TD 603: Water Resources Groundwater Problem Set

- 1. Consider the set-up of page 4, Lecture 4, i.e., a horizontal column of soil of conductance K, length L and cross-section area A. Let then column on the left be of height h_1 and that on the right be h_2 with $h_1 > h_2$. Let us start this system at time t = 0. Solve for $h_1(t)$ as a function of time.
- 2. Consider the thick-soil assumption and the lake recharge problem of page 8, Lecture 6. Verify if the variation in h is small for L = 200m, q = 30mm/day and m = 20m and K = 1m/day. Interpret $\partial h/\partial x$ at x = 0.
- 3. Solve the above problem when q = ax + b for some constants a, b.
- 4. Consider the Dupuit scheme for the dam problem, as on page 9, i.e., heights H_1 and H_2 separated by a separation of L, and a rainfall q. For what $q = q_0$ is h so that $\partial h/\partial x = 0$ for x = 0. What happens when $q > q_0$.
- 5. Interpret the dam problem to solve the following problem. A contour trench of depth 1m and width 1m is dug on flat land. How much water does the trench recharge through out the monsoon?
- 6. Consider the above system but with a two-layer separation with thicknesses L_i and conductances K_i . Plot for h when q = 0.