1. Consider the set-up of page 4, Lecture 4, i.e., a horizontal column of soil of conductance K, length L and cross-section area A. Let then column on the left be of height h_1 and that on the right be h_2 with $h_1 > h_2$. Let us start this system at time $t = 0$. Solve for $h_1(t)$ as a function of time.

2. Consider the thick-soil assumption and the lake recharge problem of page 8, Lecture 6. Verify if the variation in h is small for $L = 200m, q = 30mm/day$ and $m = 20m$ and $K = 1m/day$. Interpret $\partial h/\partial x$ at $x = 0$.

3. Solve the above problem when $q = ax + b$ for some constants a, b.

4. Consider the Dupuit scheme for the dam problem, as on page 9, i.e., heights H_1 and H_2 separated by a separation of L, and a rainfall q. For what $q = q_0$ is h so that $\partial h/\partial x = 0$ for $x = 0$. What happens when $q > q_0$.

5. Interpret the dam problem to solve the following problem. A contour trench of depth 1m and width 1m is dug on flat land. How much water does the trench recharge throughout the monsoon?

6. Consider the above system but with a two-layer separation with thicknesses L_i and conductances K_i. Plot for h when $q = 0$.

TD 603: Water Resources
Groundwater Problem Set