Ground Water Data Analysis

By Ravi Sagar[10305037] Guided by Prof. Milind Sohoni

October 24, 2011

By Ravi Sagar[10305037] Guided by Prof. Milind Sohoni Ground Water Data Analysis

- Computing Variance
- Polynomial Model
- Spatial Models
- Krigging Interpolation
- Database and Geo Server Demo
- Future Work

< ∃ →

Computing Variance

Variance

$$\sigma = \{ \frac{\sum_{i=1}^{n} (y_i - \mu)^2}{n} \}^{\frac{1}{2}}$$

- Objective: Separation of variance causes
- Current Models and its variance

$$\sigma = \left\{ \frac{\sum_{i=1}^{n} (y_i - \mu_i)^2}{n} \right\}^{\frac{1}{2}}$$

Table: Top 5 Bore wells with high variance

Well₋name	Variance	Depth	
Mandawa	12.561928	30	
Tokavde	10.591332	24	
Safale	4.466477	25.9	
Kudan	4.302190	30	
Sakharshet_chalatwad	,3.640198	22.5	

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Table: Top 5 Dug wells with high variance

Well_name	Variance	depth
Washind_1	6.396629	7
Talasari	5.252879	7
Mangrul	3.221694	7.6
Satiwali	3.102799	7.2
Dahisar	3.084735	9.5

- 4 同 6 4 日 6 4 日 6

æ

Water level in Mandawa@Bore_Well

Figure: Behavior of Mandawa Bore Well

< □ > < 同 >

 $\exists \rightarrow$

Variance

Figure: Behavioor of Washind1 DugWell

÷.

< 🗇 🕨 🔸

Table: Variance Vs Discrepancy for Bore Well

Village	Normalized variance	Depth(m)	Discrepancy_count
Tokavde	0.135601	24.000	1
Mandawa	0.118143	30.000	2
Gokhiware	0.090139	18.000	4
Satiwali	0.033998	18.000	23
Bhatsai	0.050426	18.000	17

Table: Variance Vs Discrepancy for Dug Well

Village	Normalized variance	Depth(m)	Discrepancy_count
Washind_1	0.361308	7.000	7
Talasari	0.286490	8.000	5
Satiwali	0.244649	7.200	15
Dapode	0.208616	5.250	7
Titwala	0.150577	7.000	10
		4	D N 4 4 N N 4 E N 4 E N 1 3

By Ravi Sagar[10305037] Guided by Prof. Milind Sohoni

Bore Well Characteristics

Bore well data general behavior.

Figure: Periodic model of Mandawa bore well

- AGRAR case study of Kolwan valley, Pune, Maharashtra
- Chikhalgaon Water shed with shallow aquifer(20m)
- 8 Dug wells, 8 Bore wells
- Shallow and deep bore well recharge

Bore Well Characteristics

Figure 44: Hydrograph showing water levels in BH2, plotted along with the rainfall and water levels for BH1. Note: The initial rise of water levels in both boreholes is the effect of slow recovery in the shallow and deep aquifers due to low transmissivities.

Figure: Image Taken from AGRAR report

Bore Well Characteristics

Figure 42: Hydrograph showing weekly water levels in dug wells from Chikhalgaon watershed, along with rainfall for the two seasons. Data from May 2003 to March 2005.

Figure: Image taken from AGRAR report

э

- ₹ ∃ →

< 1 b

By Ravi Sagar[10305037] Guided by Prof. Milind Sohoni Ground Water Data Analysis

Discontinuity of old model

Figure: Periodic model of Chahad Dug Well

Polynomial Model

Polynomial model

Figure: Polynomial model of Gokhiware bore well

- Spatial Model
- Voronoi Diagrams

프 > 프

22.5	5	5	3	4	5	5	4	5
21.5	5	2	3	4	4	4	5	5
20.5	5	0	3	3	3	4	4	4
19.5	4	1	3	3	3	3	3	3
18.5	4	0	0	0	2	2	3	2
17.5	0	0	1	0	0	1	1	4
16.5	0	0		1	0	1	1	1
15.5	R	0	0	0	1	1	1	1
Latitude								
Longitude	73.5	74.5	75.5	76.5	77.5	78.5	79.5	80.5

伺い くほう くほう

22.5	2	1	1	1	1	0	0	5
21.5	2	1	1	1	0	0	0	0
20.5	1	1	1	0	0	0	0	0
19.5	1	1	0	0	R	0	0	-1
18.5	1	0	0	0	0	0	0	-1
17.5	0	0	1	0	0	0	-1	-1
16.5	0	1	0	-1	-1	-1	-1	-1
15.5	-3	-2	-2	-2	-2	-4	-1	-1
Latitude								
Longitude	73.5	74.5	75.5	76.5	77.5	78.5	79.5	80.5

伺い くほう くほう

22.5	2	1	1	1	1	0	0	R
21.5	2	1	1	1	0	0	0	0
20.5	2	-5	-5	0	0	0	0	0
19.5	-4	-5	-5	-5	-5	0	-1	-1
18.5	-5	-5	-5	-5	-5	-5	-1	-1
17.5	-4	-5	-5	-5	-5	-5	-5	-5
16.5	-5	-5	-5	-5	-5	-5	-5	-3
15.5	-5	0	-3	-5	-5	5	-3	-3
Latitude								
Longitude	73.5	74.5	75.5	76.5	77.5	78.5	79.5	80.5

伺い くほう くほう

- Krigging Interpolation
- Stationary model.
 - $E[Z(x_i)] = \mu \ i = 1, 2, ... n$
 - *R*(||*x* − *x*[']||) = *R*(*h*) = *E*[(*Z*(*x*) − μ)(*Z*(*x*[']) − μ)], where ||*x* − *x*[']|| is the distance between *x*, *x*[']
- Given n measurements of Z, at different locations x₁, x₂, ...x_n, Estimated value of Z at x₀ is

$$\hat{Z}_0 = \sum_{i=1}^n \lambda_i Z(x_i)$$

Estimation error

$$\hat{Z}_0 - Z(x_0) = (\sum_{i=1}^n \lambda_i Z(x_i)) - Z(x_0)$$

(제품)에 제품이

- Requirements for good estimator.
- Unbiasedness:

$$\begin{split} E[\hat{Z}_0 - Z(x_0)] &= \sum_{i=1}^n \lambda_i \mu - \mu &= (\sum_{i=1}^n \lambda_i - 1)\mu &= 0\\ \sum_{i=1}^n \lambda_i &= 1 \end{split}$$

Minimum Variance:

$$\begin{split} E[(\hat{Z}_0 - Z(x_0))^2] &= -\sum_i^n \sum_j^n \lambda_i \lambda_j \gamma(\|x_i - x_j\|) + 2\sum_i^n \lambda_i \gamma(\|x_i - x_0\|) \\ \gamma(\|x - x'\|) &= \frac{1}{2} E[(\hat{Z}(x) - Z(x'))^2] \end{split}$$

3

Lagrange multiplier system: Ax = b

$$\begin{split} -\sum_{j=1}^{n} \lambda_{j} \gamma(\|x_{i} - x_{j}\|) + v &= -\gamma(\|x_{i} - x_{0}\|)i = 1, 2, ..n \\ \sum_{j=1}^{n} \lambda_{j} = 1 \\ A &= \begin{bmatrix} 0 & -\gamma(\|x_{1} - x_{2}\|) & \cdots & -\gamma(\|x_{1} - x_{n}\|) & 1 \\ -\gamma(\|x_{2} - x_{1}\|) & 0 & \cdots & -\gamma(\|x_{2} - x_{n}\|) & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -\gamma(\|x_{n} - x_{1}\|) & -\gamma(\|x_{n} - x_{2}\|) & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{bmatrix} \\ x &= \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n} \\ 1 \end{bmatrix} \qquad b = \begin{bmatrix} -\gamma(\|x_{1} - x_{0}\|) \\ -\gamma(\|x_{2} - x_{0}\|) \\ \vdots \\ -\gamma(\|x_{n} - x_{0}\|) \\ 1 \end{bmatrix} \end{split}$$

メ 伺 ト メ ヨ ト メ ヨ ト

Altitude contour map generated using krigging interpolation.

- Sample Problem
- Key assumptions
- Validity of assumptions
- Use of soil Properties

B b

Database and Geoserver demo

- Postgres
- Post Gis
- Geo Server

- ∢ ≣ ▶

- Survey of national and international experience
- Groundwater data for a different district
- District level water budget
- Using additional geological data
- Developing a regime for groundwater monitoring

B b