IC 102-Data Analysis and Interpretation Milind Sohoni

Lecture 1: Basic Statistics

Course Conduct

- Timetable: Wednesday, Friday 11:00-12:30 and Thursday, 9:30-10:30
- Textbook: Sheldon Ross 3rd (Indian Edition)
- lots of case studies
- Use of Scilab, in class and away.
- Assessment: 2 quizes, midsem, endsem, 2 programming assignments.
 - Open notes, no photocopies and no texts. Only hand-written notes.
 - honesty and hardwork
- webpage: www.cse.iitb.ac.in/~sohoni/IC102

What are the objectives

- The importance of data-how to use it, infer from it
- Developing models-probability theory
- Parameter estimation and Hypothesis testing-key attributes of real life systems
- Regression-fitting models to data
- Case Studies-from various real life situations

January 16, 2012 3 / 16

Philosophy and History

- Empiricism-that observations determine everything
 - others: intuition, aesthetics, holism, spiritualism
 - examples- music, arts, natural history and evolution, the brain, justice and so on
 - early users-taxation, agriculture, astronomy
- The loop-Observe, analyse, model, predict, use, and maybe intervene

Statistics \Rightarrow Probability

- Basic laws of physics-mechanics, electrostatistics, fluid mechanics, civil engineering and so on
- Social Sciences-Economics-The supply and demand curves

Name	Α	В	C	D	Е	F
Ability to Pay	4	4	5	6	8	8

The basic object

- Population: The table \mathcal{X} of N rows and m columns.
- Sample: The table X- of n rows and m columns.
 - How is the sample to be selected?
- Each row is a *item*, and thus there are *n* items.
- Each column is an attribute-thus m attributes.
- Example-Groundwater data

Lat.	Long.	Date	Depth
18.67453	79.1411	12th January 2001	3.56

• The attribute values could be numbers of texts

	Village	Gram Panch.	Tal.	Population	ST	Tanker
	Golbhan	Dhamni	Shahpur	566	24	N
ĺ	Dhamni	Dhamni	Shahpur	376	376	Y

• Textual attributes are important, for they reveal the structure for analysis.

The simplest statistics

• The simplest dataset $X = \{x_1, \dots, x_n\}$

Student	Marks
i	Xi

- mean, mode median
 - ▶ mean= $\overline{x} = (\sum_{i=1}^{n} x_i)/n$ -average behaviour
 - ▶ median is x_M such that as many items below x_M asabove.
- Sample Variance $s^2 = (\sum_{i=1}^n (x_i \overline{x})^2)/(n-1)$
- Sample Standard Deviation s.

Variance: the first measure of uncertainty.

- Suppose that the inter-arrival times are 10 minutes on the average but with a standard deviation of 3 minutes.
- Indian life expectancy is 64 years with s = 15.
- Rainfall is unchanged but variance has increased.

January 16, 2012 6 / 16

Chebyshev

• Two-sided: $N(S_k)$ = number of items such that $|x_i - \overline{x}| < ks$

$$\frac{\textit{N}(\textit{S}_{\textit{k}})}{\textit{n}} \geq 1 - \frac{\textit{n} - 1}{\textit{n}\textit{k}^2} > 1 - \frac{1}{\textit{k}^2}$$

Proof:

$$(n-1)s^{2} = \sum_{i:|x_{i}-\overline{x}|>ks}(x_{i}-\overline{x})^{2}$$

$$\geq \sum_{i:|x_{i}-\overline{x}|>ks}(x_{i}-\overline{x})^{2}$$

$$\geq (n-N(S_{k}))k^{2}s^{2}$$

$$\Rightarrow \frac{n-1}{nk^{2}} \geq (1-\frac{N(S_{k})}{n})$$

• One-sided: $N(k) = \text{number of items such that } x_i - \overline{x} \ge ks$

$$\frac{N(k)}{n} \le \frac{1}{1+k^2}$$

Limits on how 'far' data points can be from mean. Usually data sets are more bunched than Chebyshev.

January 16, 2012 7 / 16

Paired data-sets and Correlation

Student	Sem 1 SPI	Sem 2 SPI
i	Xi	Уi

Correlation

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{(\sum_{i=1}^{n} (x_i - \overline{x})^2)(\sum_{i=1}^{n} (y_i - \overline{y})^2)}}$$

- $-1 \le r \le 1$
- if $y_i = ax_i + b$ then r = sign(b)
- r(x, y) = r(ax + b, cy + d)

()

Other analyses-The Thane DW Case-Study-I

• Grouping by textual attributes can be very important.

Area	9000 sq km.
Pop. (Rural) la.	81 (23)
Taluka (Tribal)	15 (5)
Habitats (GPs)	8000 (900)
Cities (Munci.)	37 (12)

And a severe drinking water probelm in 180 habitations.

How is the political structure?

Figure 1:3: Data analysis levels

How is the data

How are the data-bases

Some Raw Statistics

Taluka	Villages	Tank.	Frac.	Area	T. Area	Frac.
Jawhar	61	14	0.23	609	96	0.16
Mokhada	79	25	0.32	494	277	0.56
Murbad	199	10	0.05	913	688	0.75
Shahpur	224	34	0.16	1604	463	0.29

Social Indicators

Fraction of Female Illiteracy

	Jawhar	Mokhada	Murbad	Shahpur
Tankerfed	0.78	0.69	0.64	0.67
Neighbors	0.76	0.70	0.61	0.56
Taluka	0.76	0.68	0.55	0.55

Fraction of ST population.

	Jawhar	Mokhada	Murbad	Shahpur
Tankerfed	0.97	0.93	0.74	0.62
Neighbors	0.99	0.97	0.32	0.42
Taluka	0.97	0.91	0.24	0.35

GIS Shahpur closeup

Elevations

	Jawhar	Mokhada	Murbad	Shahpur
Tankerfed	344	361	123	197
Taluka	320	350	126	132

Thanks

