TD 603 Water Resources

Milind Sohoni

www.cse.iitb.ac.in/~sohoni/

Building Numerical Models

The entities and quantities

- The DTM or DEM: terrain model/elevation model is a representation of the terrain in a particular area.
- Attributes of the DTM-soil, geology, land-use, land-cover.
- Regions-subsets of the DTM, to represent watersheds, flows, etc.
- Functions and Computations: to simulate various physical quantities and their dynamics.
 - ▶ Infiltration : the process of rainwater moving down to groundwater.
 - Drainage lines: The development of streams due to rainfall.
 - Surface flow: a composite model of surface flow of water and infiltration which may include time to flow, movement of solids etc.

August 16, 2011 2 / 10

The Digital Terrain/Elevation model

- Basic grid in the 2D-plane as an index set, with adjacency
- association of *z*-values for each point, to define 3D points, edges, triangles and adjacency.

Grids

- Grids are where the base division in 2D is a grid of squares with a certain resolutions.
- These are the simplest of the meshes and will serve most purposes.

Synthetic Grid

```
function [Z]=makedomain(n);
for i=1:1:n
    for j=1:1:n
     x=i/n; y=j/n;
     diff=1-(x+0.2)\hat{2}-(y+0.1)\hat{2};
     Z(i,j)=2*abs(diff)+
           1/(9+abs(diff))*rand(1
            +0.9*y;
    end;
end;
endfunction;
```

- a circular valley centered at (-0.2, -0.1).
- randomization to simulate reality

Real DTMs

- Real DTMs generated mathematically through piecing together various inputs.
- For example, satellite images at different times of the day and observing shadows, gives a procedure for constructing heights.

The Equations

- Locate the last lit point along a lit interval (in this case, z_i).
- For every dark point in the subsequent interval (here z_i), we have:

$$(z_i - z_j) \ge (i - j) \tan \theta$$

• For every lit point after that (here z_k), we have:

$$(z_i - z_k) \leq (i - k) \tan \theta$$

ullet For such equations for various heta and solve collectively.

(4日) (例) (注) (注) (注) (り)(○

August 16, 2011 7 / 10

Lets Compute Drainage

- If a drop falls at point (i, j) then how does it move?
- We consider the 8-neighbours of the point.

8-way adjacency

 The flow gets distributed relative to the height differences.

Here is an example:

1.1	1.5	1.6
1.3	1.4	1.7
1.3	1.3	1.5

 Hypothesis: Only lower, and in proportion to the height differences.

3/6	0	0
1/6	0	0
1/6	1/6	0

 And this continues recursively downwards.

The flowout function

```
function [vv]=flowout(Z,i,j)
// the flow function from a point (i,j) in a domain Z
// output is an array of 3-tuples, (i*,j*,f*), where f*
// is fraction flowing to (i*,j*)
// e.g., [1 1 3/6; 2 1 1/6; 3 1 1/6; 3 2 1/6]
xx=[]; ssum=0;
for ii=-1:2:1 // the X-neighbours
  if Z(i+ii,j)<Z(i,j);
    xx=[xx;(Z(i,j)-Z(i+ii,j)) i+ii j];
    ssum=ssum+(Z(i,j)-Z(i+ii,j));
  end:
end:
and so on
xx=gsort(xx,'lr');
// just so that neighbours in decreasing order
vv = [xx(:,2) xx(:,3) xx(:,1)/ssum];
```

The drain function

```
function [ZZ,locn]=drain(Z,loc,i,j,f)
// finds the net flowout or local minimas where flow from the
// point (i,j) will go
// ZZ stores the above flowouts and minimas
// locn stores the paths
the main part
vv=flowout(Z,i,j); // compute the flowouts from (i,j)
for ii=1:1:k // for all the neighbours
  linn=zeros(m.n):
  linn(vv(ii,1),vv(ii,2))=vv(ii,3)*f; // distribute the flows
  [Zx,lx]=drain(Z,linn,vv(ii,1),vv(ii,2),vv(ii,3)*f); // recurse
  ZZ=ZZ+Zx; // do the tally
  loc=loc+lx;
end;
locn=loc;
```