) = 1 - 4
-*

;
* (jensen)

we can show that Pr(clause; is satisfied) E;
*

=> expected cost
x Opt-Lp

Note :

Integrality gap of this is 3/4 , so this is the best possible approximation

using this LP .

Example for 3/4 :, v , Va , Mice
, ~

wt = 1 per clause

(LP opt = 3

↳ opt = ↑ (y*= y2
*

= t)



Prize Collecting Steiner Tree 12/03

Given an undirected graph with weights on edges and a specified vertex r

and a penalty it ; for
every

other.

Find a tree including r that minimizes sum of weights of edges in the tree

+ penalties of vertices not in the tree

ILP Formulation

e for edge e

Ji for Vertex i
, i r

min IeCele + =
: #i (1 - (i)

For
any cut that separates : from ~,

[xe > Ji
e = f(s)

xe , Y ; e So
, 1]

Previous deterministic Algorithm
1

. Solve the LP

optimally
2. If

y > I round it up to 1

3
. Find a 2-approximation to the Steiner tree with r and all the

: included

This gives a 3-approximation

If we choose 2 as the threshold
, penalty cost is atmost

>
prex penalty cost

and connection cost is atmost - LP connection.

choose a randomly and uniformly in the interval [, 1)

All vertices with :U will be excluded with Pr =
1

.

If :t <r, 7)
,

the vertex is excluded with prob .
=

i



Expected penalty cost = I
.

i (Pr (vertex: is excluded)

=I () =

r (Penalty inon)
(if yi < r then i

> 1)

Connection cost = [x > y - x

e= S(S)

Scaling e by gives Valid LP soln for

Steiner tree (2-approx)

So,

- & x LP - connection cost2

=> Expected connection cost S2x (LP-conn)
-

prob · of lying in [,
]

interval.

=

- x (connection cost of (P)

Now
, =, for r=

+

Ve

Putting U = Es approximation ratio is = 2 : 54the

To de-randomise this
, we can select one vertex at a time and apply

conditional expectation.

Minimising Weighted Sum of Completion Times -

· 1 machine

·a tasks
,

release time vi ,
execution time ti, weight i

· non pre-emptive schedule that minimizes [: Wili where i is completion
time of task i

We use a different LP formulation here and then use randomized rounding



Max completion time is atmost max vi + It; (exponential in input size)

We assign variables for every
unit time slot. <it = 1 if task i is

executed in time slot t
,
ot = max time slot

xit = 1 for all slots +

i= 1

T
-

Z xit = ti for all tasks i

t = 1

xit = 0 * t = Vi

xit = O * t

With these constraints pre-emption is allowed
.
If a task is executed

consecutively in some time slots
,

define the mean busy time of a task as

the average of mid points of these slots

.... - ti + t = C ;

t + +zt Cir
Ci

mean busy time = + + E = Ci - E
Ci = mean busy time + Ei

2

If task was executed in non-consecutive time slots
,

(i > meanbusy+

=> : = E + z
,

( - E)

-

mean busy time

and we need min [Wili



* it = 1 for each task i min wi Ci
14/03

t = 1

2 :- estimate of

it 1 for slot t completion time of task i
Z
i= 1 ci = Ei +

(t - Exit
Cit = 0 * t ↑

mean -

it = 0 t < VP busy time spread dependent

This LP is integral . Every vertex is integral

Note : If slot j' ,j
task

slot ;
' Now

, even cycle of fractional
is not tight , iy'⑧

T
->

task, ,
variables can be augmented

Slot can be increased

j
O Tight to get integral points until slot ;' is tight

[increases #1 . i · tight constraints/ (i) reduced by
lin comb- of vertex] same amt)

Since every
vertex is integral - an optimal with it = 0 or 1 for all i

Optimal schedule can be found by a greedy algorithm. At each step choose

It ri)
an available task withi (contribution to opt is Wi(t-1)]
Copt for mean busy time]
This does not guarantee minimum weighted completion time with pre-emption .

convert this solution to the LP to a pre-emptive soln using randomised rounding
some completion times for all tasks

↳ One possible way of rounding is to execute [ construct an example

non-preemptively in same order
where this is arbitrarily bad]

Note : Mean busy time also gets arbitrarily bad

Optimal pre-emptive solution

((((,2(13 1t
Choose a random variable

A
Ci for task with probability

t -t Cit for value +-I
this chosen as ti

time for ordering (bad) do this for each task

and order based on values Xi



show that expected integral cost is atmost twice LP cost

For each task i, expected completion time of task is atmost 2
*

optimal mean busy
time

+ (non-pre-emptive) Assume tasksareer

numbered X, X2 = ... EXn
idle Ci

#[Ci] = 2 C ;
* Maximum release time of tasks 1 , 2, ..., i-1 is

Xi = X atleast r

E((i /Xi = X]

i - 1
· + ti X· X; = there exists a slotci = r +

1j= 5

-
J

before X-1/1 (or equal)
whenj executed.

r < max U
; E X - t

&

1j1 tu
release

time of task i

↑ -> distribution for
a

r

~

E [] =It Pr(task k is executeone S

n
before task i

j=1

# i

=

I
= I + Pr (xx - X)

all tasks

# I same slot won't

--
>

be selected for more than 1

= z +x t). En so X-12 is fine
. Exkt = +k

Probability slot for XK

EX

x + 1/2
X+ 1/2

= I 5 I
+ = 1

[xk + = x + 1

+ i
+= 1

kt
=

K+ i

-

in a given slot

only 1 task

i - 1
scheduled

ci = y + [j = 1
tj + ti

-
= X -E = x +1



E[(i(Xi = ] < ti + 2 X

#(i) =

[
+

Pr (xi = t -z) E [(i(Xi = t -E]
t= 1

=
,
(ti + 2( + E) :*= E + EE(t -z) xit

= ti + 2E2(t -z) Xit

= 2C ;*, hence we get a 2-approx.

Alternate Algo : Choose & (0 , 1) pick ordering using pts where I fraction of

task is completed.

[ref : similar to steiner tree]

There is a discrete set of <+(0,1) where fraction of some

task i completed changes. Enumeration over this gives a

derandomised algorithm

Alternate Algo
: If processor is idle

1

. tri
,
ti . Among such tasks pick min wi

Ei

2. Execute and repeat

18/3
Edge Disjoint Paths

· Rounding
· Integer multicommodity flow

Given a graph (undirected/directed) and a collection of pairs of vertices (Sictil

i = 1 ,
2, ..., k

Choose a path from si to ti for each i such that the congestion (max no of

paths through an edge) is minimized.

Simple LP Formulation

Consider all simple paths from Si to ti · Variable (p &01 for each path P

I xp = 1 i Lone path for each pair]
all (Sicti)

paths p



for any edge e
,
[

p
= I

all paths
p t. e Ep

Objective : min W

An equivalent formulation

Assume a directed graph. For every (Sictil pair ,
we have a commodity

that flows from Si to ti

For
every edge there is a variable fi indicating the amount of commodity i

flowing through the edge.

For Si , I fie - I fie = 1
all outgoing all incoming
edges e edges e

For ti Net outgoing flow = 1

For any
other vertex , net outgoing flow = O

For any edge e
, I

,
fie W

objective : min w

Given a solution to this LP
,

we can find a solution to the previous LP by

decomposing the flows from Sitoti into edge disjoint paths.

Assume we have optimal for this [first LP] · Think of this soln . as a

probability distribution on the paths from Si to t,

Pick
any of these paths P with probability<p for each (sicti) pair.

We now find expected value of congestion.

For a given edge e
, Xe = 1 if sixt ; contains e and o otherwise (in the integersoln)

Expected no · of paths that contain e= p
= W

↑ contain e

For a given edge , expected no of paths that contain e - W
*



We want to bound the maxe (no. of paths containing e).

So, we bound the prob .

that for a given edge ,
no of paths exceeds the

expected value by a certain factor.

Chernoff bound

If X = 1
,

Xi
,

X : are i . i . d 0-7 random variables .

Pr(X > (1 + S) u) < e
-45 for < S < 1 and >ECX)

↑r(x > (1 +

S(u)ets," - more generathe

Prob
.

that it exceeds the expected value for some edge is atmost the no ·
of

edges x prob. for a single edge.

If this is small
,

it bounds the prob . that the maximum exceeds the expected value.

For any edge , expected value of no of paths is W

=> I
, expected no of (Sicti) paths containing = W

If> <en(n)
, choosing 8= 1

Pr (no · of paths exceeds + enn) = c ( )
=

n %3

Since there are almost n2 edges , probability that it exceeds for some edge
is atmost p2-4/3

-

For > 6
,

the prob . that the max congestion is + venen
is <

-2
which -> 0 asn > 0

· ( > 2) [this is a high probability
event]

If w Clogn ,
then +V & I

If we only assume that 1
, [m can be small J

,
use u = clun and 8-1

=> Pr (x > 2logn ) = e-clogn/3 = n
- /3



3-coloring Dense Graphs

Given a graph that is 3-colorable · Find a coloring with as few colors as possible.

Cideally 3-colors)

For graphs in which each vertex has degree d > Sn for some 8 (dense graphs)
we can find this efficiently.
Select a "small" subset of vertices (randomly) sit .

every vertex not in the

subset is adjacent to some vertex in the subsetIsmall = oclogn)]

Then
,

find a coloring for the small subset
, every other vertex has only

2-colors possible which can be solved using -SAT.

Iniruiti· in set Enumerate over all colors for logn size set

betwe We get zlogy = poly(n) .both
showed: ⑧

Xir Xib

-

vertex



Cuts and Metrics 19/3/24

Multi-wayCuts
Given an undirected graph ,

the integer edge weights andK terminal

vertices s, ..., S .

Find the min.t. set of edges whose removal disconnects each si from

all other Sj

2- approximation

-or all Si
,

find a minimumcut that separates it from all other terminals.

This can be done by adding a dummy sink and adding & weight edges to

other terminals.

Take such a cut for each si and take the union of these
.

This gives a k-way cut.

Let Fi be the cut that separates Si from all others [in ACI)]

Optimal - - Each edge is counted
- -

S
- at most twice

,
so

,

1

E II mink-way > I (cost (5) + ..
.

& cut
... + cost (Fx))

L

cost cost (F
, )

= [ A(F)

=> A (t) = 2 Opt (1)
Different LP Formulation

Partition the vertex set into -parts St . Si belongs to the it part and

sum of weights of edges with endpoints in different parts is minimized.

Assign a unit vector to each vertex where ith coordinate is 1 if the vertex

is in the ith part (X = [Xu
., X2 . . .

< x] for all>



C = (4 ,) , ux
-> 1 iff (U/ x) in different parts

> Xui - Xvi
i ,

e = (u , y)
=u Xi - Xui

↑

XuiZi
= 1

= 1 U = for vertices

other than Se
-X

si = Ci Hi = 1 . . ., k

min [ CuxZux
e = (u,x)

This can be re-written as
,

cost = 1 [ CellXu- Xylla
2e= (u ,y)

Each Xu lies in the k-dimensional sample s . t. [Xui =
1
. For Si > Xu is i

Idea

· Solve LP Optimally
· Use randomized rounding

Define the ball of radius r around Si as [U/I 112 : -Xul1-r]

Choose an r uniformly at random in (01) .
Choose a permutation of 1 , 2, .... K

uniformly at random [ call it it].

At the ith step ,
for 1iK-1 , assign all unassigned vertices in the r-ball

around St
,

and assign them to the cith partition. Fall of these vertices assigned ex
, ]

Anything that is left unassigned is assigned to the vector exc-

claim : Expected cost of the integral solution is atmost

& E, Xu -X (optimal LP cost)

= Prob
. that an edge belongs to the cut obtained is almost () 11Xu-Xull1



An edge (u , v) in the cut iff I an index i in permutation s .

t. B(si , v)

must contain exactly one of (U, X) [i is the smallest such index)

IT
, He ... j

l ↑ ↳

none of them contain contains exactly
u orY one of u and

Pr (Xu + B(Sir)) = Xu
; [since

[Xni = 1
, for the ball to contain u,

E ((1 - Xui) + (1 - Xui)) =-]

I I I I

X ui
X vi

Probability that for an index i, exactly one of (u , ) belongs to B(si , r)

is /ui-Xvil

Let I be the index S .

t. (1-Xun) (1-Xxe) is min . amongst all i

21/3
Note : We don't need to sample a random order of vertices. We can just

use the order of (1-Xui)(1-Xxi) and its reverse
,

and take the min .

l

u -> (Xu , X y2, . . .

. Xuk)

x
-> (X y

, X +2.
. . ., X xk)

↓y

index that maximises the coordinate among u and

e = arg max (max (1-Xye ,
1 - Xxe)

When going in increasing order probability of this index being i for is l = 0

When going in descending order is 0 for i <

ir Ledge e is in the cut when going in increasing order) = If Xu Xxil

Average cost of the sum of the two= Ice(I ui- Xvil + Xue - Xyl(

= LP-cost + 1 /Xu - Xuel



Also easy
to show that/Xue-Xxel = /Xu- Xylla

Hence
,

this gives us a -approximation.

Multicut

Given K pairs of vertices (Sistil find a min weight subset of edges whose

removal disconnects si from ti

Note : Multi-way out in trees can be done using DP.

Multi-cut for trees is a generalisation of vertex cover
.

Set cover formulation

min Cele

s . t . for
every

si-ti path , Zepe

In case of trees , we can get a primal dual algorithm that gives a 2-approximation.

· Root the tree at any vertex

· select the path six ti s.t . the least common ancestor of si and ti has max depth

· Increase its dual variable until some edge becomes tight

Now
, we find an integral solution whose cost is atmost twice the dual solution

Let this path be from Si to ti

min wit This edge also covers all pairs for which

edge =

So exactly one of the vertices is in the subtree

·

.

So
,

the problem is reduced to a new tree

l with that subtree removed and the upper
Si -> this subtree ·

ti subtree weight reduced by S
does not contain

any source-sink pairs (weight of edges along the path in upper
subtree)

By induction
, we find an integral solution whose cost is atmost twice the dual .



On coming
back to the original problem ,

dual increases by S.

delete
I

[ these 2 edges that are included

&
& => lower edge is redundant

,
can be removed

So Y

·

t ;

=> Total increase in integer cost atmost 28
#

General graphs : O(Ink) approx

In this case
, we solve the actual LP

min [Celle

Asist i ep I

solve the LP and use rounding.

26/3
cuts- some c -> LP relax -> He as a distance -> a metric

Steiner is the "complement" of Multiway cut

· pick min not subset of edges to keep St. . ij Si-j has a path

In general graphs , we need to cover (expos paths by edges
min Cele

Exe1 ,
for each Pi from sito to

e EPi

Exp many constraints but there is a separating oracle
· Given an assignment of

values C , feasibility (or a violating constraint path) ,
can be checked by finding

shortest paths from si-ti with ce being the weights of edges (a verifying it's always 1)

Another trick : Dynamic program the LP formulation

We basically want : shortest path si-ti (with ts (e) =

=> instead of searching over paths , dynamic program
the answer in the LP formulation



Yu" for each u
,

i : indicates distance of Vertex u from Si

(weights xe)

min 2 Cele
0 (kn + m) constraints [polynomial]

i t 1 for all i Solve any of the LPS
, we have

opt solution
e*, let

for each edge c = (u, x)
, y! y + xe V *

= IeCee*

In = y, + xe consider the distance metric of

ysi = 0 shortest dist .
w . r . t . weights Ce

Ce = area
y

* is like volume.

< 420S;
A ball of radius e = length

around any Si Cany vertex)

ji
< y2 . tj

cannot contain both elements of B(Sic 0) = Es ; Y

any source-sink pair
B(Si , v) = Ex = X : d(s ;, x) < r]

->
· undirected

,
there is Sj-tj R

Ball of radius
< 1 via Si &

~ < 1/2
CLP is feasible) Y

& oby
, ti & B(Sic <E <1) )

;
i

the cut edges
-

V (si , H =
*

+ 1 Cece
*

+ [ ((r-d(u,
si))

-

K e = UX
e = uve &(B (Si <W))

The volume vol(B(S; , 0))
u, y E B(Si < r)

= vol(V) = V *

Claim : For any Si , - a radius re (0 , E) such that the cost (Ice) of the cut

S (B(si , r)) = 2 (n(k + 1) x (Si , r)

Given this
,

we get a 4ln(k+ 1) - approximation algorithm

· Pick an Si , get an r

· Include &(B(Sir) in the multicut and remove all the edges of the ball

from the graph (removing the "subtree" (

· Repeat this process with any
further source - sink pairs

ifvol by 4 , multicut cost 4 by 2(X
-> Actually ,

the whole cut edge the

is removed ,
not just the part

next time <17 ( < k) actually contributing to the volume

multicut by I Ce : 1
cut : fle ,

voldec. by
*
/K

e = S(B(si , r))
I

- , = z cece
call this F

I for edges e

removed in 1st step



so
,

= I leve + Erase-
e in ball

=> Atmost K steps

F = 2 (n(k+) [V ,
+ ** Y ,+ 2 + .. + y = y

*

F2 I

[xz + ]
=> [Fi = 2(n(k + 1)

-

x
*

+ Ex
+]

E4(n(1 +k) x
*

- - -

F = 4 (n(() Opt .

e = k
= "[Ye + *

*

]

It remains to establish the claim. -> Simply look at how the volume varies withas

r = 0 to 1/2 .

at u = 0
+

X(Sicr) : X
*

/k ↓ ↑ linear
,

ind-more and

more traction of

edges
-> slope-cost of new cutthe claim is simply thatYr) is small

ceint
↓ +1stedge added

* slope = cofofcutthe

K

0-0

-
p

00

o-0 V is piecewise linear
, note that

0-0

it
may not be continuous.

note y(7(z) =
*

*

let h(r) min h(v):= r) ; want to upper boundi

re (0(z)

= (en v Cr>]

finding o ,
deterministic

=
(1+k)

By "MYT"
, ICE (01)

+

Ev
*
/X the min will wlog happen

Ifn not cont., but can In x(z) - en x (0)
= h(x)

just before a breakpoint
still get it to work)

+/2
=> just find the value at

the breakpoints
i. e. h(() = 2(n(k+1)



Vertex Cuts 28/3/24

Vertex MultiwayCut
Given an undirected graph G with a specified set s of terminals and a cost to

each vertex not in S
.

S is an independent set in G
. Find a min cost set of

vertices not in S whose removal separates all the terminals.

LP Formulation

y = for each vertex not in S

min Cy

x > 1 for any path from

all internal Si to Sj
vertices

Claim : This IP always has an optimal solution where each it 50 ,1 E-integrally

Rounding : Include all vertices with E

Given any optimal solution
, use complementary slackness to convert it into -integral soln

.

Dual : max I p
Ap flow in path p

for all Si-5j
paths p

[ +p = Cy veS
all paths

P that include y

Complementary slackness

If some >0 in the optimal ,
then the sum of flows through is equal to 2

If a path has non-zero flow
,

its length must be exactly 1

[length = sum of y along the path]

Si - set of vertices at distance o from Si

Ireachable a path having = 0
, including the vertex at the ends -

Note : Si , Sj are disjoint ij

Moreover, no edge in Si has an edge to a vertex in Sj. Also
, any edge from Si

goes to a vertex with > 0



xy > 0

-------- B(Si) = Set of vertices that are not

in Si but adjacent to some
O

Si Vertex in Si

Case I : There is a vertex in Bil Bj

=> That vertex has A

Also
,

all paths that have non-zero flow have length exactly 1 [complementary slackness]

F value

0

non-zero

A

1 ·
·

Si This S
must be j
1

Case II :

Si
claim : Any path with non-zero flow value

[maybe i or j] will pass through atmost 2 boundary vertices

[ A such a m J

O O O O We know that <Cu > 0 and > O
. Also,

Si U

EBU
VEBy

Sj
the length of this path is exactly 1 [by compl .

stack . ]

Also, *I or Kj .

If K * i
,

the path from K to i has length < 1

Since i to j was 1 and y
> 0 => contradiction.

construct the 7/2-integral solution as follows :

If a vertex belongs to 2 or more boundary sets
,

set xx = 7
,

and if it belongs to exactly 1 boundary set ,
set xx

= 7/1.

=> This is a feasible soln for the original Ip.

Claim : This is an optimal soln

Proof : We show that this satisfies complementary slackness

Dual cost =
Epathepp

with p > 0

Also
, in our soln

,
all paths with p > 0 have length 1

. The other condition is satisfied because

any vertex with non-zero value also had non-zero value in the original soln.

=> This gives a -integral optimal soln .



Balanced cuts 1/4

A b-balanced cut
,

for someo <2 , in a graph is a partition of

the vertex set into two parts each of size at least (bn) and atmost + (1-b)n7

b = t is called minimum bisection of the graph.

Cost = sum of ut of edges with an endpoint in both parts (cut weight)

want min cost b-balanced cut

separator theorems help design efficient divide and conquer algorithms

Planar Separator Theorem

In any planar graph with n vertices there exists a set of O(n) vertices whose

removal separates the graph into two parts with atleast (/s/ and atmost 2/37 vertices

separator
Example application :

Fast APSP on planar graphs ·

O((n)
↑ 1 N2

E . g.
for trees : One Vertex separator exists

forest
forest Sep .

= 2n/3
> n/3



b = E0pt (1) minimum bisection

Bicriterion-approximation
Allow more solutions and find one such relaxed

solution whose cost is not much more than Opt.

17
(E)

· Opt
feasible

[
>

· Approx Bicriterion

approx

Find a 7-balanced cut whose cost is atmost OClogn) x minimum bisection

min I rece e-length assigned to an edge e

for any path p from u to y
day - indicates distance between Vertices U ,

dux Ike - duy is at mosto 1
L form for which

--

the shortest path & any bisection is
-
O↓ ↓ a feasible solutionO

S of + 1 vertices ↓e

opt E min bisection
.

-
*

D
at least

-
r7 + 1 - ↑27 vertices .

8
-

- (5 - z) n = 16
bisection

for
any Vertex utS

, 15177 +

/ expmanysuchz can besol one

by ellipsoid method !

Idux (3 - El

Given values of ue
,

dux it can be checked in polynomial time.

dun EIxe - duy must be less than shortest path u tor we ce as weighto

Hs : 1517H , dux
7

th



Fix u .
Literate over u) For each u

, order rem .

·

u
i
,
j

,

.... "

+
vertices in increasing order

of dux
,

check S formed

by first vertices .

check that sum of first 2 values>7

Hence
,

we get solution is feasible
,

or we get a violating constraint
.

This ensures that optimal LP solution can be found in polynomial-time
using ellipsoid.

Round the LP solution to find a E-balanced cut

For every vertex u
,

7 v St . dux 7/6 (nvertices
,

sum >/6 ,
PHP)

6
& -> disjoint balls
/

U

consider balls of radius r < E arounda

As in the multicut problem ,
we can find ball around u,y with radius r < /12

such that the cut is atmost Ollogn) volume of the ball.

construct a E-balanced partition
· choose smaller of two balls

, (vertices)
,

and put all vertices in the ball

in one part

-
· Put all edges leaving the ball in cut temporarily.

- · Delete all vertices in selected ball and edges incident
⑧

U

=
to it.

·Repeat till size of set is < (3)
& # (S)&

Current size S
,

(S1 < () , no ·
of remaining vertices = -15)

The number added to S is atmost Ex (n-151)
New size is atmost +1



Generalising we get ,

L*)
TI E balanced cut works by changing

constants in previous 2P

( -3/
"III
/, I

(S1>
, 3n

want feasible in LP - balanced cut whose cost is atmost

OClogn) x Opt (5)
For b < bl

b = 7/z , can get a b-balanced cut with cost < OClogn) Opt (b)

e . g. for 0 . 4-balanced

⑳4+
= 0 . 770. 6

,
so same method doesn'twow.e

Approximating Metrics 2/4

Metric : Finite set of points with distance d(u,) > 0 specified for each pair

d(u,) < d(u , x) + d(y ,)

d(u , y) = 0 iff U =

Tree Metric :

· Points are vertices of a tree

· Each edge of a tree has a specified length
· Distance between 2 vertices is the length of the lunique) path between them

For TSP with tree metric
, length of optimal tour = 2 x edge lengths

Given a metric space M
,

a tree approximation of M is a mappingF that maps

points of M to vertices of some tree T J . t .
for points u,y

d(u, x) < T(f(u) ,
f(x)) = xd(u , x)

L = distortion or dilation



Note : We can allow vertices in the tree that do not correspond to points in M.

The tree metric may not be a good approximation in many cases. For example,

consider an unweighted n-cycle with d(u, x) = shortest path length .

Claim : In
any tree metric with same no of vertices

, dilation n-1

Proof : There are only n-1 pairs of adjacent vertices
.

Also each edge in tree has

weight 1
.

First
, we show that we can remove degree 3 vertices in the tree without increasing

distortion.

·

X

dix,
al

·

d,

(
, c

->

a

.

.
x

[in the cycle]
& ·

c

· C

a b
O

↓ b

disal d(x , C)
=> There is a tree with only deg = 2 vertices (i. e . a path)...

· C

with the same dilation.

Let (u , x) be adjacent vertices in the cycle that are
d(acb) b not adjacent in the path.(tree)

Let X be between u,y in the path
2

exy U
·

Y
OO -

O lux
·

Y
d(u, x) + d() , y) = n - 1

Ch lux + lyx = n - 1
Rux > d(u , x)

(ax = d(X) x) ·

Hence
,

d(u ,) = 1
,

T(f(U) , f(x)) = n-1 giving a dilation of u-1
E

For
any metric space M with n points ,

7 a randomized algorithm that constructs

a tree approximation with expected dilation OClogn

ux #[T(U,) = OClogn]d(u , x) Tnot the expection of the max]

Construct one random tree (or equivalently
construct a large collection of trees S . t . the average distance in the trees

b/w u and is oclogn)d(u , x)



Construction :

Scale St. d(u, ) > 1 for all + Y

· Leaf nodes correspond to points in the metric space

· Root node corresponds to all points

· Intermediate nodes correspond to subsets of points

choose a random permutation it of the points.

choose r uniformly at random in [s1)
At level i, choose value of radius to be 2r

,
radius [2 , 2)

At level o
,

all the r balls are disjoint

Lo &

Partition at level i is constructed by considering points in the given permutation
(t/, He, ... y) ·

Take It
,

all points within ball of I
,

in one part .

continue until you find a partition.

For each node at level i
, we construct the children at level i- 1 by partitioningparts in level i by considering balls of radius rin in the order of permutation

#

L1

%
.

.
..

O

Lo

The length of an edge joining a node at level in I tonode at level i is :

claim : This gives a tree metric where expected distance between u and v 4/4/24
is OClogn)d(4,)

Proof

...... A (U ,) If nearest common ancestor is at level i
J

4 *
↑ (u , y) = 2(2+ 4 + .. . +2) < 4 x 2" = 2i+2

2 &

I
Also

,
u , y are in the same mode at level i, so

V they are in a ball of radius 2" from some point.
=> d(u, x) < 2i+



#[T(U] = = 2
+ 2

pr (LCA(U , X) is at level i)

If LCA at level i, they get separated at level i-

Pr (LCA(U,) at leveli) < Pr /7 a vertex in that separates u, at level i-1)
=> In Pr (w separates u. x at level i - 1)

=> EIT(U, ] = I
: In 2: th Pr (m separates u,y at level i- 1)

= In 16 d(u,) I , Pr(WSep ati) < In 16d /,y) (Pr . W Sep
u , Y)

We need the probability that is the first vertex that includes either n or ~

and separates u and X.

Order vertices based on min (d(, u)
,
d, y) · Any vertex in this order

appears before win the permutation then w cannot separate u .
x.

w is jth smallest
The prob. that this happens for jth smallest vertex is atmost => bad case happens

J if 1 .. -j - 1 comes

-
Y before j=> summed over all w

,
atmost 2j2 = 0(logn) (consider ,...j as

: EIT(U,] = d(u,) O(dogn)
identical j

st = j)

Linear Arrangement

Graph with cost of each edge. Number the vertices 1, 2, .... n such that

& Ce If(u)-f(x)) is minimized
e = u, V

↳ formulation

min E Cu du
, y

U, V

du
, y

> 1 * u
, y

for
any vertex u and S st. US

Exes9ux = 1512



Variation of Min-cut => /4/24

Y

8 U, are disjoint but need not

&

·

t be a partition.
S

f(V) = Z We

all edges 4 ,
y

U EU
,

y -U

Given and t
,

find subsets U ,
X, S , Ex such that &(U) + S (V)

is minimized

claim : S(S) is submodular
u U

/ then

Proof : upon adding vertex ,
increase more for subset (( x 0 => U

. )

(S)

=> S(AUB) + S(AB) < S(A) + S(B)

Define f (U) = min S(X)

[ CG) U

t - V
UX then opt cuts

claim : f (U) is submodular also subsets ?

roof : U U' then it s out is added,
⑳

not nec .

i
. e.

'
X

, S &X is removed V

-·
Ox

V

We know a general polytime algorithm for an arbitrary submodular function

Objective = f (U) + 8 (0) => also submodular



(1) (a) web . mit . edu/schulz/www/epapers/lass . pdf 15/4/24

Exercise 4 . 40 , 4 . 41

81 : PS3

(b) I ! [in the pre-emptive schedule

rj for MBT]

Processor is busy during this time.

Also
, all tasks executed in this period have index -

> j Con ordering by Wilti)

=> (j = rj + 1
.
=, t

=> Total weighted completion time jj+ t

Also
, Iwjr; < opt pre-emptive schedule .

If we assume
j = 0 j . Then the cost can only reduce . In this case

,

Opt = I Wit n

=> A(l) - 20pt (1)

Hence
, proved.

(a) Question seems
wrong.

Given
any pre-emptive schedule we can convert it into a non pre-emptive schedule

St . the completion time of
any task atmost doubles.

all tasks exec .

K

I
have index j 1 index= order of completion in

pre-emptive schedule.
last point before Cj completion

at which in pre-emptive
time.

Schedule
proc. was idle

=> (j = r + =
,
tj (for some k =j)

=> <* (completion time in pre-emptive schedule)



c .*
> 15.

,
tiJ

=>
(j = 2

,
*

Also
, the order of MBT gives a 2-approximation for the optimal [WiCi

with pre-emption .
Hence

,
overall

,
this gives a 4-approximation for Wi Ci

Execute tasks non pre-emptively in order of MBT

1

E 'cj
Tasks with

MBT MBT;

C
*

= completion time of j in the pre-emptive schedule

=> Vk = C;
*

(j = n + 11 ti

Also
, c

*

* 2
*

= 3
*

Hence
, get a 3-approx.

Endsen

· No problems from Ch 8

· Mostly from 1-4
,

7

· Randomization : Simple Problems

· Things that can be argued from first principles.


