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Module 1: Group Actions and orbits.

About the course.

1. What are objectives of the course. Prerequisites: Groups, Linear Algebra. Commutative Algebra. Basics of
Ideals and Varieties. Artin -Algebra covers all. Lectures and conduct. Taking notes. Exams and quizzes.
Reading work.

2. Algorithms and computational complexity. The function as a subroutine. The reduction in computer science.
Examples - The flow problem, LP, Hamiltonian circuit. The classes P and NP.

3. The reduction by algebraic substitutions. The singular substitution and the problem of orbit closure.

4. Formula size and Valiant’s result of the universality of the determinant, i.e., Combinatorial ⇒ Algebraic. What
is GCT.

Simple examples of the orbit closure problem.

1. Examples of configurations and actions. 15-puzzle, the elevator, the milk distribution problem, n-ball problems.
Some are group problems, most are not. Invertibility and universal applicability.

2. The rubik cube -actions and configurations and a typical question. The necklace problem under the rotation
and dihedral group. The definition of the orbit.

Review of groups

1. The basic axioms. The basic examples including Zn, Sn, Dn and GLn, On. Homomorpshisms.

2. The group of substitutions x→ ax+ b. Its subgroup x→ x+ b.

3. Subgroups generated by elements - the finite and the infinite case. Groups as functions on sets.

Group actions and Orbits

1. Group acting on sets - definition ρ : G → Bij(S). Examples - Dn and Sn. Definition of the orbit. The
equivalence ∼ and the partition of S into orbits.

2. Associated actions on S × S, 2S . The action of S3 on S × S × S. Diagonal action on S1 and S2. Whyis it
important.

3. Stabilizers and examples -Dn, Sn and GLn.

4. What is the orbit and how does it connect with cosets. The symmetries of the cube and its accounting in
different ways.

Orbits and Vector Spaces

1. The vector space C · S and the action of G as permutations ρ(g). Necklaces as vectors. Orbits for Dn and Sn.

2. Motivating invariants. How do I check if the two necklaces are the ”same”? How many distinct necklaces exist?
How do I quickly check if two necklaces are the ”same”? Functions on C · S and the need for invariants. C · S
and its dual X = {x1, . . . , xn}. The combined action on the dual and the primal. Polynomials as functions on
necklaces and the action of G on polynomials.
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3. The Fourier functions fk(x) =
∑n−1

i=0 xiα
ik and their properties. The FFT and proof that the Fourier functions

separate orbits for Zn.

4. The action of G on C[S] the ring of polynomials. The symmetric group on subsets of a set. And on vectors.
The symmetric polynomials. Proof that the symmetric polynomials separate orbits.

5. Polynomials in one variable with the substitution x→ ax+ b. Why is this a subgroup of GL2? How does this
act on the vector space of polynomials? Writing matrices for this action. Invariants as elimination of variables.

6. The Galilean group on colored points in R2. Writing matrices for this action. The distance invariants and
the determinant for orientation. Exact match and almost exact match. Nearby orbits and the importance of
invariants. The question of 2D photographs of 3D objects.

Functions and Invariants

1. The general group action ρ : G→ GL(V ), where V is an n-dimensional vector space with coordinate functions
X = {x1, . . . , xn}. Examples from last class. New examples: The adjoint action of GL2 on 2× 2-matrices.

2. Getting the action on x1, . . . , xn. The action on a space and its dual. Definition of the group action on functions
and its associativity. The action so that the diagonal action of G on C[V ]× V such that g(f, v) is invariant, in
other words g(f(v)) = fg(g · v). The associativity of G× C[V ] → C[V ].

3. The notion of a general invariant fg = ϕ(g) · f . Ring of invariants. What does it signify?

4. The big question: Can orbits be separated by invariants? The finite group case. The averaging operation. The
separation of points sets by Lagarange interpolation.

Summary

• Group actions. Orbits and stabilizers. Quotients and Invariants.

• The Zn fourier invariants and the usual invariants. Is it possible to determine the fourier invariants from the
usual?

Module 2: Vector Spaces and Maps

Basic definitions

1. The field C,R etc. The basic definitions - linear independence and subspaces. The existence of a basis.
Dimension. Isomorphism and Homomorphism. Kernel, Image and quotient. The dimension theorem.

2. Choice of basis and the matrix representation. Change of basis and the invertible matrix. The matrix, its row
space and column space. The nullspace of a matrix and the rank-nullity theorem. The row echelon form and
the expression of a matrix M = TR, where R is the row echelon form. The structure of T and R. The equality
of dimensions of the row space and column space.

3. Examples: Rn, polynomials - various bases and their importance. Matrices and subspaces with special proper-
ties. Lie algebras.

4. Tangent spaces: Two definitions - small movements and derivations (but what are functions on solutions of
equations?). Computation of tangent spaces from polynomial equations. The gradient nullity form.
The dimension of tangent spaces and their significance. Non-singular and singular points as examples. The
sphere, SLn, the orthogonal group, the elliptic curve and the singular cubic.
Maps between manifolds and the tangent map. The parametrization of the surface of the sphere. The map
from rank 1 2× 3-matrices to the 3 determinants.

5. The membership problem. Given a subspace W ⊆ V in terms of a basis of V , to answer : Is w ∈ W?.
Simplification of a basis of a subspace in terms of another. The LU decomposition. Nested subspaces and
dimensions. Classification of subspaces.

The Linear Map

1. V =Mn×r as a left GLn-module. The orbits and orbit closures. The REF as a section. SLn and GLn-orbits.
Stabilizer and their dimensions.
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2. The basic orbit structure of an SLn-module. The stable and semi-stable points and the hull-cone. The ring
of invariants and what they can separate. Example: binary forms. Writing matrices for binary forms and
Symn-modules. Writing matrices for the adjoint action.

3. How things change with the GLn-orbits. The Mn×r again. GLn-orbit closure and modules as separators.

4. The determinant, basic operations and invariance and its universality. The product law. The proof of invert-
ibility ⇔ non-singularity. The rank condition for general matrices. The quadratic relations. The matrices for
the ∧n-modules.

5. The orbit structure of Hom(V,W ). Analysis of a single linear transformation ϕ. Change of basis and the
conjugation action. The Cayley Hamilton theorem and the Jordan representation. The rank closure conditions
and filtration of Jordon blocks. Orbits, Hilbert’ss 1-PS criteria (without proof) and Closures. Invariants.
Stabilizers and their dimension. The GIT of the conjugate action.

Module 3: Geometric Invariant Theory and Geometric Complexity Theory

The Gordan-Hilbert historical problem
1. The homogeneous action of G ⊆ GL(X) on a general space V and on C[V ]. The basic questions - What is the

space of orbits? Does the ring of invariants separate orbits? Is the ring of invariants finitely generated. The
importance of finite generation.

2. Hilbert’s solution for SLn. The null-cone and the extent of non-separation. The definition of unstable points
and Hilbert’s 1-PS solution. Stable points and their extent. The GIT structure the of Symk(Cn) and End(V )
and the core invariants.

3. Later developments. The semi-stable and the open stable points. The set null(z) of all points which close onto
z. The Mumford-Kempf criteria, optimal 1-PS and stabilizers.

Rings and ideals
1. The Ring C[V ]. Algebraic sets, ideals and varieties. Correspondence between radical ideals and varieties.

maximal ideals. The coordinate ring and C[V ]/I. Finite generation and Hilbert basis theorem.

2. The resultant inR[x] and its cases. An example. The easier version of Hilbert’s Nullstelensatz. Its consequences.
The harder version. The orbit is an almost algebraic set.

3. Dimension and the Jacobian condition. Singularity. The dimension of orbits and the complementarity of
stabilizers. Examples.

4. Group actions and the map ρ∗ : C[V ] → C[V ]⊗C[G]. Its consequences - homogeneity and finite dimensionality
of modules.

5. Lie alegbras, their definitions and examples. Lie algebra actions. The computation of ρ1 : G×V → V . Stabilizer
conditions. Examples.

Groups and reductivity
1. Algebraic groups as subgroups of GL(X). Computation of the coordinate rings. Examples of GLn, SLn, On

and computation of the ρ∗-map for Symd and ∧d.

2. Definition of reductivity of groups and irreducible modules. Basic categorical properties.

3. The action of reductive groups on C[V ] and the ΠG Reynolds operator.
Geometric Invariant Theory and Geometric Complexity Theory
1. GIT: the fundamental theorems. Finite generation and separation of closed sets. The Nagata equivalence

relation. Closed orbits and The statement of the Hilbert-Mumford 1-PS condition. Examples.

2. GCT I: The affine pull-back problem of g from f . The homogenization and the 1-PS formulation. The orbit
closure and the witness formulation. The Peter-Weyl condition and the Obstruction Cojecture.

3. GCT II: The action of λ on V and G. The basic equation:
λ(t)y = tdyd + teye + . . .+ tDyD

The weight spaces and leading terms. The first theorem: leading term Lie algebra Ĥ of H and module N̂ of
N . The second theorem: limt→ t−dy(t) = z and its implication Ĝy → Hye

⊆ H (where H = Gz).

4. Alignment and the dichotomy result. Consequences of alignment - rectangular decompositon. The absence of
alignment and intermediate G-varieties.
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Notes - Lecture 1
02-Aug-2023

Scribe: Vaibhav Krishan

The overall goal of the current offering of this course is to introduce the participants to Geometric Complexity
Theory, a framework designed by Mulmuley and Sohini [MS01] where they put forth an approach for resolving some
conjectures in computer science. The focus will be on applications to complexity theory, an area of computer science
concerned with understanding which functions are “easy” and which are “hard” to compute, the precise notions will
be defined later.

A basic familiarity with Linear Algebra, Basic Algebra is assumed. Familiarity with Commutative Algebra, The-
ory of Group Actions, and Group Representations will certainly be of help. Algebra by Artin [Art11] will be the stan-
dard reference for the basics. Along with this, a basic familiarity with asymptotic notation, i.e. O(),Ω(),Θ(), o(), ω(),
is also assumed.

1 Introduction
We start by describing a central theme in complexity theory i.e. understanding functions that can be computed
easily versus functions such their value can be verified easily. Let us understand what it means to compute or verify
a function.

A program or an algorithm for a function is a series of steps that, when given an input of the function, leads
to the value of the function on that input. The number of steps in an algorithm is called the running time of the
algorithm. An important notion is the size of the input, with respect to which the asymptotic growth of the running
time of an algorithm is considered in complexity theory.

A program or an algorithm for verifying a function is an algorithm which, when given as input an input to the
function along with a series of steps that are supposed to lead to the value of the function aka a “proof”, can verify
the value of the function. Note that the size of the input does not include the size of the “proof”.

Example 1.1. Consider the function f which, on begin input an array A = {a1, . . . , an} of n elements, outputs the
elements in sorted order i.e. it outputs {ai1 , . . . , ain} such that ai1 ≤ . . . ≤ ain .

Various algorithms are known for computing this function. Bubble sort can compute this function in O(n2) steps
while merge sort can compute this function in O(n log(n)) steps. It is also known to be the best asymptotic running
time of any algorithm computing this function.

Compare this with the following algorithm for verifying this function. Let the algorithm be given an input array
and the supposedly sorted array. The algorithm will first check that the frequency of each element in both the arrays
match. Then it will simply iterate over the latter array and check if it is sorted. If yes, it will output that array, and
halt otherwise. This will take O(n) steps.

1.1 P vs NP
Here, we state a conjecture about two sets of functions.

Note that, as any real computer can only work on inputs that have a finite size and output a finite size value, both
of which can be represented as a Boolean valued string, we can assume without loss of generality that functions are
Boolean valued over Boolean inputs. It is indeed common in complexity theory to study Boolean valued functions.
Hence functions will be Boolean valued unless specified otherwise.

Definition 1.2. Let there be a function f : {0, 1}∗ → {0, 1} where {0, 1}∗ denotes the set of all finite sets with 0, 1
as entries.

An algorithm A : {0, 1}∗ → {0, 1} is a series of steps that computes f if and only if A(x) = f(x) for all x ∈ {0, 1}∗.
An algorithm V : {0, 1}∗ × {0, 1}∗ → {0, 1} verifies f if and only if for each x : {0, 1}∗, there exists a y ∈ {0, 1}∗,

such that V (x, y) = 1 if and only if f(x) = 1. The following logical formula is an equivalent restatement of the above:

∀x ∈ {0, 1}∗, ((∃y ∈ {0, 1}∗, V (x, y) = 1) ⇐⇒ f(x) = 1)

Here y is called the proof/certificate for f .

The asymptotic rate of growth of running time of an algorithm, denoted by T (A,n), is called the complexity of
the algorithm. We will often omit A when it is clear from the context. The complexity of a function, denoted by
T (f, n), is the slowest growing complexity of an algorithm computing it. The non-deterministic time complexity of
a function, denoted by NT (f, n), is similarly the slowest growing complexity of an algorithm verifying it. We will
often omit f if it is clear from the context.

It should be obvious from the definition that NT (f, n) ≤ T (f, n) as any algorithm for verifying the function can
simply ignore the proof and just run the algorithm to compute f .
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A long standing line of inquiry is to find functions such that their non-deterministic time complexity is much
lower than their time complexity. We define two sets and state a conjecture about their relationship.
Definition 1.3. A function f : {0, 1}∗ → {0, 1} belongs to the set P if T (f, n) = nO(1). It belongs to the set NP if
NT (f, n) = nO(1).

It should be immediately clear that P ⊆ NP. A long standing conjecture is that P ⊊ NP.
Conjecture 1.4. P ⊊ NP.

An example of functions that are in NP but believed to not be in P are: Hamiltonian cycles in a graph i.e. is
there a cycle in a graph that visits each vertex exactly once, subset sum problem i.e. given a collections of integers
is there a subset that sums up to a certain given value etc.

Several approaches have been considered in the past for resolving this conjecture and have lead to beautiful
results, see [Sha92] for example. But barriers have been found for many of these approaches, proving that those
techniques cannot work for proving the aforementioned conjecture, look at [BGS75, RR94, AW09]. Hence, there was
a need for approaches for which these barriers do not apply. Geometric complexity theory offers one such approach
for which it has not been proved that current known barriers apply.

1.2 Reductions
We will study an important notion in complexity theory, which has a deep connection with geometric complexity
theory, called reductions. Simply, a reduction is using a black-box computing a function, aka an oracle, to compute
another function. The precise definition follows.
Definition 1.5 (Reduction). Let there be an algorithm A computing a function f : {0, 1}∗ → {0, 1}. A function g is
said to be reducible to f , denoted by g ≺ f , if there is an algorithm B that on input x is allowed to use A to compute
f on some inputs y1, . . . , yk, called querying f , and outputs g(x).

g is polynomial time reducible to f , denoted by g ≺p f , if the algorithm B takes nO(1) time to compute g(x) where
|x| = n. Note that each query counts only as one step, the time taken by A is not taken into account. Also, for B to
take polynomial amount of time, each yi must have polynomial size and the number of queries must be polynomial as
well.
Example 1.6. A trivial example of a reduction is deciding if a number is prime using its prime factorisation.

A slightly non-trivial example is as follows. A matrix M of size n× n is said to be sorted if Mi,j ≤ Mi+1,j and
Mi,j ≤ Mi, j + 1 for all 1 ≤ i, j ≤ n. Sorting a matrix is reducible to sorting an array as follows. Collect all the
entries and sort them as an array. Use this to fill the matrix back in a straightforward way.

Some more examples are Hamiltonian cycle being reducible to subset sum and vice-versa. Many such functions
are also reducible to integer linear programming.

Finding a reduction amounts to constructing an algorithm while proving that no reduction exists must somehow
exhaust all possibilities. This makes it seemingly harder to prove non-existence of reductions as compared to finding
them.
Remark 1.7. An easy to compute function f generally makes it harder to find a reduction from other functions. The
idea is that because the algorithm for f is not “doing much”, it does not lend enough power as an oracle to compute
other functions.

We will see later how reductions play an important role in geometric complexity theory.

2 Algebraic Problems
Geometric complexity theory studies the connections of the combinatorial objects defined above with algebra and
geometry. In a way, it tries to reduce combinatorial objects to algebraic functions. We look at a beautiful result
by Valiant [Val79] that shows how one algebraic function is able to capture the power of a significant class of
combinatorial objects. We first define a few algebraic functions.
Definition 2.1 (Permanent and Determinant). Let M be a matrix of size n× n with xi,j as formal variables being
its entries. Its permanent and determinant, denoted by perm(M), det(M), are defined as follows:

perm(M) =
∑
σ∈Sn

n∏
i=1

xi,σ(i)

Det(M) =
∑
σ∈Sn

sign(σ)

n∏
i=1

xi,σ(i)
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where Sn is the set of all permutations on n variables and sign(σ) is defined as follows. Let the set over which the
permutation applies be {1, . . . , n}. A pair i, j with 1 ≤ i < j ≤ n is called an inversion in σ if σ(i) > σ(j). sign(σ)
is −1 if there are odd number of inversions in σ and 1 otherwise.

The combinatorial objects under consideration are called formulas, defined below.

Definition 2.2. A formula in the ring of polynomials R = F[X1, . . . , Xn] over a field F is defined recursively as
follows.

• A field value c ∈ F is a formula.

• An indeterminate Xi is a formula.

• f1 + f2 and f1 × f2 are formulas where +,× are rings operations in R.

The size of a formula is the number of ring operations it uses.
Let there be a polynomial P ∈ R. A formula calculates P in an obvious fashion.

Valiant proved that all formulas, that are combinatorial objects, can be reduced to the determinant function, an
algebraic function.

Theorem 2.3 ( [Val79]). Let there be a formula of size m computing a polynomial P over n variables. Then there
is a matrix M of size (m+ 2)× (m+ 2), with linear functions of the form l(x) =

∑
i aixi + b for some a1, . . . , an, b

as its entries, such that Det(M) = P .

This exemplifies the idea that “clever” combinatorial constructions can be captured efficiently by algebraic struc-
tures. This inspires exploring these connections deeper, which we will delve into next. We start with some prelimi-
naries.

2.1 Transition Systems
Let V be a set of vertices and let G be a set of functions g : V → V . A transition system T is a subset T ⊆ V × V
where an element g ∈ G acts on a vertex v and transitions to g(v). Some examples are as follows.

Example 2.4. 1. Consider all the configurations of a 15 tiles puzzle. A square is partitioned into 16 tiles of equal
size, 15 with numbers on them and a tile with no number. Allowed movements are moving the empty tile left,
right, up and down. The objective is to reach the configuration where all the numbered tiles are arrange in a
sorted fashion and the empty tile in the bottom right corner.

2. Another example is the Rubik’s cube, partitioned into cubes of equal sizes. Outside face of each smaller cube
has one of six colors. Allowed movements are rotating a face. The goal is reach a configuration where each face
has cubes of the same color on it.

Elements g ∈ G may not act on all elements of V . Consider example 1 in which the right and down movements
do not act on the state where the empty tile is on the bottom right corner. While all movements in example 2 work
on all states. A group transition system is a transition system if the action is applicable everywhere, invertible and
associative. G is called a group action over V . Formally, V, T,G is a group transition system with an operation
· : G×G→ G if:

1. Every g ∈ G acts on every v ∈ V .

2. There exists an element e ∈ G such that e · g = g · e for all g ∈ G.

3. g1 · (g2 · g3) = (g1 · g2) · g3 for all g1, g2, g3 ∈ G.

4. For all g ∈ G there exists a g−1 ∈ G such that g · g−1 = g−1 · g.

Consider the following group transition system. Let V be the collection of evenly spaced n beads of k colors. The
set of actions allowed is to rotate the necklace around the axis perpendicular to its plane and flipping the necklace,
i.e. rotating around an axis in the plane, such that the beads in the new and old configuration overlap.

The group action of these transitions is called the Dihedral group, denoted by either D2n or Dn. We will fix Dn

as the convention in these notes.
This group will be discussed in the next lecture.
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Notes - Lecture 2
Scribe: Roshan Raj

3 Group Action and Group Homomorphism
In the last lecture, we saw the definition of a group. Now, we will see some examples.

3.1 Examples of Group
Example 3.1. (Zn,+, 0) Here n is some positive integer, and Zn is the set of integers from 0 to n − 1. For two
elements a, b ∈ Zn, a+ b = (a+ b) mod n. On RHS, the ‘+’ refers to the regular addition operation for integers. 0
is the identity element, and for any element a ∈ Zn \ 0, n− a is its inverse.

Example 3.2. (Z∗
n,×, 1) Here n is some positive integer, and Z∗

n is the set of integers between 1 and n − 1 which
has gcd 1 with n. For two elements a, b ∈ Zn, a× b = (a× b) mod n. The ‘×’ on RHS refers to the regular integer
multiplication operation. 1 is the identity element. For any element a ∈ Z∗

n since gcd(a, n) = 1, there exists integers
α, β such that αa+βn = 1. It is not difficult to see that (α mod n) is an element of the group Z∗

n and is the inverse
of a.

Both of these groups are also commutative i.e. for any two elements a, b in the group, a.b = b.a where ‘.’ is the
group operation. Following is an example of a group which is not commutative.

Example 3.3. (GLn(F)) This group is known as the general linear group of degree n. Here, F is some ‘field.’ Right
now, you can assume it to be the set of all real numbers or rational numbers or complex numbers. It consists of all
n × n invertible matrices with the identity matrix as the identity element. The group operation is the operation of
ordinary matrix multiplication. This forms a group because the product of two invertible matrices is again invertible,
and the inverse of an invertible matrix is invertible.

Now we return to the dihedral group that we saw in the first lecture.
Dihedral Group

The dihedral group denoted by Dn is the group of symmetries of a regular n-gon. It consists of 2n elements.
Suppose, we label the vertices of the regular polygon by integers 0 to n-1 in the clockwise direction. Each element
of the group corresponds to some configuration of the polygon. All the elements of Dn can be defined using just
2 elements i.e. σ, τ . You can think of identity element e as the initial configuration of the polygon. Now, if we
rotate the n-gon clockwise around the axis perpendicular to the plane passing through its center by 2π/n, we get a
new configuration corresponding to element σ. In this new configuration, vertex 0 is at the place of vertex 1 in the
initial configuration; vertex 1 is at the place of vertex 2, and so on. The configuration obtained by performing this
operation i ≤ n times corresponds to the element σi. If we perform this operation n times on the n-gon, we return
to the initial configuration. Hence, σn = e. The configuration obtained by flipping the polygon corresponds to the
element τ . In this new configuration, vertex i is at the place of vertex (n − i) mod n in the initial configuration.
If we flip the polygon twice, we return to the original configuration. Hence, τ2 = e. The remaining elements of the
group are denoted by τσi for 0 < i < n. τσi corresponds to the configuration obtained by first flipping the n-gon
and then rotating it i times by angle 2π/n in the clockwise direction.

The elements of Dn are {σ0, σ1, . . . , σn−1, τσ0, τσ1, . . . τσn−1}. Let ‘·’ denote the group operation. Then, the
group operations between the elements of Dn are defined in the following way. You can verify that these operations
follow from the above discussion.

σi · σj = σ(i+j)%n

τσi · τσj = σ((n−1)i+j)%n

σi · τσj = τσ((n−1)i+j)%n

τσi · σj = τσ(i+j)%n

3.2 Subgroups
Given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group
under the operation ∗. More precisely, H is a subgroup of G if for any two elements a, b ∈ H, a ∗ b ∈ H. This is
denoted by H ≤ G. Let eG and eH denoted the identity elements of G and H, respectively. Then, eG = eH .

For any element s ∈ G, let s1 = s and si = si−1 ∗ s for i > 1. For any element s of G, 〈s〉 denotes the subgroup
{s, s2, . . . , sk} where k is the smallest positive integer such that sk = e (the identity element). It is also called the
subgroup generated by s. It is easy to verify that 〈s〉 satisfy all the axioms of a group. Following are some examples.

7



Example 3.4. For the group Z8, the subgroup generated by 2, < 2 >= {0, 2, 4, 6}. Similarly, the subgroup generated
by 3, < 3 >= Z8.

Example 3.5. For the Dihedral group Dn, the subgroup generated by σ, 〈σ〉 = {σ0, σ1, . . . σn−1}.

3.3 Group Homomorphism
Let G and H be two groups with ‘∗’ and ‘·’ as the group operations of G and H, respectively. Then, a mapping from
elements of G to elements of H, denoted by ϕ : G→ H, is called a group homomorphism if ϕ satisfies the following
property:

ϕ(a ∗ b) = ϕ(a) · ϕ(b) for any two elements a, b of G

Let ϕ : G→ H be a group homomorphism. Let eG and eH be the identity elements of G and H, respectively. Then,
for any group element a of G, ϕ(a) = ϕ(a ∗ eG) = ϕ(a) · ϕ(eG). This implies ϕ(eG) = eH . Let’s see one example.

Example 3.6. Let ϕ be a mapping from Dn to Z2 that is defined as follows:

ϕ(σi) = 0 and ϕ(τσj) = 1.

It is easy to verify that ϕ mentioned above is a group homomorphism. For a group homomorphism ϕ : G→ H,

Kernel(ϕ) = {g ∈ G | ϕ(g) = eH} and Image(ϕ) = {h ∈ H | ∃g ∈ G,ϕ(g) = h}.

For any two elements a, b ∈ Kernel(ϕ), ϕ(a ∗ b) = ϕ(a).ϕ(b) = eH .eH = eH . Hence, Kernel(ϕ) ≤ G.

3.4 Group Action
In the last lecture, we discussed transition systems. Let’s see one more example. Let G be the set of all pairs (a, b)
such that a, b ∈ R and a 6= 0. For (a, b) ∈ G, the transition ψ : R → R is defined as ψ(x) = ax + b ∀x ∈ R.
Suppose we compose transition (a, b) with (a′, b′). When we first apply transition (a′, b′), x is mapped to a′x + b′.
Then on applying transition (a, b) on a′x + b′, we get aa′x + ab′ + b. Finally, x is mapped to aa′x + ab′ + b.
Based on this, we can define G as a group with the group operation (‘∗’) defined as follows. For (a, b), (a′, b′) ∈ G,
(a, b) ∗ (a′, b′) = (aa′, ab′ + b). Note that, (1, 0) is the identity element of G and (1/a,−b/a) is inverse of (a, b).

Definition 3.7 (Group Action). If G is a group with identity element e and group operation ‘∗’, and S is a set,
then a group action ϕ of G on S is a function ρ : G× S → S that satisfies the following two axioms

1. ϕ(e, s) = s, ∀s ∈ S

2. ϕ(g1, ϕ(g2, s)) = ϕ(g1 ∗ g2, s), ∀g1, g2 ∈ G and s ∈ S.

When the group action is clear, we omit ϕ and use g(x), or simply g.s, instead of ϕ(g, s). Following is an example
of group action.

Example 3.8. Let the group be Dn and the set S be {0, 1, . . . , n− 1}. We discussed earlier that each group element
of Dn can be identified as one of the 2n labeled configurations of a regular n-gon. For a fixed group element g, g(x) is
the position of the xth vertex of n-gon in the configuration corresponding to g. For example, for all x ∈ S, e(x) = x,
σ(x) = (x+ 1)%n, τ(x) = n− x and so on.
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Notes - Lecture 3
Scribe: Kushagra Shandilya

In the last lecture, we defined group homomorphisms and group actions. We will now take a deep dive intro
group actions.

4 Group Actions
A group action is a function of the form ρ : G× S → S which follows certain properties, namely

1. ϕ(e, s) = s, ∀s ∈ S

2. ϕ(g1, ϕ(g2, x)) = ϕ(g1 ∗ g2, s), ∀g1, g2 ∈ G and s ∈ S.

Let us fix an element g of G. Then g acts on S to give a permutation of S (Why is it a permutation?). Thus,
equivalently, ϕ is a map from G to Sym(S), the group of permutation of S. More formally, actions of a group G on
a set S are the same as group homomorphisms from G to Sym(S).

4.1 Orbit and Stabilizer
For each s ∈ S, its orbit is

Orbs = {s′ | ∃g ∈ G, g.s = s′}, (1)
and its stabilizer is

Stabs = {g | g.s = s}. (2)
We also use the notation Gs to denote the stabilizer of an element s.
We can define a relation ∼ on S × S. For any s, s′ ∈ S, s ∼ s′ if there exists some g ∈ G such that g.s = s′. It

can be easily verified ∼ is an equivalence relation on S. From this, we can conclude there exist some T ⊆ S such
that S =

⋃
t∈T Orbt.

Example 4.1. Let S = {0, 1, . . . , n−1} and the group action be Zn×S → S defined as (i, j) 7→ i+ j mod n. Then,
Orb0 = {0, 1, . . . , n− 1} = S. When there is only one equivalency class, we say S has one orbit.
Example 4.2. Dn × S → S defined as (σ, i) 7→ i+ 1 mod n and (τ, i) 7→ n− i. S has one orbit.
Example 4.3. Sn × S → S defined as (σ, i) 7→ σ.i = σ(i). Here also S has one orbit.
Lemma 4.4. ϕ : G→ Sym(S) then G acts on S × S as g.(s1, s2) = (g.s1.g.s2). Similarly, G can act on Sn for any
n > 0.
Example 4.5. Sn ×S×S → S. Then, Orb(1,1) 6= Orb(1,2). This action has two orbits which are (i, j), where i 6= j,
and (i, j), where i = j.

Similarly, Sn × S × S × S → S have orbits of the type (i, i, i), (i, j, k), (i, j, i), (i, i, j) and (j, i, i).
Example 4.6. Dn × S × S have orbit classes Orb(1,1), Orb(1,2), Orb(1,3) and Orb(1,4).
Example 4.7. Let Sn acts on set S = {1, 2, . . . , n}. Then Stab1 are the permutations which do not move 1. Thus,
|Stab1| = (n − 1)! and |Orb1| = n. Note that |Stab1| × |Orb1| = n! = |Sn|. We will see soon that this is a trend in
general.
Lemma 4.8. The stabilizer of an element s ∈ G,Stabs is a subgroup of G.

The above lemma is easy to verify and so we leave it as an exercise for the reader.
Lemma 4.9. Let group G acts on a set S. Let s ∈ S. Then, Stabgs = gStabsg

−1.
Proof. Let h ∈ Stabs. Then, hs = s.

ghg−1(g.s) = gh.s

= g(h.s)

= g.s

(3)

Thus, gStabsg−1 ⊆ Stabgs.
For the other side, let j ∈ Stabgs. Then,

jg.s = g.s

g−1jg.s = s

Thus, g−1jg ∈ Stabs. Let g−1jg = h. Then, j = ghg−1, which implies j ∈ gStabsg
−1. Consequently, Stabgs ⊆

gStabsg
−1 .

9



4.2 Cosets and Lagrange’s theorem
Let H be a subgroup of G. Then, we define a left coset of H by gH = {gh | h ∈ H}, where g ∈ G. Thus, for every
g, there is a left coset of H.

Proposition 4.10. Since g = g.e, every element g ∈ G lies in some coset of H, specifically the left coset of the
element itself.

Proposition 4.11. Two cosets are either the same or disjoint.

Proof. Let g1H, g2H be two left cosets of H and g1H ∩ g2H 6= ϕ. Then, g1h1 = g2h2 for some h1, h2 ∈ H. Thus,
g1 = g2h2h

−1
1 . Each element of g1H is of the form g1h for some h ∈ H. Thus, g1h = (g2h2h

−1
1 )h. Consequently,

g1H ⊆ g2H. Similarly, we can prove g2H ⊆ g1H. Therefore, g1H = g2H.

Proposition 4.12. Each coset has the same size which is the size of the subgroup H.

Proof. Let gH be a left coset of H = {h1, h2, . . . } and gH 6= H. If hi 6= hj , then ghi 6= ghj . Thus, each ghi gets
mapped to a different element, or equivalently, there is a one-one correspondence between H and gH.

Theorem 4.13. (Lagrange’s theorem) When G is a finite group, [G : H] = |G|/|H|.

Proof. Since G is finite, H has finitely many left cosets, let them be g1H, g2H, . . . , gtH. We know that two cosets
are either the same or disjoint. Thus, G = g1H ∪ g2H ∪ · · · ∪ gtH. Here, the union is disjoint.

Since, every coset has the same size which is the size of the subgroup H, therefore, |G| = [G : H]|H|.

4.3 Orbit Stabilizer theorem
Theorem 4.14. (Orbit Stabilizer theorem) Let G be a group that acts on S. Then, for any s ∈ S, we have

|Orbs| = [G : Stabs], (4)

where [G : Stabs] is the cardinality of left cosets of Stabs, also called the index of Stabs in G. When G is a finite
group, then

|G| = |Stabs||Orbs|. (5)

Proof. We define a map ψ : Orbs → G/Stabs by gs 7→ gStabs. We claim ψ is well defined and is a bijective map.

• Suppose g1, g2 ∈ G and g1.s = g2.s. Then, g−1
2 g1.s = s. Thus, g−1

2 g1 ∈ Stabs. which is equivalent to
g1Stabs = g2Stabs. This proves ψ is well defined. The above argument in the opposite direction proves the
injectivity as well.

• ψ is onto since for any gStabs, ψ(gs) = gStabs.

Thus, ψ is bijective and |Orbs| = [G : Stabs]. When, G is a finite group, from Lagrange’s theorem, we get |G| =
|Stabs||Orbs|.

Example 4.15. D6 × S × S have orbit classes Orb(1,1), Orb(1,2), Orb(1,3) and Orb(1,4).
Orb(1, 1) = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}. Then, |Stab(1, 1)| = |G|/|Orb(1, 1)| = 12/6 = 2, which are

the specifically the identity and the reflection elements.

Example 4.16. Let G be the group of rotations of a cube around body diagonals and |G| = 24. If s is some corner
of the cube then |Orbs| = 8, which are all the corners, then |Stabs| = 3, the rotations which keep the corner fixed.
Similarly, if s is some face, then |Orbs| = 6 and Stabs = 4.

4.4 Actions on vector spaces
Let S be a set. Then C.S = {

∑
αisi | αi ∈ C} is a vector space of dimension |S|. A group G acts on a vector

v ∈ C.S as follows,

g.(α1s1 + · · ·+ αksk) = (α1g.s1 + · · ·+ α1g.sk). (6)

10



Notes - Lecture 4
Scribe: Vempalli Venkata Sai Keerthana

5 Recall
Lets recall few definitions from previous classes

Orbs = {s′ | ∃g ∈ G, g.s = s′}, (7)

Stabs = {g | g.s = s}. (8)

|G| = |Stabs||Orbs|. (9)

6 Actions on vector spaces
Let S be a set. Then C.S = {

∑
cisi | ci ∈ C} is a vector space of dimension |S|. A group G acts on a vector v ∈ C.S

as follows,

g.(c1s1 + · · ·+ cksk) = (c1g.s1 + · · ·+ c1g.sk). (10)

Let xi(n) is the coefficient of si Lets consider a necklace of length 6. 1->2->3->4->5->6->1
Let c1(n) = 0; c2(n) = 1; c3(n) = 1; c4(n) = 0; c5(n) = 0; c6(n) = 2
Then σ(n) = 0.s2 + 1.s3 + 1.s4 + 0.s5 + 0.s6 + 2.s1
Therefore x1(n) = 0;x1(σn) = 2

6.1 Action of groups on functions
Similar to the action σ we can say g(f(n))=f(g−1(n)). Similarly g1g2(f(n)) = f(g−1

2 g−1
1 (n)). This can be proved ,by

considering g2f as f’. Then g1(f
′)(n) = f ′(g−1

1 (n)) = g2(f)(g
−1
1 n) = f(g−1

2 g−1
1 n).

Action on f acts as an inverse action on necklace

Let X1, X2, ....., Xn be functions from C S to C and β be the nth root of unity(βn=1).
Let us define fβ(n) = βX1(n) + β2X2(n) + · · ·+ βnXn(n)

Lets us look at the function f : C S → C such that f(n) = f(σn)∀σ ∈ G and f(n) 6= f(n′) for some n’ not in
orbit of n. This function is expected to separate the orbits.

σ(fβ) = βXn + β2X1 + · · ·+ βnXn−1

=⇒ σ(fβ) = β(fβ)

Similarly σ(fβ2) = β2(fβ2)

So σi(fβj ) = βij(fβj )

Suppose if we have the values of fβ(n), fβ2(n), . . . , fβn(n) then we can determine the values of c1, c2, . . . , cn exactly
by  fβ(n)...

fβn(n)

 =


β β2 . . . βn

β2 β4 . . . β2n

...
... . . .

...
βn β2n . . . 1


c1...
cn


Given LHS we can compute RHS, Hence c1, c2, . . . , cn

6.1.1 Construction of invariants

How to construct invariants Given f1, f2
g(f1)=ψ1(g)f1
g(f2)=ψ2(g)f2
g(f1f2)=g(f1)g(f2)

11



(f1f2)n̄ = f1(n̄)f2(n̄)

g(f1f2)((̄n) = (f1f2)(g
−1n̄) = f1(g

−1n̄)f2(g
−1n̄) = (gf1)(n̄)(gf2)(n̄)

g(f1f2) = ψ1(g)ψ2(g)(f1f2)

σfβ = βfβ

σfβn−1 = βn−1fβn−1

σ(ffββn−1) = fβfβn−1

βXn + β2X1 + · · ·+ βnXn−1

βn−1Xn + β(n−1)2X1 + · · ·+ βnXn(n−1)

Question 1: (iX1 −X2 − iX3 +X4)(−iX1 −X2 + iX3 +X4) calculate the invariants ....

Question 2: fifjfk such that i+ j + k ≡ 0( mod n)
y0, y1, . . . , yn−1

yd0
0 y

d1
1 . . . y

dn−1

n−1

d0.0 + d1.1 + d2.2 + · · ·+ dn−1.n− 1 = 0

all such values
Sn− > S1, S2, . . . , Sn

σ(Si) = Sσ(i)

c̄ = c1s1 + c2s2 + · · ·+ cnsn

n=5

[
3 0 1 2 0

]

s1
s2
s3
s4
s5


Given c̄, d̄ ∈ cn are they in the same orbit
Algorithm: Sort c̄, d̄ and check equality
Algebraic: α ∈ C

n∏
i=1

(ci − α) =
n∏

i=1

(di − α)

6.2 Gallelian Group
Group which consists of physics

M(θ, a, b) =

 cos θ − sin θ a
− sin θ cos θ b

0 0 1

 x
y
1


where, y′ = x cos θ + y sin θ + aandx′ = −x sin θ + y cos θ + b

M(θ, a, b) =

 x1
y1
1

 =

 x′1
y′1
1


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Notes - Lecture 5
Scribe: Kunal Kundwani

Abstract
In this lecture, we would mostly cover linear algebra and look at some important vector spaces.

7 Recall
Lets first recall a few definitions, concepts and results from previous classes.

Definition 7.1 (Group Action). Given a group G and a set S, a function ρ : G −→ Bij(S) (the group of bijections
on S) is called a group action of G on S if it is also a homomorphism between the above mentioned domain and
range groups.

Definition 7.2 (Group action on functions). Given a group G, a set S and an action ρ of G on S, the corresponding
group action on the set of functions from S to S is defined as, (g.f)(s) = f(g−1.s) for all functions f on S and
s ∈ S.

Definition 7.3 (Orbit). For a group action ρ of G on S, the Orbit Os corresponding to s ∈ S is defined as the set
{v ∈ S | ∃g ∈ G s.t. v = g.s}.

Definition 7.4 (Stabilizer). For a group action ρ of G on S the stabilizer Gs corresponding to s ∈ S is defined as
the set {g ∈ G | g.s = s}.

Observe that, the stabilizer of any element in S is a subgroup of G.

Theorem 7.5. For a finite group G acting on a set S:

|Os|.|Gs| = |G|, ∀s ∈ S

Definition 7.6 (Orbit invariant functions). For a group G acting on a set S, a function f with S as its domain is
said to be orbit invariant if it maps elements of the same orbit to the same value.

8 Vector Spaces
Definition 8.1 (Vector Space). A vector space is a set V equipped with a field F and two binary operators (+) :
V × V −→ V and (·) : F× V −→ V satisfying:

• V is a group under (+)

• a · (b · v) = (ab) · v ∀a, b ∈ F, v ∈ V

• 1 · v = v ∀v ∈ V where 1 is the identity of F

• a · (u+ v) = a · u+ a · v, ∀u, v ∈ V, a ∈ F

• (a+ b) · v = a · v + b · v ∀a, b ∈ F, v ∈ V

The field F is generally taken to be C or R. Also, a.v is generally also written as av. Elements of F are also
referred to as scalars

Definition 8.2 (Subspace). A subset W of V is said to be a subspace of V if it itself is a vector space with the same
operations (+) and (·) and field F. An alternate definition could be that a subset W of V is called a subspace of V if
it is closed under addition and scalar multiplication.

Definition 8.3 (Linear Independence). A set S ⊆ V is said to be linearly independent if for all finite subsets T of
S s.t. T = {v1, v2, . . . , vk}, there do not exist non-zero scalars a1, a2, . . . , ak such that

∑i=k
i=1 aivi = 0.

Definition 8.4 (span). For a given subset S of V , its span is defined as the set of all v ∈ V for which there exist
(finitely many) vectors v1, v2 . . . vk ∈ S and scalars a1, a2, . . . , ak such that v =

∑i=k
i=1 aivi = v, and usually denoted

as span(V ).

It is easy to verify that span of any subset of S is actually a subspace of V .

Definition 8.5 (basis). A subset B of V is said to be a basis of a vector space V if B is linearly independent and
span(B)= V .
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Theorem 8.6. If B1 and B2 are two bases of a vector space V and at least one of them is finite in cardinality, then
|B1| = |B2|.

Proof. Assume, to the contrary, that |B1| 6= |B2| and WLOG let |B1| < |B2|. Hence B1 is finite. Let B1 =

{v1, v2, . . . , vm}. Hence, v1 =
∑i=n

i=1 aiwi for some n and wi ∈ B2, ai 6= 0 ∀i ∈ [n]. Observe that B2\{w1} ∪ {v1} is
also a basis. (left as an exercise for the reader) Hence update B2 as above, i.e., by removing w1 and adding v1 to
it. Now, we can continue this swapping procedure inductively as follows: write vi for i ≤ m, as a linear combination
of vectors in (the updated) B2. Atleast one of the vectors involved in this linear combination will not belong to B1

since otherwise B1 would become linearly dependent. Let wi be one such vector, and swap wi in B2 with vi.
Hence, after doing this once for every element in B1, we have replaced atmost m vectors in B2 by some vectors in

B1 while maintaining the cardinality and the span of B2. Hence, since |B2| > |B1|, there exists an element w in B2

which was never replaced and remained inB2 throughout. However sinceB1 is a basis, the set {v1, v2, . . . , vm, w} ⊆ B2

is linearly dependent, contradicting the linear independence of B2. Thus, our assumption of |B1| 6= |B2| must be
wrong, and we are done.

Note that the same proof actually works for the case when one of the sets is countable!

Definition 8.7 (Dimension). If a vector space has a finite basis, then all its bases will have the same size. Then
the size of any basis set of V is defined as its dimension, and usually denoted as dim(V ).

Definition 8.8 (Linear Map). Given vector spaces V and W , a function T : V −→ W is called a linear map if
∀u, v ∈ V, a, b ∈ F, T (au+ bv) = aT (u) + bT (v).

Following are some (easy, but useful) results:

Theorem 8.9. Let V be a vector space and W be any subspace of it. Then,

• dim(W ) ≤ dim(V ).

• If BW is a basis of W then there exists S ⊆ V such that S ∪BW is a basis of V .

• dim(W ) = dim(V ) iff W = V .

Definition 8.10 (Kernel). Given a linear map T : V −→ W between two vector spaces, its kernel is defined as the
set {v ∈ V | Tv = 0}, represented by ker(T ).

Definition 8.11 (Image). Given a linear map T : V −→ W between two vector spaces, its image is defined as the
set {w ∈W | ∃v ∈ V s.t. Tv = w}. Also represented as Im(T ).

It is easy to verify that the kernel and the image of any linear map are indeed vector spaces.

Theorem 8.12. Let T : V −→W be a linear map. Then,

dim(ker(T )) + dim(Im(T )) = dim(V )

Proof. Let B be a basis of the kernel of T . Then, by the previous theorem, there exists S ⊆ V such that B ∪ S is a
basis of V . Observe that the set X = {Ts | s ∈ S} is a basis for Im(T ). (More precisely,|X| = |S| and X is a basis
for Im(T )) (Easy exercise). Thus,

dim(V ) = |B|+ |S| = |B|+ |X| = dim(ker(T )) + dim(Im(T ))

Here are a few examples of some well known bases of some well known vector spaces. From here on, V will denote
the vector space in concern and B its basis.

Example 8.13.
V = Rn with the standard basis B = {e1, e2, . . . , en}

where ei is the vector whose entries are all 0 except for the ith one, which is 1. (∀i ∈ [n])

Example 8.14 (Taylor Basis).
V = {polynomials of degree ≤ n}

B = {1, x, x2, . . . , xn}

This basis is called the Taylor basis since these terms appear in the Taylor expansion of any function around 0.
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Example 8.15 (Lagrangian Basis).
V = {polynomials of degree ≤ n}

Let A = {x0, x1, . . . , xn}, then the Lagrangian basis of V for the set A is defined as:

LA =


Li :=

j=n∏
j=1
j ̸=i

(x− xj)

j=n∏
j=1
j ̸=i

(xi − xj)

∣∣∣i ∈ {0, 1 . . . , n}


These terms appear in the Lagrangian polynomial interpolation formula and hence the name.

Example 8.16 (Bernstein Basis).
V = {polynomials of degree ≤ n}

The Bernstein basis is defined as:
B = {Bn

i | i ∈ 0, 1, . . . , n}

where,
Bn

i :=

(
n

i

)
xi(1− x)n−i

The name and significance of this basis comes from the following theorem.

Theorem 8.17 (Bernstein-Weierstrass Theorem). Given any function f ∈ C[0, 1] and any real ϵ > 0, then
limn→∞Bn(f) = f (point-wise) where

∀x ∈ [0, 1], Bn(f)(x) :=

i=n∑
i=0

f

(
i

n

)
Bn

i (x)

Example 8.18.
V = Rm×n

B = {eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} where,

eij is the m× n matrix with all entries 0 except for the (i, j)th one, which is 1.

Definition 8.19 (Lie Bracket). Given A,B ∈ Rn×n, their lie product is defined as,

[A,B] = AB −BA

Observe that the set of n×n (anti)symmetric matrices is closed under Lie product, but not under normal matrix
product!

9 Tangent Spaces
Let’s start with an example for motivation.

Example 9.1. Given a sphere x2 + y2 + z2 = 1, and a point (1, 0, 0) on it, we want to know all the directions in
which i can ”move slightly” while still being ”almost” on the sphere.
Hence, We want to find the direction vectors v = (x0, y0, z0) for which (1, 0, 0) + ϵv is ”almost on the sphere” for
small ϵ > 0, i.e.

(1 + ϵx0)
2 + ϵ2y20 + ϵ2z20 ≈ 1

=⇒ 2x0ϵ+ (x20 + y20 + z20)ϵ
2 ≈ 0

Thus x0 = 0 suffices since it makes the ϵ term vanish. Hence, y − z plane is our desired set of directions!

Lets try formalising all this,
Let us say, in Rn(or some other suitable space), we are given a set of scalar coordinate wise differentiable functions

F = {f1, f2, . . . , fr}. Then,

Definition 9.2 (Variety). Variety of this set F is defined as the set of vectors p for which fi(p) = 0, ∀i ∈ [r]. Let’s
denote it by Var(F ).
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Then our problem essentially is to find all directions v for which

∀p ∈ Var(F ), i ∈ [r], lim
h→0

fi(p+ hv)

h
= 0

The expression in the above limit is nothing but the derivative of fi in the direction v at the point p (|v| times the
derivative, to be precise).

Thus, we arrive at a rather formal definition of Tangent spaces as follows:

Definition 9.3 (Tangent Space). The tangent space of F is defined as the set of all vectors v ∈ Rn for which,

v.((∇fi)(p)) = 0 , ∀p ∈ Var(F ), i ∈ [r]
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Notes - Lecture 6
Scribe: Vaibhav Krishan

In this lecture, we will study some more properties of linear transformations and understand which invariant
holds while applying a certain type of linear transformation.

10 Linear Transformations
Let V be a vector space, over R or C for now. We start by defining a basis for V .

10.1 Basis
Vectors v1, . . . , vk ∈ V are called linearly dependent if there exists λ1, . . . , λk, not all 0, such that

∑k
i=1 λivi = 0.

v1, . . . , vk are called linearly independent if and only if they are not linearly dependent.

Definition 10.1 (Basis). A basis for V is a maximal set of independent vectors in V .

Let there be a basis b1, . . . , bn for V . Then any vector v ∈ V can be written as a linear combination of b1, . . . , bn, as
otherwise v, b1, . . . , bn would be linearly independent which contradicts the maximality of the given basis. Moreover,
the linear combination is unique, as otherwise there is a linear combination of b1, . . . , bn that equals 0. Therefore,
given a set of vectors c1, . . . , cm, one can find a unique matrix A, more abstractly called a linear transformation, of
dimensions m× n such that  c1...

cm

 = A

b1...
bn


We would like to understand the conditions for c1, . . . , cm to be a basis as well. The following result proves the
conditions that are equivalent to it being another basis.

Lemma 10.2. c1, . . . , cm is a basis for V if and only if:

1. m = n.

2. A is an invertible matrix.

Proof. m = n can be proved using Steinitz exchange lemma, see Steinitz exchange lemma.
To see that A is invertible, note that as both b1, . . . , bn and c1, . . . , cn are a basis for V , we can also writeb1...

bn

 = A′

c1...
cn


Therefore b1...

bn

 = A′A

b1...
bn


As b1, . . . , bn are linearly independent, this is only possible if A′A = I. Hence A′ = A−1, therefore A is invertible.

This also proves that the dimension of a vector space V can be well defined as the size of a basis of the vector
space. This will be denoted by dim(V ).

10.2 Vector Spaces from Linear Transformations
Now we will study some vector spaces associated with a linear transformation. Consider a matrix A ∈ Cm×n of the
following form:

[
c1 . . . cn

]
= A =

 r1...
rm


Then following four spaces will be of importance to us:
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1. The column space of A, denoted by col-sp(A), is the subspace of Cm spanned by c1, . . . , cn. The dimension of
the column space is called the column rank of A, denoted by col-rank(A).

2. The row space of A, denoted by row-sp(A), is the subspace of Cn spanned by r1, . . . , rm. The dimension of the
row space is called the row rank of A, denoted by row-rank(A).

3. The column nullspace of A is col-null = {v ∈ Cn : Av = 0}.

4. The row nullspace of A is row-null = {v ∈ Cm : vTA = 0}.

The following relationship holds between row space and row nullspace, and similarly between column space and
column nullspace.

Theorem 10.3 (Rank-Nullity Theorem for Linear Transformations). dim(row-null(A)) + dim(row-sp(A)) = m.
dim(col-null(A)) + dim(col-sp(A)) = m.

Proof. Consider the following linear map: ϕ : Cm → Cn where ϕ(ei) = ri. Then Im(ϕ) = row-sp(A) and Ker(ϕ) =
row-null(A). Using the rank nullity theorem for linear maps proves the desired result. A similar argument works for
column space and column nullspace.

Example 10.4. Consider the matrix

A =

1 2 3 4
5 6 7 8
9 10 11 12


It can be verified that the row space of A has dimension 2 and the row nullspace of A is spanned by [1,−2, 1].

10.3 Row Echelon Form
Now we will look at a special matrix, called the row echelon form of a matrix, which will carry some important
invariants.

Definition 10.5. For every matrix A, with dim(row-sp(A)) = k, a matrix E is called the row echelon form of A,
denoted by ref(A), if the following holds for some i1 < . . . < ik:

1. row-sp(A) = row-sp(E),

2. E[{1, . . . , k}, {i1, . . . , ik}] = Ik×k,

3. Ei,j = 0 for all i > k,

4. Ei,ij = 0 for all i > ij for any j.

Example 10.6. Let

A =

1 2 3 4
5 6 7 8
9 10 11 12


Then its row echelon form is

E =

1 0 −1 −2
0 1 2 3
0 0 0 0


Note this form is obtained only by left multiplication of linear transformations. Reducing any remaining non-zero

entry in E will require right multiplication which, as we will see in a later example, may not preserve row space and
therefore, is not allowed.

Theorem 10.7. For each matrix A, there exists a row echelon form ref(E) and it is unique.

The proof is left as an exercise.

Remark. The uniqueness of row echelon form automatically implies that two matrices with the same row space have
the same row echelon form. Hence there is a one-to-one correspondence between row echelon forms and row spaces.

An application of row echelon form can be seen as follows. Let w ∈ Cn be a vector and we want to know whether
w ∈ row-sp(A) or not. This can be decided using ref(A) as follows. Simply check that

∑k
i=1 wi1ri = w where ri

denote the rows of ref(A) and i1, . . . , ik are as per definition 10.5. This is equivalent to w ∈ row-sp(ref(A)) ⇐⇒
w ∈ row-sp(A).
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10.4 Invariants over Linear Transformations
Now we will see which invariants hold under certain types of linear transformations.

Lemma 10.8. Let T ∈ Cm×m be invertible. Then row-sp(TA) = row-sp(A).

Proof. All rows of row-sp(TA) can clearly by written as a linear combination of rows of A. Therefore row-sp(TA) ⊆
row-sp(A). It is easy to see that the converse holds as well as T is invertible. Therefore the two are equal, completing
the proof.

Let V = Cm×n and let G = GLm i.e. invertible matrices of dimension m×m. Consider the group action g · v as
left multiplying v by g. Then every orbit has the same row space. Therefore there is a one-to-one correspondence
between orbits under this action and row echelon forms. Stated differently, each orbit intersects with the “REF
condition” exactly once.

Now we will prove, using the row echelon form, that the column rank and row rank of a matrix are the same.

Theorem 10.9. col-rank(A) = col-rank(ref(A)) = row-rank(ref(A)) = row-rank(A).

Proof. Let E = ref(A). E and A have the same row rank as their row spaces themselves are the same. It is easy to
show that the row rank and column rank of E are the same using its definition. Hence, all that needs to be proved
is that column rank of A and E are the same.

We prove this using Theorem 10.3 as follows. Note that E = TA for some invertible T . Therefore for any v ∈ V ,
Av = 0 ⇐⇒ TAv = 0 ⇐⇒ Ev = 0. Hence the column nullspace of A and E are the same. Using Theorem 10.3,
it follows that their column rank are the same as well.

Remark. Note the following:

• Left multiplication by an invertible linear transformation preserves the column nullspace as well as the row
space. This exemplifies a duality between the column nullspace and the row space.

• While the column rank of A and E are the same, their column spaces need not be the same, as will be seen in
the next example.

Example 10.10. Consider the following transformations on the given matrix to reach its row echelon form:

A =

 1 2 3
4 5 6
7 8 9


→

 1 2 3
0 −3 −6
0 −6 −12


→

 1 2 3
0 1 2
0 1 2


→

 1 2 3
0 1 2
0 0 0


→

 1 0 −1
0 1 2
0 0 0


It can be seen that the column space changes dramatically. While before the first step there could be non-zero

entries in the third place of a column vector, they are always zero for the columns in the last two steps. Nonetheless,
the column rank remains the same.

10.5 Tangent Spaces
Finally, let’s return to the study of tangent spaces. Let f1, . . . , fr : Cn → C be complex functions. Their variety is
defined as V (f1, . . . , fr) = {z ∈ Cn | ∀i ∈ [r], fi(z) = 0}. The tangent space at a point p ∈ V (f1, . . . , fr) is defined
as Tp(V (f1, . . . , fr)) = {v | ∀i ∈ [r], fi(p+ εv) = 0, ε2 = 0}.

The tangent space can be thought of as the “possibilities” that can arise by small movements from a certain
point. It has numerous practical applications in civil engineering, mechanical engineering etc. as studying tangent
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spaces corresponds to studying the dynamics of a system around an equilibrium. Another example of importance of
tangent spaces is in gradient descent.

The tangent space can be seen to be a vector space as following. For each fi, consider its gradient vector ∇fi(p).
Then fi(p + εv) = 0 ⇐⇒ ∇fi(p) · v = 0. Therefore Tp(V (f1, . . . , fr)) = {v | ∀i ∈ [r],∇fi(p) · v = 0}. This can be

restated as

∇f1(p)
...

∇fr(p)

 v = 0. This shows that v is in the nullspace of the gradient matrix, therefore Tp(v) is a vector

space.
The dimension of the tangent space specifies the local behaviour around a point in the given variety.

Example 10.11. Let f1(x, y, z) = x2 + y2 − z2, f2(x, y, z) = y − z be two functions from C3 to C.
Consider the point p = (0, 1, 1). Then ∇f1(p) = (0, 2,−2),∇f2(p) = (0, 1,−1). As the first column is 0 and

the last two columns are linearly dependent, the column rank is 1, hence the column nullspace has dimension 2.
Therefore, the tangent space at p has dimension 2. The tangent space can be characterised as (c1, c2, c2) for any
c1, c2 ∈ C.

Now consider the point q = (1, 0, 0). Then ∇f1(q) = (2, 0, 0),∇f2(q) = (0, 1,−1). There are two linearly
independent columns, and there are two rows, hence the column rank is 2 and the column nullspace has dimension 1.
Therefore, the tangent space at q has dimension 1. The tangent space can be characterised as (0, c, c) for any c ∈ C.

10.6 Review
We studied what is a basis and the dimension of a vector space. We studied linear transformations, certain vector
spaces associated to them, their row echelon form, and invariants that hold under certain linear transformations. We
closed with the definition of a tangent space and why it is a vector space.
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Notes - Lecture
Scribe: Venkata Sai Keerthana

ρ : G→ GL(v)

G↷ v

ρ′ : G→ GL(v′)

ρ⊗ ρ′ : G→ GL(v ⊗ v′)

consider v,v’ vectorspaces, v ⊗ v′ = {
∑K

i=1 vi ⊗ v′i|K > 0, vi ∈ Vi, v
−1
i ∈ V ′

i }
v ⊗ (v′1 + v′2) = v ⊗ v′1 + v ⊗ v′2

(v′1 + v′2)⊗ v′ = v1 ⊗ v′ + v2 ⊗ v′

v has a basis b1, b2, ........, bm
v’ has a basis b′1, b′2, ........, b′m
v ⊗ v′ has a basis {bi ⊗ bj |bi ∈ B, b′i ∈ B′}
ρ(g) is m×mmatrix

ρ′(g) is m′ ×m′matrix

ρ⊗ ρ′(g) is mm′ ×mm′matrix︸ ︷︷ ︸
tensor product matrix

ρ⊗ ρ′ ↷ v ⊗ v′

Example: GL3

 ρ(x1)
ρ(x2)
ρ(x3)

 ρ′(y1)
ρ′(y2)
ρ′(y3)

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 x1
x2
x3

 y1
y2
y3


where v → (x1, x2, x3) and v

′ → (y1, y2, y3)

X1 ⊗ Y1 → (a11x1 + a12x2 + a13x3)⊗ (a11y1 + a12y2 + a13y3)

X1 ⊗ Y1 → a211x1⊗ y1 + a11a12x1⊗ y2 + .......+ a13a13x3 ⊗ y3

 ρ(x1)
ρ(x2)
ρ(x3)

 ρ′(y1)
ρ′(y2)
ρ′(y3)

 =
[
A

]  x1 ⊗ y1
...

x3 ⊗ y3



Z12 = X1 ⊗ Y2 −X2 ⊗ Y1

Z13 = X1 ⊗ Y3 −X3 ⊗ Y1

Z23 = X2 ⊗ Y3 −X3 ⊗ Y2

⇒ (a11x1 + a12x2 + a13x3)⊗ (a21y1 + a22y2 + a23y3)− (...)(...)

→ X1 ⊗ Y2(a11a22 − a21a12) +X2 ⊗ Y1(a12a21 − a22a11)

⇒ (a11a22 − a21a12)(z12)....

Z = C z12 + C z13 + C z23

ρ⊗ ρ′(G)(z) ⊆ z

S = C {X1 ⊗ Y1, ....., X1 ⊗ Y2 +X2 ⊗ Y1, ...}
v ⊗ v′ = z ⊗ S

where z is a 3-dimensional G-module 6= C3
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S is a 3-dimensional G-module.
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Notes - Lecture 8
Scribe: Shantanu Nene

In this lecture, we will study determinants and other multilinear alternating maps.

11 Multilinear Alternating Maps
Consider the space Cn×r = Cr × Cr × · · · × Cr︸ ︷︷ ︸

ntimes

. We think of the input as n row vectors of r entries each.

Definition 11.1. A function f : Cn×r → C is called multilinear and alternating if it is linear in each row, and

f




...
Ri

Ri+1

...


 = −


...

Ri+1

Ri

...

 when swapping any two adjacent rows.

From now on, we assume f is a multilinear alternating map. It is evident from the definition that swapping any
two rows in the input changes the sign of the output.

Lemma 11.2. Let m ∈ Cn×r such that two of its rows are equal. Then f(m) = 0.

Proof. When we swap the two same rows, the output must change its sign, but m remains the same. Hence
f(m) = 0

Lemma 11.3. f transforms in the following way under elementary row transformations:

1. f


R1

...
Rn


 = 1

a

aR1

...
Rn

 for any a 6= 0.

2. f





...
Ri

...
Rj

...




= −



...
Rj

...
Ri

...


for any two rows Ri, Rj.

3. f



R1

R2

...
Rn


 =


R1

R1 + aR2

...
Rn

 for any a ∈ C.

Proof. The first two properties follow from definition of multilinear alternating, and the third follows from linearity
and the previous lemma.

We can get any matrix M into its row echelon form ref(M) using elementary row transformations, and using the
above lemma we get f(M) = αf(ref(M)) for some α 6= 0. We first study 3 cases:

Case I: n > r.
In this case, the last row of ref(M) is 0, so f(M) = 0 always. Therefore f is identically 0.
Case II: n = r and rank(M) < n.
In this case, f(M) = 0 because again the last row of ref(M) is 0.
Case III: n = r and rank(M) = n.
In this case, ref(M) must be the identity matrix In, so f(M) = αf(In).

11.1 The Determinant
Definition 11.4. For a matrix Mn×n = (mi,j), its determinant is defined as

detM =
∑
σ∈Sn

(−1)sgn(σ)
n∏

i=1

mi,σ(i).
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Proposition 11.5. det is a multilinear alternating map.

The proof is left as an exercise.

Theorem 11.6. Suppose f : Cn×n → C is a multilinear alternating map with f(In) = d. Then f(M) = d · detM
for all M ∈ Cn×n.

Proof. Consider the map f ′ = f − d · det. Then f ′ is also multilinear alternating, and f ′(In) = 0, so from the above
discussion f ′ is identically 0.

Proposition 11.7. For any n× n matrices A,B, det(AB) = det(A) det(B).

Proof. Define DB : Cn×n → C by

DB

R1

...
Rn

 = det

R1B
...

RnB

 .
It is easy to check that DB is mulitlinear alternating. Further, DB(In) = detB. Hence DB(M) = det(M) det(B).
Putting M = A, we see that the matrix becomes AB, so det(AB) = DB(A) = det(A) det(B), as required.

12 Plücker Vector
We now study orbits of SLn(C) acting via left multiplication on Cn×r for r ≥ n.

Definition 12.1. Let m ∈ Cn×r. The Plucker vector p(m) of m is a vector of size
(
r
n

)
, indexed by n-tuples

α = (i1, i2, . . . in) such that 1 ≤ i1 < i2 < · · · < in ≤ r, whose α-entry p(m)(α) is the determinant of the submatrix
of m determined by columns (i1, i2, . . . in).

Example 12.2. Take
m =

[
1 2 3 4
5 6 7 8

]
Then p(m) is given by:

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
p(m) -4 -8 -12 -4 -8 -4

Proposition 12.3. If m ∈ Cn×r has rank r, then p(m) 6= 0.

Proof. Follows from definition of rank.

Theorem 12.4. Two matrices m,m′ ∈ Cn×r with rank n are in the same SLn(C) orbit iff p(m) = p(m′).

Proof. First assume that m′ = rm for some r ∈ SLn(C). Then,

p(m′)(α) = det(r) · p(m)(α) = p(m)(α)

for all indices α, which proves p(m′) = p(m).
Now assume m,m′ are in different orbits. We apply elementary row operations in such a way that whenever we

scale any row by a 6= 0, we scale the last row by 1
a . Thus we remain in the same SLn orbit. Since p is invariant

under SLn action, we can assume m,m′ are in almost row echelon form, where the last row may have a non-one
pivot entry. Now we use induction on r to prove that some entry of p(m) is different from p(m′). Note that if we
take the n pivotal columns, we see that the non-zero entry in the last row must be the same for m,m′; otherwise we
have found a differing entry.

Base case r = n: Both m,m′ are diagonal, so their last row entries must be different. Therefore their determinants
must be different, proving p(m) 6= p(m′).

Now assume r > n. If there are two columns with non-pivotal entries (i.e., when r ≥ n+ 2), then deleting one of
the columns would still leave m,m′ distinct, so by induction we can find a differing Plücker entry. Else r = n + 1,
and m,m′ are identical except for the non-pivotal column c. In that case, for every combination of columns that
includes c, the determinant is a constant times an entry in c, namely the entry corresponding to the column that
was not chosen. Since c differs for m and m′, one of these determinants must be different, as required.

Let V = Cn×r, and let V 0 be the set of matrices having rank n. Note that V 0 is open and dense in V . Thus,
after throwing away a ”thin” set V \ V 0, we can distinguish orbits in V using algebraic invariant p.

For distinguishing GLn orbits, we can identify vectors in Im(p) under scaling (since any matrix in GLn is just a
scaled version of a matrix in SLn). Thus Im(p) can be thought of as a subvariety of P(rn)−1.
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12.1 Algebraic Relations
The entries of a Plücker vector satisfy many algebraic relations of the following form:

Proposition 12.5. If m = [i1 | i2 | · · · | in | j1 | · · · | jn | jn+1] ∈ Cn×2n+1, then

n+1∑
r=1

(−1)r det([i1, i2, . . . in−1, jr]) det
(
[j1, . . . , ĵr, . . . , jn+1]

)
= 0

Here ĵr means that the column jr is dropped.

Proof. Take the LHS of above as a function f(j1, j2, . . . jn+1). We can easily check that it is multilinear and alternating
(as a function on columns), on Cn×(n+1). Therefore it must be identically 0.
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Notes - Lecture 10
Scribe: Shantanu Nene

In this lecture, we will study Hilbert’s one parameter subgroup theorem and a few of its consequences.

13 Recall
We study orbits of n × n matrices under action of SLn via conjugation. These orbits can be distinguished by
representatives, namely Jordan canonical forms. For any matrix A, we can write V = Cn as a sum of generalized
eigenspaces

⊕
Vλ where

Vλ = {v | (A− λI)kv = 0 for some k ∈ N}
Corresponding to this basis, A takes the form of a block diagonal matrix with blocks Ji, such that each Ji has some
(fixed) eigenvalue on its diagonal, 1s on its subdiagonal, and 0s everywhere else.

The number and size of Jordan blocks corresponding to eigenvalue λ is uniquely determined by the nullities of
(A−λI)k for k = 1, 2, . . . . More specifically, if nullity of (A−λI)k is ek, then for each m ≥ 1, the number of Jordan
blocks corresponding to λ having size at least m is em − em−1.

14 One Parameter Subgroups
Definition 14.1. A one parameter subgroup is a group homomorphism λ : C∗ 7→ SLn(C) (where SLn(C) acts on
Cn via conjugation), such that, under some suitable change of basis, λ(t) is a diagonal matrix with the (i, i)th entry
being tdi for some integer di.

Note that since determinant of λ(t) is 1, d1 + d2 + · · · dn = 0.

Example 14.2. Take λ(t) =
[
t−1 0
0 t

]
and v =

[
1 0
2 3

]
. Then λ(t)v(t)λ(t)−1 =

[
1 0
2t2 3

]
. Taking limit as t → 0,

we get the matrix
[
1 0
0 3

]
, which lies in the same orbit as v.

However, if we take u =

[
2 0
1 2

]
, then λ(t)uλ(t)−1 =

[
2 0
t2 2

]
. Now if we take t → 0, we get the diagonal matrix[

2 0
0 2

]
, which lies in a different orbit than u because u is already in its Jordan form.

The following is a theorem of Hilbert, characterizing orbit closures:

Theorem 14.3. Let u, v ∈ Cn×n. Consider the action of SLn(C) via conjugation. Then u ∈ O(v) iff there exists a
w ∈ O(v) and a one parameter subgroup λ such that

u = lim
t→0

λ(t)wλ(t)−1.

14.1 Closed Orbits in Cn

Theorem 14.4. The orbits of diagonalizable matrices are the only closed orbits in Cn.

Proof. If w is diagonal, then for any 1-p.s. λ, λ(t)wλ(t)−1 = w, which is in orbit of w. Therefore O(w) is closed.
Conversely, assume w is not diagonalizable. Then w has a Jordan canonical form, and WLOG assume w1,2 = 1
(entry at (1, 2). Then if λ(t) = diag(t, 1, . . . , 1), u = λ(t)wλ(t)−1 has the same entries as w, except u1,2 = t. Then
taking t→ 0, u tends to a matrix in Jordan form which is different from Jordan form of w, so is in a different orbit.
Therefore O(w) is not closed.

15 Gordon’s Problem
Let G act on V rationally. That is, ρ : G → GL(V ) is a representation such that, if g = (gi,j)i,j , then ρ(g) =
(ϕk,l(gi,j))k,l where each ϕk,l is a rational function. The following are Gordon’s problems:

1. What is the space of orbits?

2. Do sufficient number of invariants (to separate orbits) exist?

3. Is the ring of invariants finitely generated?

These questions form the basis for Hilbert’s invariant theory.
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16 Basic Algebraic Geometry
16.1 Elimination Theory
Proposition 16.1. Let R be an integral domain and let f = adX

d + . . . + a0 and g = beX
e + . . . + b0 be two

polynomials in R[X], with ad, be 6= 0. Let ResMat(f, g) be the (d + e) × (d + e)-matrix as shown in class and
ResX(f, g) be its determinant. Then:

1. ResX(f, g) = 0 iff f and g have a common factor in the ring R[X].

2. If a = ResX(f, g) 6= 0, then a ∈ (f, g), the ideal formed by f, g in R[X].

Remark 16.2. If f, g have a common factor, say h(X), then ardb
s
eh(X) ∈ (f, g), for some integers r, s ≥ 0.

Proposition 16.3. Let R = C[Y1, . . . , Yk] and f, g ∈ R[X] be two polynomials as above with aD(Y1, . . . , Yk) and
be(Y1, . . . , Yk) as its leading coefficients. Suppose that they do not have a common factor. Let h(Y1, . . . , Yk) =
ResX(f, g). If y ∈ Ck is such that h(y) = 0 but ad(y) 6= 0, then there is an x ∈ C such that f(y, x) = 0 and
g(y, x) = 0. In other words, (y, x) ∈ V ar(f, g). Conversely, (y, x) is a common root of f, g then x is also a root of h.

Proposition 16.4. Let f0, . . . , fr ∈ C[X0, . . . , Xn]. Let U1, . . . , Ur be a set of indeterminates and g = U1f1 +
. . . Urfr and ad(X1, . . . , Xn) be its leading coefficient of f0. Let h = ResX0(f0, g) with h 6= 0. Suppose that h =∑

α U
αhα(X1, . . . , Xr) is the expression of h in terms of the monomials Uα in the U ’s. Let I = (hα) ⊆ C[X1, . . . , Xn],

the ideal formed by these coefficient polynomials. Then:

1. Let J be the ideal generated by f0, . . . , fr in C[X0, . . . , Xn], then I ⊆ J . Indeed, each element hα is an element
of the ideal J .

2. Suppose that x = (x1, . . . , xk) ∈ Ck is in the variety of I such that ad(x) 6= 0. Then there is an x0 ∈ C such
that (x0, x) ∈ Ck+1 is in the variety of J .

3. Conversely, if (x0, x) is a common root of f0, . . . , fr, then x ∈ V ar(I), the variety of I.

Remark 16.5. If RexX0
(f0, g) = 0 then f0, . . . , fr have a common factor.

Proposition 16.6. Let f1, . . . , fr ∈ C[X1, . . . , Xn]. Let V (I) ⊆ Cn be its variety. Let πk : Cn → Ck be the projection
Cn onto its first k coordinates. Let W = πk(V (I)). Then the closure of W within Ck is an algebraic variety.

Definition 16.7. Let I ⊆ C[X1, . . . , Xn] and x ∈ V (I). We define the normal space NxV (I) as the vector space
generated by the vector {∇(f)(x) where f ∈ I}.

Proposition 16.8. Let I ⊆ C[X1, . . . , Xn] and let d(x) = dim(NxV (I)). Then there is a number d such that (i)
d(x) ≤ d for all x ∈ V (I), and (ii) there is closed subset W ⊆ V (I) such that d(x) = d for all x ∈ V −W . Then
n− d is called the dimension of V (I). If I is a prime ideal then dim(I) = n− d is called the dimension of I. Points
x ∈ V where d(x) = d are called smooth points.

Remark 16.9. If I is prime with dim(I) = n − k, then there are actually f1, . . . , fk ∈ I and a closed set W such
that for all x ∈ V −W , d(x) = dim(C · {∇(f1)(x), . . . ,∇(fk)(x)}). Moreover V (f1, . . . , fk)−W = V −W .

Corollary 16.10. Let V ⊆ V ′ be irreducible varieties with ideals I and I ′ and let x be a smooth point in V and V ′.
Then dV (x) ≥ dV ′(x).

Definition 16.11. Let V (I) be a variety in Cn of dimension k and let x be a smooth point. Let NxV (I) be given
by the linear span of ∇(f1)(x), . . . ,∇(fn−k)(x) treated as row vectors. Then the tangent space TxV (I) is the space
of column vectors v ∈ Cn such that wv = 0 for all w ∈ NxV (I). The dimension of TxV (I) is then k.

Proposition 16.12. Let V be an irreducible variety of dimension d and x ∈ V be a smooth point.

16.2 Algebraic groups and orbits
Our primary concern will be algebraic subgroups G ⊆ GLn. We will take GLn(C) as the mother of all groups. We
take the matrix space M = Cn×n and coordinate functions (Mij)

n
i,j=1 ∈M∗.

Let us first see how GLn itself is an algebraic variety. Now, the group GLn is the complement of the hypersurface
det((Mij)) = 0, where det((Mij)) is the determinant function expressed as

∑
σ∈Sn(−1)signσ

∏n
i=1Mi,σi.

By standard algebraic geometry, the ring of regular functions C[GLn] is obtained by adjoining an indeterminate
Y to C[(Mij)] and going modulo the function Y − det(M). Thus C[GLn] ∼= C[(Mij), Y ]/(Y − det(M)). Other
groups G ⊆ GLn will be given by additional algebraic equations and hence will be closed subvarieties of GLn. Thus
C[G] ∼= C[GLn]/IG, where IG ⊆ C[GLn] is a suitable ideal.
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Definition 16.13. An algebraic group G ⊆ GLn = GLn(C) is a closed subvariety of GLn, as above. Moreover, the
multiplication map G×G→ G is an algebraic map.
Remark 16.14. Let G be a group of dimension r, then dim(TgG) = r for all g ∈ G.

Let us now develop the algebraic geometry of a rational group action ρ : G×V → V . For V , we have (Vi)
n
i=1 ∈ V ∗,

a basis of linear functions on V . Thus C[V ] ∼= C[(Vi)], the polynomial algebra generated by the symbols (Vi).
Next, let us look at the LHS of ρ, viz., G × V . By standard algebraic geometry, C[G × V ] ∼= C[G] ⊗C C[V ], the

tensor product algebra.
Then, the map ρ : G× V → V gives us a map ρ∗ : C[V ] → C[G]⊗ C[V ]. We thus have for any q ∈ C[V ]:

ρ∗(q) =

K∑
j=1

pj(M)qj(V )

where pij ∈ C[G] and qj ∈ C[V ]. Thus we have the important proposition:
Proposition 16.15. Recall the action of G on C[V ], where if q ∈ C[V ] and g ∈ G, then we define g · q or simply
fG ∈ C[V ] as the function:

qg(v) = q(g−1v)

Then there are functions q1, . . . , qk ∈ C[V ] and p1, . . . , pk ∈ C[G] such that for all g, we have:

qg =

k∑
i=1

pi(g)qi

Remark 16.16. We will see later that for reductive groups the vectors space M formed by the set {q1, . . . , qk} may
itself be closed under the action of G, or in other words, a G-module.

Given that ρ is linear on V , gives us the special case:

ρ∗(Vi) =

N∑
j=1

pij(M)Vj

We may write this in the matrix form: ρ∗(V1)
...

ρ∗(Vn)

 =

 p11(M) . . . p1N (M)
...

...
pN1(M) . . . pNN (M)


 V1

...
Vn


It is important to understand the above equation. If v ∈ V and g ∈ G such that w = g · v, then we have the concrete
matrix product:  V1(w)

...
VN (w)

 =

 p11(g) . . . p1N (g)
...

...
pN1(g) . . . pNN (g)


 V1(v)

...
VN (v)


Example 16.17. Sym2(C2).

Thus, the orbit of v is better seen as the graph of the group action on v, i.e., the set {(g, w)|w = g.v and g ∈
G} ⊆ G× V and the projection from π : G× V → V with π(g, x) = x. Thus, if we use a fresh set of coordinates for
V , viz W1, . . . ,WN , then the graph Y of v is given by the equations: W1

...
WN

 =

 p11(M) . . . p1N (M)
...

...
pN1(M) . . . pNN (M)


 V1(v)

...
VN (v)


These are N equations plus the equations needed to define IG in n2 + N variables (Mij) and (Wk). Then

O(v) = π(Y ) ⊆ V . Therefore, we have:
Corollary 16.18. Let G be an algebraic group and V be a G-module via a rational map ρ : G→ GL(V ). Let v ∈ V .
Then the closure of orbit O(v) within V is an algebraic variety. The stabilizer Gv of v is an algebraic group.
Proof: The first assertion follows from Prop. 16.6. For the second, we consider the algebraic subset of G defined by
the equations:  V1(v)

...
VN (v)

 =

 p11(g) . . . p1N (g)
...

...
pN1(g) . . . pNN (g)


 V1(v)

...
VN (v)


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16.3 Lie Algebras
Definition 16.19. Let G ⊆ GLn be an algebraic group. The Lie algebra of G, denoted by G of Lie(G) is the tangent
space at the identity element I. In other words, G = TIG, the space of all X ∈ Mn such that I + ϵX ∈ G, when
ϵ2 = 0. G is closed under the lie bracket: if X1, X2 ∈ G, then so is [X1, X2] = X1X2 −X2X1.

Example 16.20. SLn and On.

Proposition 16.21. G acts on G via the adjoint representation. If g ∈ G and g ∈ G, then adj(g)(g) = ggg−1,
where the multiplication happens in GLn.

Lemma 16.22. If G ⊆ GL(X) is a group, then dim(G) = dim(Lie(G)). Moreover, if H is a subgroup of G, then
Lie(H) ⊆ Lie(G) and dim(Lie(H)) = dim(H).

Proposition 16.23. For any group G ⊆ GL(X), with Lie alegbra G, there is an open neighborhood O ⊆ G around
0, and map exp : O → G which is a diffeomorphism on its image. Moreover, for any X ∈ G, the image of the line
tX, denoted by γX(t) ⊆ G, is a curve such that γ′(0) = X.

Proposition 16.24. Consider the map exp : Mn → GLn, given by exp(X) = eX . Then exp has the following
properties:

1. exp(X)exp(−X) = I, the identity. For any A ∈ GLn, we have Aexp(X)A−1 = exp(AXA−1).

2. If the eigenvalues of X are λ1, λr with multiplicities d1, . . . , dr, then eλ1 , . . . , eλr are the eigenvalues of eX with
the same multiplicities.

3. If X,Y commute, then exp(X + Y ) = eXeY .

Proposition 16.25. G acts on G via the adjoint representation. If g ∈ G and g ∈ G, then adj(g)(g) = ggg−1,
where the multiplication happens in GLn.

Example 16.26. Exponential map for SLn and On.

Now, given the map ρ : G×V → V , we may pick points g, v and w = ρ(g)(v) or simply gv and have the tangential
map:

(ρ∗)g,v : TgG× TvV → TwV

More specifically, at g = I, the identity matrix, we have TI(G) = G, v = w and Tv ∼= V . Therefore, we have a map,
which we denote by ρ1:

ρ1 : G × V → V

This we call the Lie algebra representation V .

Definition 16.27. For a Lie algebra G, we say that V is a G-representation of a G-module, if we have a map
ρ1 : G → End(V ) such that for any X1, X2 ∈ G, we have ρ1([X1, X2]) = [ρ1(X1), ρ1(X2)].

Note that the Lie bracket on the right happens in End(V ) space.

Proposition 16.28. Let ρ : G × V → V be a representation. Let ρ1 : G → End(V ) its tangent map. Then ρ1 is a
Lie algebra representation. Moreover, for any g ∈ G and g ∈ G:

ρ(g)ρ1(g)ρ(g)
−1 = ρ1(adj(g) · g) = ρ1(ggg

−1)

Finally, for a point v with stabilizer Gv, Lie(Gv) = {g ∈ G|ρ1(g)(v) = 0}.

Note that ρ1 : G → End(V ) is a linear map! Thus the Lie algebra of the stabilizer of a point v is a linear algebra
computation, once representation ρ1 is computed. How is ρ1(X) to be computed? The simplest is to use the matrix
for ρ and differentiate the matrix ρ(g) in the direction X. We will illustrate with two examples.

Example 16.29. Let us look at the form f = Ax2 +Bxy + Cy2 under the infinitesimal Lie element:

I + ϵ

[
a b
c d

]
=

[
1 + ϵa b
c 1 + ϵd

]
Its action on f is given by:

A(x+ ϵax+ ϵby)2 +B(x+ ϵax+ ϵby)(y + ϵcx+ ϵdy) + C(y + ϵcx+ ϵdy)2

= (Ax2 +Bxy + Cy2) + ϵ{A(2ax2 + 2bxy) +B(cx2 + dxy + axy + by2) + C(2cxy + 2dy2)

=
[
x2 xy y2

]  A
B
C

+ ϵ
[
x2 xy y2

]  2a c 0
2b a+ d 2c
0 b 2d

 A
B
C


29



Compute the stabilizers of xy, x2 and x2 + y2. What is the tangent space at the point f of the orbit O(f)? This is
done by taking a basis of Lie(GL2) and hitting it on f . This is obtained by putting a = 1, b = 1, c = 1 and d = 1 in
turn. We get the 4 vectors:  2A

B
0

 0
2A
B

 B
2C
0

 0
B
2C


This can be succintly written as the column space of the matrix below: 2A 0 B 0

B 2A 2C B
0 B 0 2C


So what are the forms f ∈ Sym2(C2) whose orbits have dimension ≤ 2? That is given by the condition that all
3× 3-minors of the matrix should have determinant 0.

Example 16.30. Sym3(C3) and adjoint action. Stabilizers.

Corollary 16.31. We have dim(G) = dim(Gv) + dim(O(v)). Moreover, the space {v|dim(Gv) ≥ k} is an algebraic
subvariety of V .

17 Groups, Reductivity and Invariant Theory
This section looks at finite-dimensional G-modules and the categorical structures which it allows. They form the
basic building block for the First Theorem of Geometric Invariant Theory, that for reductive groups acting on a
finiste dimensional vector space V , (i) disjoing closed G-invariant algebraic subsets can be separated by invariants,
and (ii) the ring of invariants is a finitely generated algebra. The basic result which connects the two is:

Proposition 17.1. Let ρ : G→ GL(V ) be a rational representation. Let f ∈ C[V ] be any function. Then there is a
finite dimensional G-invariant subspace F ⊆ C[V ] such that f ∈ F And so are all its translates fg, for every g ∈ G.

Proof: For any f as above, we have:
ρ∗(f) =

∑
i

piqi

where pi ∈ C[G] and qi ∈ C[V ]. Moreover, we have, for any g ∈ G and v ∈ V :

f(gv) =
∑
i

pi(g)qi(v)

Let Q be the finite dimensional space formed by (qi). Then the above expression tells us that fg ∈ Q. Let F ⊆ Q
be the space generated by all fg as g ranges over G. Then F is the required space. □

Remark 17.2. When the group action is linear, as in our case, we have C[V ] = ⊕dC[V ]d and in fact, each C[V ]d
is itself a G-module.

Definition 17.3. We say that an algebraic group G is reductive if for every finite dimensional representation V and
aG-invariant subspace W ⊆ V , we have a G-invariant complement, i.e., a W ′ ⊆ V which is itself G-invariant such
that W ⊕W ′ = V .

Lemma 17.4. If ρ : G → V and ρ′ : G → V ′ are two representations, then so is Hom(V,W ), the space of
homomorphisms from V to V ′. For any ϕ : V → V ′, the action of g ∈ G on ϕ is given by ϕg = ρ′(g) ◦ ϕ ◦ ρ(g−1).
Note that ϕg(v) = g · ϕ(g−1 · v). An element ϕ is called a G-morphism if ϕg = ϕ, or equivalently for all v ∈ V ,
ϕ(gv) = gϕ(v).

Lemma 17.5. Let V,W be G-modules and ϕ : V →W be a G-morphism. Then ker(ϕ) and Im(ϕ) are G-modules.

Proposition 17.6. Finite groups are reductive.

Proof: Let V and w ⊆ V be G-modules. Let ϕ : V → W be a surjection such that ϕ(w) = w for all ∈ W . Let
ϕ = 1

|G|
∑

g∈G ϕ
g. Then ϕ is G-invariant. The kernel of ϕ is the required complement. □

Proposition 17.7. The group G = (C∗), also called the k-dimensional torus, is reductive. If χ = (n1, . . . , nk) ∈ Zk

and t = (t1, . . . , tk) ∈ G then t
χ
=

∏
i t

ni
i . If V is any finite dimensional module, then V = ⊕χVχ where, for any

v ∈ Vχ, we have tv = t
χ
v.
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Corollary 17.8. The group (C∗)k is reductive.

We assume henceforth that G is reductive. For general reductive groups, we build the averaging operator
as follows.

Lemma 17.9. Let W be a G-module. Let W ′ be the vector space generated by all elements {w− gw|w ∈W, g ∈ G},
then W ′ is G-invariant. Moreover, there is a unique G-complement WG = {w ∈W |gw = w}.

Proof: Suppose that dim(W ) = n and dim(W ′) = r. It is easy to check that W ′ is G-closed and thus there
is a G-complement W ′′. For a w′′ ∈ W ′′, we see that gw′′ = w′′ for all g. This is simply because w′′ − gw′′ ∈
W ′′ ∩W ′ = 0. Thus W ′′ ⊆ WG and dim(WG) ≥ n − r. Conversely, if π : W → WG is a projection then for any
w, g, π(w − gw) = π(w)− π(gw) = 0. Thus W ′ ⊆ (WG)′, and r ≤ n− dim(WG).

Proposition 17.10. Let W be a G-module and WG be all vectors w ∈ W such that gw = w for all g ∈ G. Then
there is a canonical projection πG :W →WG.

Lemma 17.11. Let V,W be G-modules such that ϕ : V →W is G-equivariant and surjective. Then ϕ : V G →WG

is also surjective. Moreover (V ⊕W )G = V G ⊕WG.

Corollary 17.12. For any G-module W and w ∈ W , let X be the G-module generated by w. Then we have
W = X ⊕ Y and WG = XG ⊕ Y G. Moreover, dim(XG) is either 0 or 1. Thus πG(w) is decided by X and XG and
not by W .

Note that w − π(w) ∈ X ′ and so X = X ′ + π(w).

Proposition 17.13. Consider the algebra C[V ]G ⊆ C[V ]. Then there is a canonical projection π : C[V ] → C[V ]G.
Moreover, it preserves degree. Further, if f ∈ C[V ]Gd and f ′ ∈ C[V ]e, the π(ff ′) = fπ(f ′).

Warning: Note that π is NOT an algebra homomorphism.
Proof: The only part which needs proof is the second part that π(ff ′) = fπ(f ′) when f ∈ C[V ]G. We may easily
reduce to the case when f and f ′ are homogeneous. Let M ⊆ C[V ] be the G-module generated by f ′. Suppose now
that deg(f) = d and deg(f ′) = e. Consider the module M ′ = Cf ⊗M ⊆ C[V ]d+e. It is clear that M ′G = f ⊗MG. □
Proposition 17.14. The ring C[V ]G is finitely generated.

Proposition 17.15. Let O1, O2 ⊆ V be closed varieties such that V1 ∩ V2 = ϕ. Then there are two invariants
f1, f2 ∈ C[V ]G such that fi ∈ I(Vi) and f1 + f2 = 1.

We now come to some results on the structure of orbits.

Lemma 17.16. 1. Let v ∈ V and O(v) be the G-orbit of V and O(v) be its closure. Let w ∈ O(v), then there is
no invariant which separates v from w.

2. If v′ ∈ V is such that O(v′) ∩O(v) = ϕ then there is an invariant f ∈ C[V ]G which separates them.

Proposition 17.17. 1. Let v ∈ V and O(v) be the G-orbit of V and O(v) be its closure. Then there is a unique
orbit O(w) of minimum dimension, and it is closed.

2. Let us define ∼ on V as v ∼ v′ is O(v) ∩ O(v′) 6= ϕ. Then ∼ is an equivalence relation. Moreover, [v]∼ is
closed. If v′ 6∈ [v]∼ then there is an invariant which separates them.

Definition 17.18. A v ∈ V is called stable if its G-orbit is closed.

Warning: The presence of closed orbits may be very different for a GL(X)-module V when restricted to SL(X) ⊂
GL(X).

Theorem 17.19. Suppose G is reductive and λ(t) ⊆ G is a 1-PS. Let λ(t)v =
∑

i t
ivi. Then if vi = 0 for all < 0

then v is not stable. Conversely, if v is not stable, then there is a 1-PS λ(t) and a w ∈ V such that limt→0 λ(t)v = w.
Note that w = 0 is also permitted.

The converse part of the theorem is the Hilbert-Mumford theorem. Note that proving something as unstable is
shown by a suitable λ(t). However, very few techniques exist to prove stability.

18 Solvable Lie Algebras
Definition 18.1. Let g be a Lie algebra. Define a decreasing sequence of ideals Di(g), called the derived series of g
by: D0(g) = g and Di+1(g) = [Di(g), Di(g)] for all i ≥ 0. Then, g is called solvable if Dn(g) = 0 for some n.

Theorem 18.2 (Cartan’s Criterion for Solvability). Let V be a finite dimensional vector space and g be a Lie
subalgebra of GL(V ). Suppose for all x ∈ [g, g] and y ∈ g, Tr(xy) = 0. Then g is solvable.
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19 Semisimple Lie Algebras
Definition 19.1. A Lie algebra g is called simple if it is non-abelian and has no proper non-zero ideals.

Definition 19.2. A Lie algebra g is called semisimple if it has no non-zero abelian ideal.

Definition 19.3. For a Lie algebra g, the radical Rad(g) is defined to be its greatest solvable ideal.

Lemma 19.4. A non-zero Lie algebra g is semisimple iff Rad(g) = 0.

Proof. By definition, any abelian ideal of g is contained in Rad(g), so the condition is necessary. Conversely, if
Rad(g) is non-zero, then the last non-zero ideal in its derived series is the required abelian ideal, making g not
semisimple.

20 Structure of Semisimple Lie Algebras
Theorem 20.1. Let g be a non-zero semisimple Lie algebra. Then

1. There exists t ∈ N and ideals s1, . . . , st ∈ g that are simple as Lie algebras, such that

g =

t⊕
i=1

si

2. If s is any ideal of g that is a simple Lie algebra, then s = si for some i.

Corollary 20.2. If g is semisimple Lie algebra, then g = [g, g].

21 Complete reducibility of Finite Dimensional Representations
21.1 The Casimir Element
Lemma 21.1. Let g be a finite dimensional semisimple Lie algebra, and let (V, f) be a faithful finite dimensional
representation of g. Then the map βf (x, y) = Tr(f(x)f(y)) is an invariant, non-degenerate and symmetric bilinear
form on g.

Lemma 21.2. Let g be a finite dimensional semisimple Lie algebra, β be an invariant, non-degenerate and symmetric
bilinear form on g, and let (V, f) be a representation of g. Let (x1, . . . , xn) be a basis of g and let (y1, . . . , yn) be its
dual basis wrt β. Then, the element

c =

n∑
i=1

f(xi)f(yi)

is a g-invariant endomorphism of (V, f).

Proof. Direct calculation

Such a c is called the Casimir element. Observe that Tr(c) = dim(g) 6= 0.

21.2 Weyl’s Theorem
Lemma 21.3. Let g be a finite dimensional semisimple Lie algebra, and let (V, f) be a finite dimensional represen-
tation of g. If W is a codimension 1 subrepresentation of (V, f), then there exists a subrepresentation X of (V, f)
such that V =W ⊕X.

Proof. We proceed by induction on dim(V ). If dim(V ) = 1, the claim is trivial. So now assume dim(V ) > 1, and
let W be a subrepresentation of V with codimension 1. Note that, by going modulo te kernel of f , we may assume
(V, f) is a faithful representation.

First assume W is simple. Consider the Casimir element c; it is a g-invariant endomorphism of V . Since g = [g, g],
g acts trivially on one-dimensional representations; in particular on V/W . Therefore f(V ) ⊂ W , and so c(V ) ⊂ W .
Further, by Schur’s lemma, c is a scalar on W , say multiplication by λ ∈ C. Since Tr(c) 6= 0, λ 6= 0, and so c(V ) =W
and c is an isomorphism on W . Therefore ker(c) is a one-dimensional subrepresentation of V that intersects W only
at 0, and so is a direct summand of W .

Theorem 21.4. Let g be a finite dimensional semisimple Lie algebra. Then any finite dimensional representation
of g is completely reducible. More strongly, any subrepresentation is a direct summand.
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Proof. Let (V, ρ) be a finite dimensional representation. If it is simple, we are done. Else, let W be a proper non-zero
subrepresentation of V . Consider Hom(V,W ) as a representation of g, via the map µ given by

(µ(x)(f))(w) = (ρ(x)� f)(w)− (f � ρ(x))(w)

. Let V and W be subspaces of Hom(V,w) consisting of maps that are scalar and 0 respectively on W . Then for any
f ∈ V ,x ∈ g and w ∈W , by definition (µ(x)(f))(w) = 0. Therefore V,W are subrepresentations of Hom(V,W ), and
g sends V to W. Also from definition, W is a codimension 1 subspace of V.

Now, applying the above lemma, there exists a one dimensional representation of V that is a direct summand
of W. Say the representation is generated by f ; WLOG f |W = idW . Then since g = [g, g], g acts trivially on
Cf . Therefore ker(f) is a subrepresentation of V , and since f is identity on W , ker(f) ∩W = (0). Therefore by a
dimension argument, ker(f) is a direct summand of W .

22 Semisimple Groups and Algebras
Definition 22.1. An algebraic group G is called semisimple if it has no closed connected normal subgroup except e.

Theorem 22.2. A connected algebraic group G is semisimple iff g is semisimple.

23 Hilbert-Mumford Theorem
The following is a fairly elementary proof of the Hilbert-Mumford theorem, which uses the following lemma:

Lemma 23.1. Let mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ n be integers satisfying the following property: If b1, . . . , br are
integers, not all zero, such that

r∑
i=1

bimi,j = 0 ∀1 ≤ j ≤ n,

then some two of the bi have opposite sign. Then, there exist integers cj such that
n∑

j=1

mi,jcj > 0 ∀1 ≤ i ≤ r.

Proof. It is enough to prove the statement for rationals ci, and just scale later. Also, the given condition holds for
rationals bi, by scaling. It translates to the kernel of the linear map

M : (b1, . . . , br) → (

r∑
i=1

bimi,1, . . . ,

r∑
i=1

bimi,n)

intersecting the cone of non-negative entries in Qr only at the origin. Thus, due to density of Q in R, it intersects
non-negative cone of Rr only at the origin. Consider the map M t. Note that ker(M) and Im(M t) are orthogonal
complements in Rr.

We show the following: If K is a subspace of Rr that intersects the non-negative cone only at origin, then K⊥

intersects the interior of the cone. Suppose K has co-dimension k ≥ 2. Consider the image of the non-negative cone
in the projection Rr/K ∼= Rk; call it D. Clearly D is closed. Further, Rk \ {0} is connected since k ≥ 2, so D and
−D cannot cover Rk \ {0}, so there is a non-zero vector v ∈ Rk such that Rv ∩ D \ {0} = ∅. Thus if we add the
pull-back of v to K, we get a subspace of one higher dimension, which also intersects the non-negative cone only at
0. Keep doing this until we get K having codimension 1. Then, suppose K is the hyperplane

∑r
i=1 λixi = 0. Since

K intersects non-negative cone only at the origin, all the λi must be non-zero and have the same sign, WLOG all
positive. Then (λ1, . . . , λr) ∈ K⊥ is a vector that is in the interior of the cone, as required.

Applying the above property to ker(M), we get that some vector in Im(M t) lies in interior of the non-negative
cone. By scaling and using density of rationals, we can assume this vector (c1, . . . , cn) to have integer entries. This
vector satisfies the precise condition that we want.

The Hilbert-Mumford theorem gives a nice characterization of unstable points in terms of one parameter sub-
groups.

Theorem 23.2. Let G be a reductive group acting linearly on a vector space V . Let v ∈ V be G-unstable, i.e.,
the closure of the orbit G · v contains 0. Then there exists a one-parameter subgroup λ : C∗ → G such that
limt→0 λ(t) · v = 0.
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Before we prove this theorem, we would need another lemma relating unstable points in G to unstable points in
the maximal torus T :

Lemma 23.3. Let T ≤ G be a maximal torus in G, and suppose v ∈ V is G-unstable. Then the orbit G · v contains
a vector u which is T -unstable.

Proof. We skip the proof here, but the key idea is: In a reductive group, the set of elements conjugate to the maximal
torus form an open dense subset of G.

Now we can finally prove the theorem.

Proof. Moving to the torus, we can assume v is T -unstable. Hence V can be split into different weight classes. More
concretely, we can write any v ∈ V as

∑r
i=1 vi where T acts by scalar multiplication on each vi. Suppose

(t1, t2, . . . , tn) · vi = t
mi,1

1 · · · tmi,n
n vi.

for all 1 ≤ i ≤ r and (t1, . . . , tn) ∈ T .

24 Exercises
1. Use Valiant’s construction to construct a matrix M whose determinant is b2 − 4ac.

2. Consider the unit cube with 8 vertices V , 12 edges E and 6 faces F . Let G be the group of its symmetries.
List the elements of G (by their action on the faces) as a product S1 × S2 with S1 as the stabilizer of a face
and S2 as a list of coset representatives.

3. For the action of G above, what is the number of orbits for its action on F × F × F? How would it change if
we add the additional commuting action of S3, the symmetric group?

4. Recall the cycle description of a single bijection f on a finite set S. We would like to list all bijections g which
commute with f . Use the cycle description of f to do this. List this set for f = (123)(45)(67).

5. Consider the group Z6 acting on C6 by circular shift. Let v = [1,−1, 0, 0, 0, 0]. Find the smallest subspace
M ⊆ C6 such that M is Z6-invariant. Consider Z3 ⊆ Z6. Split M into Z3 invariant subspaces.

6. Let x1, . . . , xn be indeterminates and let G = Sn act by permutations. Let s1, . . . , sn be the coefficients of∏
i(X − xi). Show that any polynomial p ∈ C[x1, . . . , xn] which is symmetric, .i.e., pG = p, is a polynomial in

s1, . . . , sn.

7. Recall the Reynolds operator ΠG from R→ RG. For the ring C[x1, . . . , xn] above, show by first principles that
ΠG(ff ′) = fΠG(f ′), if fG = f . Exhibit an element f ′ where ΠG(f ′) = 0.

8. Let G = S3. Then there are only three non-isomorphic and irreducible G-modules M3 of dimension 1, M21 of
dimension 2 and M111 of dimension 1. The first is generated by v3 with σv = v. M111 is generated by v111 such
that σv111 = (−1)sign(σ)v111. Let M21 = {w ∈ C3|w(1) + w(2) + w(3) = 0‖. Then M21 is this third module.
Consider V = C[x1, x2, x3]2, polynomials of degree 2 under the action of G on the variables. Decompose V
into sum of subspaces n3M3 ⊕m21M21 ⊕ n111M111.

9. Consider the surface S given by the equation f ≡ x2 + y2 − z2 = 0. Let p = (0, 0, 0) and q = (0, 1, 1) on S.
Compute the normal space and the tangent space at p and q. Which of these points is smooth?

10. Consider the curve defined by f and g ≡ x2 + z2 − y2 = 0. Again, consider the points p and q and compute
the normal and the tangent spaces. What is the dimension of the normal space? Why is it wrong?

11. Construct a polynomial h ∈
√

(f, g) which will repair the above situation.

12. Compute the resultant of f ≡ x2 + y2 − 2 and g ≡ y − x2, by eliminating y. Explain the outcome. What
happens when we eliminate x?

13. Consider f as above and h ≡ x+ y − 1. Explain.

14. Compute the locus (a, b) of the translations of the unit circle which osculate with the parabola y − x2 = 0.

15. Recall the action of Zn on V = Cn by shifting. Decompose V into irreducible subspaces. Describe C[V ]G and
show how orbits can be separated.
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16. Let X be the vector space of 2 × 2-matrices, with coordinate vectors (Xij). Consider the action ρ : GL2 →
End(X), given by (g, x) → gxg−1. Let the coordinate vectors of G be (gij). Decompose X under this action
into irreducible spaces X = X0 ⊕X1. Explicitly construct the map:

ρ∗ : C[X] → C[G]⊗ C[X]

Verify that X11 +X22 is an invariant.

17. Corresponding to the map above, compute the bilinear Lie algebra map:
ρ1 : gl2 ×X → X

Verify that X0 and X1 above continue to be invariant. Compute the stabilizers of various points.

18. Let V = C3×4, the space of 3 × 4-matrices, and G = GL4 and G′ = SL4 act by left multiplication. Let v1, v2
and v be the points below:

v1 =

 1 0 0 0
0 1 0 0
0 0 1 1

 v2 =

 1 0 0 0
0 1 0 0
0 0 1 2

 v =

 1 0 0 0
0 1 0 0
0 0 0 0


Compute the G and G′ orbits of all points. Recall the relation ∼ on V where we say v ∼ v′ if their orbit
closures intersect. Compute [w]∼ for ∼ arising from G and G′ and for w = v1, v2, v. Recall that [w]∼ is also the
equivalence class of separation by invariants. Construct suitable invariants to distinguish between equivalence
classes.

19. Let V = Cm×n, the space of all m× n-matrices with m ≤ n. Let us consider the action of V under G = GLm

and G′ = SLm. For a point v, let A(v) = {c ∈ Cn|vc = 0}, the space of right annihilators. Clearly, if v ∈ O(v′)
then A(v) = A(v′). Does A(v) determine [v]∼?

20. Recall that for an action of reductive group G on V , we say that v is stable if its orbit is closed. Consider the
diagonal action of G on W = V ⊕ V . What would be stable or unstable points of W in terms of those of V ?
What about C[W ]G in terms of C[V ]G? Analyse the case when V = Matn, the space of n × n-matrices and
G = GLn.

21. Let T be a 1-dimensional torus acting on V through ρ. Then we have V = ⊕Vi with ρ(t)vi = tivi for some
i ∈ Z. Describe the orbits of a typical point v. When is it closed? What is C[V ] and C[V ]T ? Analyse [v]∼.

22. Recall that for V acted upon by a reductive group G, we have v′ ∈ O(v) iff there is a 1-parameter subgroup
λ(t) : C∗ → G such that limt→0 λ(t)v ∈ O(v′). Let X = {x1, x2, x3} and V = Symd(X), the space of
polynomials of degree d in X. What is the dimension of V ? Let us now analyse V under the action of
G = SL3. We know that the maximal torus T in G is isomorphic to T = {diag(µ1, µ2, µ3)|µ1µ2µ3 = 1}. A
1-paramater subgroup λ : C∗ → G is then given by, upto conjugation, by λ(t) = {(td1 , td2 , td3 |d1+d2+d3 = 0}.
Using this, classify all polynomials p ∈ V such that 0 ∈ O(v).

23. Consider G = GL4(C) and the 1-parameter subgroup λ(t) and consider K as given below and compute K̂.

λ(t) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 t

 , K =


a b 0 0
c d 0 0
0 0 a b
0 0 c d


Next, let A be as shown below and K′ = AKA−1 as shown below. Compute K̂′.

A =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 K′ =


a b c d− a
c d 0 −c
0 0 a b
0 0 c d


What if A above is replaced by A′?

A′ =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


24. Consider a set of indeterminates {x, y, z} and X = C · {x, y, z}. Let GL3 acts on X in the natural way, and let

V = Sym4(X). Consider f = ((x− z)2 + y2 + z2)2 ∈ V . Compute Gf .
Consider next the 1-PS λ(t) ⊆ GL(X) given by λ(x) = x, λ(y) = y and λ(z) = tz, as shown below. Compute
f̂ and the tangent of approach h. Verify that Gf̂ ⊆ (Hf )h ⊆ Gf .

35



25 Solutions
1.

2. (Keerthana) Given that S1 is the stabiliser of the face, we have 8 elements of symmetry for the face 4 − >
rotation and 1 reflection.

⇒ 8 in total

Given that S2 is the list of coset representatives. This will be same as number of faces = 6.

⇒ There are 8× 6 elements in S! × S2

where S1 is everything that keeps the face intact and S2 is total number of positions for faces.

3.

4. (Keerthana) Given that fg = gf ⇒ f = gfg−1. let the set be x1x2x3x4x5x6x7

(x1, x2, x3)(x4x5)(x6x7) ≡ (g(x1), g(x2), g(x3))(g(x4)g(x5))(g(x6)g(x7))

⇒ (x1, x2, x3) = (g(x1), g(x2), g(x3))︸ ︷︷ ︸
3 possibilities of g

Case1:

(x4, x5) = (g(x4), g(x5)) (x6, x7) = (g(x6), g(x7))

This gives us two possibilities
Case2:

(x4, x5) = (g(x6), g(x7)) (x6, x7) = (g(x4), g(x5))

This gives us two possibilities

⇒ Total = 3× (2× 2 + 2× 2) = 24 possibilities of g

5. (Keerthana) Small subspace M that contains (1,−1, 0, 0, 0, 0) and it is Z6 invariant.
(−1, 0, 0, 0, 0, 1)
(0, 0, 0, 0, 1,−1)

...
all these elements should be there.
⇒ The subspace is going to be the set of all vectors with sum of coordinates 0.
Now split these in such a way that they are Z3 invariant.

Suppose (x1, x2, x3, x4, x5, x6) = K(x3, x4, x5, x6, x1, x2)
The K is the cube root of unity

⇒ K = 1 or K = ω or K = ω2

K = 1:
x1 = x3 = x5
x2 = x4 = x6
x1 + x2 + x3 + x4 + x5 + x6 = 0
⇒ x1 = −x2
⇒ They are going to be of the form (x,−x, x,−x, x,−x)

K = ω:
x1 = x3ω
x3 = x5ω
x2 = x4ω
x4 = x6ω
(ω2x, ω2y, ωx, ωy, x, y)

K = ω2:
This case gives (ωx, ωy, ω2x, ω2y, x, y)
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6. (Shantanu) We will prove this by double induction w.r.t. number of variables n, and for a fixed n, with respect
to the degree.
The case n = 1 is trivial because every polynomial is symmetric, and the only elementary symmetric polynomials
is x1. Assume now that the theorem has been proved for all polynomials for m < n variables and all symmetric
polynomials in n variables with degree < d. It is enough to prove the result for homogeneous symmetric
polynomials of degree d. Decompose a symmetric polynomial P into two parts: P = Pbad + x1x2 · · ·xnQ, i.e.,
Pbad consists of all monomials that don’t contain all the xi (call these bad monomials), and we have factored
an x1x2 · · ·xn from the rest of the monomials. By induction hypothesis on degree, Q ∈ C[s1, s2, . . . , sn], and
x1x2 · · ·xn = sn is also elementary. Thus it is enough to focus on Pbad.
Define P0(x1, . . . , xn−1) = P (x1, . . . , xn−1, 0) = Pbad(x1, . . . , xn−1, 0). This is a symmetric polynomial in n− 1
variables, so by induction hypothesis, it is equal to T (s′1, s

′
2, . . . , s

′
n−1), where s′i is elementary symmetric in

x1, . . . , xn−1. Consider the polynomial T (s1, s2, . . . , sn). Since this is equal to T (s′1, . . . , s′n−1) = P0(x1, . . . , xn)
when xn = 0, any monomial not containing xn has the same coefficient in T and P0. But, the coefficient of
any term in Pbad is determined by the monomial not containing xn which can be obtained by permutation of
variables. Therefore they have the same ”bad” part, so Pbad − T is divisible by x1x2 · · ·xn. Now we can use
induction hypothesis on degree to conclude.

7. (Keerthana) Given ΠG is R→ RG

we have that, ΠG(f) =
Σg·f
|G|

⇒ ΠG(ff
′
) = Σg·(ff

′
)

|G|

Given that fG = f

⇒ ΠG(ff
′
) = Σgf ·(gf

′
)

|G| = Σf ·(gf
′
)

|G| = f Σ(gf
′
)

|G| = fΠG(f
′
)

∴ Hence proved

8.

9. (Keerthana) Given that f = x2 + y2 − z2 and P=(0, 0, 0) and q=(0, 1, 1).

Tangent space is
[
2x 2y −2z

]  a
b
c

 = 0

⇒ 2xa+ 2yb− 27c = 0
For (0, 0, 0) tangent space is everything.
For (0, 1, 1) tangent space is (a, b, c) such that b = c.
Normal space is vector space generated by (2x, 2y,−2z)
for (0, 0, 0) it is just the point (0, 0, 0) - 0 dimensional
for (0, 1, 1) it is just the vector space formed by (0, 1, 1) - 1 dimensional
It is smooth at (0, 1, 1).

10. (Keerthana) f ≡ x2 + y2 − z2 = 0andg ≡ x2 + z2 − y2 = 0
The intersection is going to be lines y2 = z2 and x = 0
The normal space is going to be the space formed by (2x, 2y,−2z),(2x,−2y, 2z)
for (0, 0, 0), it is going to be 0 dimensional
for (0, 1, 1), it is going to be 1 dimensional
The tangent space is going to be 2xa+ 2yb− 2zc = 0 and 2xa− 2yb+ 2zc = 0
For (0, 0, 0) it is going to be the entire space.
For (0, 1, 1) it is going to be (a, b, c) such that b = c.
But the mistake is, for (0,1,1) the dimension of the normal space is 2 not 1.
Because of the x2 term it is superimposing x = 0 twice and taking a normal perpendicular to that and making
it 1 dimensional.

11. (Keerthana) h ∈
√
(f, g)√

f+g
2 = x

If we take h ≡ x = 0 and f ≡ x2 + y2 − z2 = 0.
The curve intersection is still going to be the same but the normal space is going to be the space generated by
(1, 0, 0) and (0, 2,−2). This is going to be 2 dimensional.
⇒ The issue is resolved
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12. (Keerthana) Given that f ≡ x2 + y2 − 2 and g ≡ y − x2

We need to eliminate y.
⇒ f ≡ y2 + (x2 − 2)andg ≡ y − x2

d=2,e=1,d+e=3  1 0 x2 − 2
1 −x2 0
0 1 −x2

 = x4 + x2 − 2

This is the same as substituting y = x2(same as g) in f.

13. (Keerthana) Given that f ≡ x2 + y2 − 2 ≡ y2 + (x2 − 2) and h ≡ x+ y − 1 ≡ y + (x− 1), d+e=3 1 0 x2 − 2
1 x− 1 0
0 1 x− 1

 = (x− 1)2 + (x2 − 2)

This is the same as replacing y ≡ − (x− 1)︸ ︷︷ ︸
same as g

inf

14. (Keerthana) x coordinate of the point of intersection of y = x2 and (x− a)2 + (y − b)2 = 1 will be the root of
the equation (x− a)2 + (x2 − b)2 = 1
⇒ x4 − 2bx2 + x2 − 2ax+ a2 + b2 − 1 = 0
⇒ x4 + (1− 2b)x2 − 2ax+ a2 + b2 − 1 = 0
Now this has 2 equal roots and 2 imaginary roots. let c,c be the repeated roots, since circle is touching the
parabola.
sum of the roots=0 ⇒ imaginary roots are −c+ idand− c− id
Product of the roots ⇒ a2 + b2 = c2(c2 + d2) → 1
and 2a = cc(−c+ id) + cc(−c− id) + (−c+ id)(−c− id)c+ (−c+ id)(−c− id)c
⇒ 2a = c2(−2c) + 2c(c2 + d2)
⇒ 2a = 2cd2

⇒ a = cd2

Now 1− 2b = cc+ c(−c+ id) + c(−c− id) + c(−c+ id) + c(−c− id) + (−c− id)(−c+ id)
⇒ 1− 2b = c2 + c(−2c) + c(−2c) + c2 + d2

⇒ 1− 2b = c2 − 4c2 + c2 + d2

⇒ 1− 2b = d2 − 2c2

substituting d2 = a/c in equation 1 and 3
⇒ a2 + b2 − 1 = c2(c2 + a/c) → 4 and 1− 2b = a/c− 2c2

⇒ 1/2− b = a/2c− c2

⇒ c2 = (1/2− b)− (a/2c) → 5
By substituting 5 in 4 gives
⇒ a2 + b2 − 1 = c2((1/2− b) + a/2c)
⇒ a2 + b2 − 1 = c2(1/2− b) + ac/2
⇒ c2(2b− 1)− ac+ 2(a2 + b2 − 1) = 0 → 6
and equation 5 is 2c3 = (1/2− b)2c− a
⇒ 2c3 = (1− 2b)c− a
⇒ 2c3 − (1− 2b)c+ a = 0 → 7

From 6 we have c2 = ac−2(a2+b2−1
2b−1

substitute in 7 gives 2c(ac−2(a2+b2−1
2b−1 )− (1− 2b)c+ a = 0

⇒ 2ac2 − 4c(a2 + b2 − 1) + (2b− 1)2c+ a(2b− 1) = 0
⇒ 2ac2 + (4b2 − 4b+ 1− 4a2 − 4b2 + 4)c+ a(2b− 1) = 0
⇒ 2ac2 + (5− 4b− 4a2)c+ a(2b− 1) = 0

again substitute c2 = ac−2(a2+b2−1)
(2b−1)

⇒ 2aac−2(a2+b2−1)
(2b−1) + (5− 4b− 4a2)c+ a(2b− 1) = 0

⇒ 2ac2 − 4a(a2 + b2 − 1 + (2b− 1)(5− 4b− 4a2)c+ a(2b− 1)2 = 0
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⇒ c(2a2 + (2b− 1)(5− 4b− 4a2)) = 4a(a2 + b2 − 1− a(2b− 1)2

⇒ c = 4a(a2+b2−1)−a(2b−1)2

2a2(2b−1)(5−4b−4a2)

substitution in equation 6 that is c2(2b− 1)− ac+ 2(a2 + b2 − 1) = 0 gives

⇒ c(2b− 1)( 4a(a
2+b2−1)−a(2b−1)2

2a2+(2b−1)(5−4b−4a2) )− ac+ 2(a2 + b2 − 1) = 0

⇒ c( (2b−1)(4a(a2+b2−1)−a(2b−1)2)
2a2+(2b−1)(5−4b−4a2) )− a) = −2(a2 + b2 − 1)

⇒ c = −2(a2+b2−1)(2a2+(2b−1)(5−4b−4a2))
(2b−1)(4a(a2+b2−1)−a(2b−1)2)−a(2a2+(2b−1)(5−4b−4a2))

Equating both c’s gives ⇒ 4a(a2+b2−1)−a(2b−1)2

2a2(2b−1)(5−4b−4a2) = −2(a2+b2−1)(2a2+(2b−1)(5−4b−4a2))
(2b−1)(4a(a2+b2−1)−a(2b−1)2)−a(2a2+(2b−1)(5−4b−4a2))

15. (Shantanu) Since Zn is abelian, all irreducible subspaces are one-dimensional. For 0 ≤ i ≤ n− 1, consider the
vector vi = (1, wi, w2i, . . . , w(n−1)i), where w is the primitive n-th root of unity. Suppose Zn is generated by
a, then

a · vi = (w(n−1)i, 1, . . . , w(n−2)i) = w(n−1)ivi

Hence each vi is an eigenvector with a different eigenvalue, so the irreducible subspaces of Cn are linear
subspaces generated by the vi.
The invariant subspace C[V ]G will be polynomials that are invariant under cyclic shifts, i.e., polynomials
P ∈ C[V ] such that P (x1, x2, . . . , xn) = P (xn, x1, . . . , xn−1). This will form a finitely generated algebra since
Zn finite implies Zn reductive. Now, Zn finite also implies each orbit is finite, so it is closed; therefore two orbit
closures are disjoint iff the orbits are disjoint. Therefore by 17.16, any two disjoint orbits can be separated.

16. (Shantanu) We have the canonical decomposition into X0 = XG and X1. Here X0 is the space of invariants
under ρ. x ∈ X0 ⇐⇒ ρ(g)x = x for all g ∈ G ⇐⇒ gxg−1 = x for all g ∈ G ⇐⇒ x commutes with all of
GL2 ⇐⇒ x is a scalar diagonal matrix.
Its complement X1 is generated by elements of the form x− ρ(g)x for x ∈ X and g ∈ G. If we let x = yg, we
see that X1 is generated by matrices of the form yg − gy for y ∈ X and g ∈ G.

Now we construct the map ρ∗. If g =

[
g1 g2
g3 g4

]
, then

ρ∗(X11) = g−1X11g =
1

g1g4 − g2g3
(g1g4X11 + g2g4X12 − g1g3X21 − g2g3X22)

ρ∗(X12) = g−1X12g =
1

g1g4 − g2g3
(g3g4X11 + g24X12 − g23X21 − g3g4X22)

ρ∗(X21) = g−1X21g =
1

g1g4 − g2g3
(−g1g2X11 − g22X12 + g21X21 + g1g2X22)

ρ∗(X22) = g−1X22g =
1

g1g4 − g2g3
(−g2g3X11 − g2g4X12 + g1g3X21 + g1g4X22)

This directly shows ρ∗(X11 +X22) = X11 +X22, i.e., it is invariant.

17. (Shantanu) Let h ∈ gl2, then I + ϵh ∈ G if ϵ2 = 0. Therefore

ρ(I + ϵh)(x) = (I + ϵh)x(I + ϵh)−1

= (I + ϵh)x(I − ϵh)

= x+ ϵ(hx− xh)

Hence ρ1(h, x) = hx− xh.
If x ∈ X0, then x is a scalar so it commutes with every matrix =⇒ ρ1(x, h) = 0 ∈ X0, so X0 is invariant
under ρ1.
X1 is generated by elements of the form yg − gy for y ∈ X and g ∈ G. Thus it is sufficient to prove that
ρ1(yg − gy, h) ∈ X1 for all h ∈ gl2. But this is true because

h(yg − gy)− (yg − gy)h = hyg − hgy − ygh+ gyh = (hyg − ygh) + (gyh− hgy) ∈ X1
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18.

19.

20.

21. (Shantanu) If v = · · ·+ v−1 + v0 + v1 + · · · , then ρ(t)v = · · ·+ t−1v−1 + v0 + tv1 + · · · . v ∈ V0, then every orbit
is constant, so it is closed. If vi = 0 for all i < 0 but v /∈ V0, then ρ(t)v → v0 /∈ O(v) as t → 0, so orbit is not
closed. Similarly if vi = 0 for all i > 0 but v /∈ V0, then ρ(t−1)v → v0 /∈ O(v) as t → 0, so orbit is not closed.
Finally, if v has both positive and negative parts, then for any non-zero integer k, lim

t→0
ρ(tk)v does not exist, so

orbit is closed by the 1-parameter subgroup characterization.
Also note that by the above paragraph, if v has only positive or only negative parts, then O(v) = O(v)∪ {v0}.
So v ∼ w iff they are in the same orbit, or if both of them only have positive or negative parts, and their
projections on V0 are the same.
Let {u(1)i , . . . , u

(di)
i } be a basis of Vi. Then C[V ] is polynomials on u

(j)
i . Since ρ just scales each variable, a

polynomial is invariant iff every monomial is invariant. A monomial
∏
(u

(j)
i )ai,j is invariant iff

∑
iai,j = 0.

Thus C[v]T is the C-vector space of all such monomials.

22.

23. (Keerthana) Given that,

λ(t) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 t

 andK =


a b 0 0
c d 0 0
0 0 a b
0 0 c d



λ(t)Kλ(t)−1 =


a b 0 0
c d 0 0
0 0 a b
0 0 ct dt




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1/t

 =


a b 0 0
c d 0 0
0 0 a b/t
0 0 ct d



λ(t)Kλ(t)−1 =


0 0 0 0
0 0 0 0
0 0 0 b
0 0 0 0

 t−1 +


a b 0 0
c d 0 0
0 0 a 0
0 0 0 d

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 c 0

 t

The possible leading coefficients are


0 0 0 0
0 0 0 0
0 0 0 b
0 0 0 0

 and


a b 0 0
c d 0 0
0 0 a 0
0 0 0 d


Then K̂ will be


a b 0 0
c d 0 0
0 0 a b
0 0 0 d


Then,

λ(t)K′λ(t)−1 =


a b c (d− a)/t
c d 0 −c/t
0 0 a b/t
0 0 ct d



λ(t)K′λ(t)−1 =


0 0 0 d− a
0 0 0 −c
0 0 0 b
0 0 0 0

 t−1 +


a b c 0
c d 0 0
0 0 a 0
0 0 0 d

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 c 0

 t

The leading coefficients could be


0 0 0 d− a
0 0 0 −c
0 0 0 b
0 0 0 0

 or


a b c 0
c d 0 0
0 0 a 0
0 0 0 d


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K′ =


a b c e
c d 0 f
0 0 0 g
0 0 0 d


24.
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