TD 603 Water Resources

Milind Sohoni

www.cse.iitb.ac.in/~sohoni/

Lecture 5: Aquifer

Recap

A typical region has many features, both above and below the ground, which affect the water balance.

- surface features affect infiltration.
- underground features affect the accumulation and movement of groundwater.

Also recall that soil has many parameters related to water:

- Porosity, specific yield n, S_y: the maximum volume fraction of water, and that which is available.
- Conductivity K: The ability of the soil to allow the movement of water.

Aquifer

An aquifer is an underground soil-strata which allows the storage and movement of water.

- K > 0.1 cm/s and $S_v > 0.1$
- Roughly coarse silts and sands.

August 16, 2012 2 / 20

Aquifers

- Materials which are poor in conductivity or storage are called aquitards.
- Example: Base Rock, Clays.
- Unconfined aquifer: accessible from the surface.
 - also replenishable: maximum sustainable pumping rate is recharge rate.
- Confined or partially confined: access blocked or limited by aquitard.
 - also fossil: depletion is almost permanent.

- The water table itself may cross many layers.
- Extraction of water from confined and unconfined layers cause different changes.

Aquifers

blue	high-porosity		
green	porosity due to		
	fractures		
beige	little/no porosity		

Indian aquifers:

- The Gangetic Plain: porous, shallow aquifer.
- The Deccan Trap: moderately deep and fractured.
- The Kutch: Silt/Clay shallow.

Mostly unconfined

Groundwater and Recharge source: UNESCO and whymap.org (BGR)

Aquifer Characteristics

Iso-Unisotropic: Variation of conductivity with direction of flow.

Homo./Heterogeneous: Variation of conductivity with location.

Aquifer thickness: The depth to which the aquifer extends.

Transmissivity T: The product $K \times L$, where K is conductance and L is depth. In general

$$T = \int K(l)dl$$

the depth-integral.

Storativity: Aquifer *elasticity* (skipped here).

heterogenous

The basic structure

- The ground is itself divided into two parts, the saturated and the unsaturated.
- Moisture equals porosity in the saturated, but diminishes rapidly as we go up.
- The porosity θ is a smooth function over the terrain

- The total head is a sum of the water-head and the elevation
- $w \ge 0$ iff the point is saturated.
- The water table is precisely when w = 0.
- The heads h, e are smooth functions over the terrain

Differential form of Darcy

- The functions w = h e is the water head.
- The surface w = 0 is the water table.
- Let us plot surface $X_c = \{p | h(p) = c\}$. These are the equi-potential surfaces. Examples are shown.
- At any point p, there is a water velocity vector v(p).

Darcy's Law

The velocity vector v(p) is given by:

$$v(p) = \left[K \cdot \frac{\partial h}{\partial x}, \ K \cdot \frac{\partial h}{\partial y}, \ K \cdot \frac{\partial h}{\partial z}\right]$$

where K = K(p) is the conductance of the soil at that point.

0

Velocity vectors

• The velocity vector v(p)

$$v(p) = \left[K \cdot \frac{\partial h}{\partial x}, \ K \cdot \frac{\partial h}{\partial y}, \ K \cdot \frac{\partial h}{\partial z}\right]$$

thus equals $K \cdot grad(h)$ where grad(h) is the gradient of h.

 This implies that v(p) is always perpendicular to the equipotential surfaces.

- The Darcy Law holds for the unsaturated regions as well, except that conductances in this region are very small.
- Thus, in the figure K(p) << K(q).
- Conductance may be directional, i.e., (K_x, K_y, K_z), then

$$v = \left[K_x \frac{\partial h}{\partial x}, \ K_y \frac{\partial h}{\partial y}, \ K_z \frac{\partial h}{\partial z} \right]$$

Velocity vectors are almost true!

9 / 20

August 16, 2012

Our Objective: Real life scenarios

Inputs

- Terrain data:
 - conductances and other data for each point.
- Rainfall and withdrawal data
 - ▶ infiltration, wells

Outputs

- Heads at all points.
 - water table, velocities
- Moistures.

Additional Inputs

- Transient vs. Steady state
- Boundary conditions

A lake and its watershed

- The background is hard-rock.
- Rainfall rate q is knowm.
- All terrain data is known.
- What is the discharge Q from the banks into the lake?
- What is the water-table WT in the terrain?

The Lake Problem

- Constant Head
- No Flow
- Mass Influx

Boundary Conditions

- AB,BC is no flow.
- AE is with water influx q mm/day.
- CD is with a knwon constant head h = H, the height of the water in the lake.

- Simplifying assumption: ED does not have rain.
- Lake level does not increase!
 - Actually, because of the discharge Q, lake level increases.
- We want the steady state.
 - Actually, there are two seasons. So a periodic solution is desirable.
- Furthermore, it is clear that $Q = q \times area(AE)$. So its really a summer-monsoon problem.

Even under these assumptions, the problem is NOT easy.

The Well Problem

A well is 10m (H) deep and 8m in diameter and is situated in a farm. The farmer would like to withdraw Q liters/day. Please advice if this is sustainable.

- Measure/acquire Terrain conductance, porosity.
- Equilibrium desired so a steady state problem.
- Far-field Boundary: What to put far away?
 - No flow. No steady state.
 - ► Constant Head Realistic?
- Well Boundary: Seepage from aquifer to well in region *X*.
 - constant head X in region X.
 - No flow above that.
 - ▶ But *X* is unknown.

So, this problem is also not very easy!

Farm-pond

A farmer is considering a farmpond of size $10m \times 30m \times 2m$, of about Rs. 10,000 in direct and indirect costs. The objectives are:

- Recharge for better moisture in the second crop.
- Use for paddy crop during lull-periods in monsoons.

Please advise.

- A real-life techno-economic problem.
- Mainly unsaturated flows (moisture) and transient analysis.
- Crop related information: wilt-points.
- Evaporation-Transpiration rates and Infiltration.
- Monsoon behaviour.

Farm Pond recharge moisture

Numerical 1 with $S_v = 1$

$$h3(t) \qquad \begin{bmatrix} dh_1/dt \\ dh_2/dt \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -2 & -7 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 3H \end{bmatrix}$$

$$S_y dh = (Ah + b) * dt$$
$$h = h + dh$$

With
$$h_i(0) = H_i$$
. We have:

$$dh_1/dt = (h_2 - h_1)$$

$$dh_2/dt = (h_1 - h_2) + 3 \cdot (h_3 - h_2)$$

$$h_3 = H - h_1 - h_2$$

$$dh_2/dt = (h_1 - h_2) + 3 \cdot (H - h_1 - 2h_2)$$

t	h_1	h ₂	h ₃
0	3	2	5
0.01	2.99	2.10	4.91
0.02	2.98	2.19	4.83
0.03	2.97	2.28	4.75

Numerical 2 with $S_v = 0.1$

$$h1(t)$$

$$h2(t)$$

$$=H3$$

$$S_y dh = (Ah + b) * dt$$

$$h = h + dh$$

With $h_i(0) = H_i$ but h_3 fixed. We have:

$$\begin{array}{lcl} S_y dh_1/dt & = & 0.1*(h_2-h_1)+0.1 \\ S_y dh_2/dt & = & 0.1*(h_1-h_2)+0.3\cdot(H_3-h_2) \end{array}$$

 $\begin{bmatrix} dh_1/dt \\ dh_2/dt \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 3H_3 \end{bmatrix}$

August 16, 2012 15 / 20

Lake Problem


```
function [hh,x,nn,deltaj]=lakesim(H,q,L,m,K,Sy,dt,n,eps,h)
// H is the lake height
// q is the rainfall, L is the length of the land
// m is the number of cells
// K is conductance, Sy is the specific yield
// n is the number of time steps, dt is the time step
// eps is the error bound, h is the starting heads.
// hh: output, x:the X axis points, nn: iter, deltaj: errors
```



```
The Key update:
```

```
dd=L/m
for j=2:m-1
     vin=(h(j+1)-h(j))*K*h(j+1)/dd;
     vin=vin+(h(j-1)-h(j))*K*h(j)/dd +q*dd;
     deltaj(j)=vin/Sy/dd;
     hn(j)=h(j)+vin*dt/Sy/dd;
end;
hn(m)=H;
vin=vin+(h(2)-h(1))*K*h(2)/dd +q*dd;
hn(1)=h(1)+vin*dt/Sy/dd;
```


()

Various Plots

```
H=10, q=0.1, L=200, K=0.2, Sv=0.3, n=80000, eps=0.00001
[hh,xx,nn,ddel] = lakesim(H,q,L,20,0.2,0.3,0.5,n,eps,h')
plot(xx,hh,'g')
[hh,xx,nn,ddel]=lakesim(H,q,L,40,0.2,0.3,0.5,n,eps,[h.4])
hl')
didnt work
[hh,xx,nn,ddel]=lakesim(H,q,L,40,0.2,0.3,0.2,n,eps,[h])
h]')
plot(xx,hh,'b')
[hh,xx,nn,ddel] = lakesim(H,q,L,20,0.2,0.5,0.5,n,eps,h')
plot(xx,hh,'m')
[hh,xx,nn,ddel]=lakesim(H,q,L,20,0.3,0.3,0.5,n,eps,h')
plot(xx,hh,'r')
```


Discussion

- How do you think agriculture affect infiltration? And Forests? Why?
- Groundwater typically moves a few meters vertically and a few hundreds of meters horizontally, per day. What can be inferred from this data?
- Where in the world should you find confined aquifers?
- What geological events should influence aquifer thickness and quality?
- What does negative water head really signify?
- How would you observe velocity vectors in the lab?
- O Discuss another real-life scenario not covered in class.
- Is our conservation law of the last slide, good enough?