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1 Data

The modern world, of course, is dominated by data. Our own common perceptions are

governed to a large extend by numbers and figures, e.g., IPL rankings, inflation statistics,

state budgets and their comparisons across the years, or some figures and maps, such as

naxalite-affected districts, forest cover and so on. The use of, and the belief in data has

grown as the world as a whole and we in particular, become more and more industrialized or

’developed’. In fact, most of us even frame our objectives in terms of numeric targets. For

example, the Human Development Index (HDI), is a composite of various sets of data and

the Millenium Development Goal is for all countries of the world to achieve certain target

numbers in the various attributes of the HDI.

That said, there is much argument amongst politicians, journalists, intellectuals, cricket

players, students and parents, about whether society is becoming too much or too less data-

driven. This matches calls for more subjectivity (e.g., selecting a suitable boy for your sister)

or objectivity (admitting students into colleges). In fact, these arguments are popular even

among national leaders and bureaucrats, where for example, we now have a new area of

study called Evidence-based Policy Design which aims to put objectives ahead of ideology

and studies methods of executing such policies.

Perhaps the first collectors and users of data were the officers of the kings. Much of

the kingdom’s expenses depended on taxes, in cash and in kind, from artisans and farmers.

This called for maintaining records of, say land productivity, over the years, so that the

correct tax rate for the region could be evolved. Also, in the past, ownership of the land

could be tied to the expertise of the owner in ensuring its productivity. This too needed a

careful understanding of data. Note that for data to be put to use, there must be a certain

technical sophistication in understanding (i) what needs to be measured and (ii) how is it to

be measured, (iii) how is it to be used, and finally (iv) are our conclusions sound. Thus for

example, if you have not measured rainfall, or the number of people in the household, then

you would make wrong conclusions on the productivity of the farmer.

Another early use of data was in astronomy. The measurement of this data required sev-

eral sophisticated actions: (i) the universal acceptance of a certain fixed coordinate system,

and (ii) a measuring device to measure the various parameters associated with the objects.
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While agricultural data was much about the past, astronomical data was largely about the

future. Using this, astronomers hoped to predict the seasons, eclipses, and so on. Thus,

this involved building models from the given data with certain predictive capabilities. In

fact, even for the simple panchang (the almanac, as known in Maharashtra), there are two

models, viz., the Datey panchang and the more popular Tilak panchang.

1.1 The method of science and its use of data

The method of science is of course, intimately connected with data. Perhaps, the astronomy

example above is the earliest demonstration of the method of science, as it is known today.

This method may be described in the following steps:

• Observe. To observe is different from to see. To observe also assumes a system and a

tool for measurement.

• Document. This involves a collection of observations arranged systemtically. There

may be several attributes by which we organize our observations, e.g., by time of

observation, the rainfall that year and so on. The output of this phase is data.

• Model. This is the part which wishes to explain the data, i.e., to create a model which

is the first step towards an explanation. This may be causal, i.e., a relationship of cause

and effect, or concommitant, i.e., of coupled variables. It may be explicit, i.e., attempt

to explain one variable in terms of others, or implicit, i.e., a relationship between the

variables which may not be easily separated.

The simplest model will want to explain the observed variable as a simple function of

a classifying attributes, e.g., rainfall>1000mm ⇒ yield = 1000kg.

• Theorize. This is the final step in the method of science. It aims to integrate the

given model into an existing set of explanations or laws, which aim to describe a set

pf phenomena in terms of certain basic and advanced concepts. Thus, for example,

Mechanics would start with the variables position, velocity, acceleration, coefficient of

friction, etc., and come up with laws relating these variables.

We now see our first piece of data in Fig. 1.1. These are the water levels observed

in an observation bore-well managed by the Groundwater Survey and Development Agency

(GSDA) of the Govt. of Maharashtra. This borewell is located in Ambiste Village of Thane

district. On the X-axis are dates on which the observations were taken, and on the Y -axis,

the depth of the water from the top of the well.
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Figure 1: The water levels in a borewell (Courtesy GSDA)

The science here is of course, Groundwater Hydro-geology, the science of explaining the

extent and availability of groundwater and the geology which related to it. Since groundwater

is an important source of drinking water for most indians, almost all states of India have

a dedicated agency to supervise the use of groundwater. GSDA does this for Maharashtra.

One of the core data-items for GSDA are observation wells, i.e., dug-wells and bore-wells

which have been set aside purely for observing their levels periodically.

Let us now see how the four steps above apply to this example. Clearly, merely peering

down a well or a bore-well (which is harder), does not constitute an observation. We see here

that there must have been a device to measure the depth of water and a measuring tape. The

next process is documentation. The above graph is one such documentation which wishes

to plot the water level with the dates of observations. There is one severe problem with our

chosen documentation (found it?), and that is that the scale on the X-axis is not uniform

on by time, but equi-spaced by observation count. Thus two observations which are 10 days

apart and two which are two months apart will appear equally apart in the X-axis. This

will need to be rectified. We see here a periodic behaviour, which obviously matches with

the monsoons. Thus, groundwater recharges with the rains and then discharges as people

withdraw it from the ground through handpumps, wells and borewells. The modelling part

could attempt to describe the groundwater levels with time as ideal curves. The science will

attempt to explain these curves as arising out of natural laws.
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1.2 Data and its attributes

There are two or three important attributes that we will associate with data. These are:

• Qualitative vs. Quantitative: This is about the variable in question and whether it

is completely described by numeric quantities. Typical quantitative attributes would

be weight (in kgs.) and location (in latitude, longitude). However, there are many

which are not, e.g., Satisfaction with Service in a Hotel. Frequently, such attributes

are quantfied, in this case, by giving a scale between 1-5. It is obviously unclear if a

score of 3 from one customer is better than a 2 from another. Many attributes may

be quantitative at first sight but have a hidden quantification rule, e.g., number of

literates in a village. Here, what should be counted as literacy needs to be defined,

and more importantly, the thousands of census workers must be trained to test people

by this definition. A third type of data item is the discrete, e.g., the names of talukas

in a district. The discrete set of values is generally regarded as quantitative since its

measurement is usually unambiguous.

• Integrity: This is related to the trustworthiness of the data. There could be many

reasons to doubt the veracity–improper measuring instruments or of insufficient toler-

ance, e.g., temepratures reported only as integers (in degree celsius), instead of with

one decimal place. Another frequent problem is the interpretion that different measur-

ers have for the same situation. For example, person A may deem person C as literate

while person B may not. Loss of integrity in the data is a severe problem from which

recovery is not easy. Thus it is best that integrity planned right at the very beginning.

One caution–a reading which does not fit the model does not make it necessarily of

less integrity. Most real-life processes are fairly complicated and trying to correct a

reading which doesnt fit may actually convey a more certain world than it really is.

For example, if we had a nice theory relating inflation with stock market rates, but

for a few years, then it would be wise to look into the history of those specific years,

rather than suspect the data item. Such ’outliers’ may prove to be important.

• Coverage and Relevance: This is whether the data (i) covers the situations that we

wish to explain, and (ii) includes observations on variables which may be relevant but

which we have missed. For example, groundwater levels may depend on the region

and not on the specific location. Thus, the explanation of a groundwater reading may

be correlated with levels in nearby wells, which unfortunately, we have not monitored.

It may also be that groundwater depends intimately on the rainfall in that specific

neighborhood, again, which is not included in the data set.
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• Population vs. Sample: This is whether the data that we have is the whole collection

of data items that there are or is a sampling of the items. This is relevant, e.g., when

we wish to understand a village and its socio-economics. Thus, we have visit every

individual and make readings for this individual. This data is then called the popu-

lation data. On the other hand, we may select a representative sample and interview

these selected persons and obtain their data. This is then called the sample data. It

is not always easy to cover the whole population, for it may be very large (a city such

as Mumbai), or it may inaccesible (all tigers in a reserved forst) and even unknown or

irrelevant (e.g., measuring soil quality in an area). In such cases, it is the sample and

the method of selecting the sample which is or prime importance.

There are of course, many other attributes that we have missed in our discussion. These

must be surmised for each situation and must be gathered by interveiwing the people who

are engaged in the observations and who are familiar with the terrain or subject matter.

1.3 The purpose and content of this course

This course is meant to give the student the skills of interpreting and analysing data. Data

is ubiquitous and is increasingly used to make dramatic conclusions and important decisions.

In many such situations, the data which led to these conclusions is publicly available and it

is important that as a budding professional, you the skills to understand how the conclusions

arose from the data. Besides this, in your professional life, you will yourself be generating

such data and would like to draw conclusions and take decisions. These may be more

mundane than national policy, but it may still be important enough for your own work.

This may be, e.g., to prove to your customer that your recipe works, or to analyse the work

of your junior. It may be an important part of a cost-benefit analysis, or it may simply be a

back-of-the-envelope analysis of a situation. Handling data and correctly interpreting what

it tells and what it does not, is an important skill.

The course has three main parts.

• Part I: Statistics and Data Handling. This will cover the basic notion of data-sets,

its attributes and relationships. We will introduce the basic terminology of statistics

such as the sample and attrbutes such as the sample mean and sample variance. We

will use the Thane census 2001 data-set through out for this part. We will also study

some elementary methods of representing data such as scatter-plots and histograms.

Next, we will study the use of Scilab to manipulate data and to write small programs

which will help in representing data and in making our first conclusions. Finally, we
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will develop the elements of least-square fit and of regressions. This is the first model-

building exercise that one does with data. We will uncover some of the mathematics

of this and also of errors and their measurement.

• Part II: Probability. This is the most mathematical part of the course. It consists

of explaining a standard set of models and their properties. These models such as the

exponential, normal or binomial distributions are idealized worlds but may be good

approximations to your data sets. This is expecially true of the normal distribution.

The above will be introduced as examples of a formal object called the random vari-

able. We will also study functions of random variable and the important notion of

expectation, which is a single numeric description of a data set. This includes the mean

and variance as special cases.

• Part III: Testing and Estimation. This links statistics and probability. The key

notions here are of parameters, and their estimation and testing. A parameter is an

attribute which we believe, determines the behaviour of the data set. For example, it

could be the rate of decline in the water level of the bore-well. We will uncover methods

of estimating parmeters and assigning it confidence. We will use certain well-known

tests such as the Kolmogoroff-Smirnov tests, the χ2-test (pronounced chi-squared) and

the Students t-test. We will also outline methods of accepting and rejecting certain

hypotheses made about he data.

2 The Thane census dataset

Our main dataset for the course will be the Thane district census 2001 dataset. This is

available at IC102/thane/. The census is organized by the Govt. of India Census Bureau

and is done every 10 years. The data itself is organized in Part I, which deals with the social

and employment data, and Part II, which deals with economic data the amenities data. We

will be using village level data, which is a listing of all villages in India along with the

attributes of Part I and II. A snippet of this data can be seen in the figure below.

Let us analyse the structure of Part I data. The data consists of the number of individuals

which have a certain set of attributes, e.g., MARG-HH-M will list the number of male persons

in the village who are marginally employed in household industry. In fact, each attribute

is trifurcated as M,F and P-numbers, which is the male, female and total numbers. We will

only list the un-trifurcated attributes:

• No-HH: number of houselholds.
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• TOT: population.

– TOT-SC and TOT-ST: SC and ST population.

– LIT: literate population. A person above 7 years of age, who can read or write in

any language, with understanding.

– 06: population under 6 years of age.

• TOT-WORK: total working population. This is classified further under:

– MAINWORK: main working population. This is defined as people who work for more

than 6 months in the preceding 1 year.

– MARGWORK: marginal workers, i.e., who have worked less than 6 months in the

preceding year.

• NONWORK: non-workers, i.e., who have not worked at all in the past year. This typically

includes students, elderly and so on.

The attributes MAINWORK and MARGWORK are further classified under:

• CL: cultivator, i.e., a person who works on owned or leased land.

• AL: agricultural labourer, i.e., who works for cash or kind on other people’s land.

• HH: household industry, i.e., where production may well happen in households. Note

that household retail is not to be counted here.

• OT: other work, including, service, factory labour and so on.

Here is the data for Pimpalshet of Jawhar taluka, Thane.

3 Elementary properties of data

The simplest example of data is of course, the table, e.g.,

Name Weight (kgs)

Vishal 63

Amit 73

Vinita 58
...

Pinky 48
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HH 256
TOT-P 1287
P-06 302
TOT-W 716

TOT-WORK-MAIN and MARG 374 342
CL 193 171
AL 166 170
HH 0 0
OT 15 1

NON-WORK 571

Figure 2: Pimpalshet village

This may be abstracted as a sequence {(xi, yi)|i = 1, . . . n} where each xi is a name, in

this case, and yi ∈ R, is a real number in kilos. The first single point estimate of the data

set is of course, the mean. This is denoted by y =
∑n

i=1 yi/n. For example, for the above

table, it may be that the mean y is 58.6 kgs.

The next useful computation is that of the variance and that is
∑n
i=1(yi−y)2

n
and it is

denoted by σ2. The standard deviation is simply the square-root of the variance and is

denoted by σ. Note that the units of σ are the same as that of yi, which in this case, is kilos.

Lemma 1 If zi = ayi + b, where a, b are constants, then z = ay + b, and σ(z) = aσ(y).

The variance is the first measure of randomness or indeterminacy in the data. Note that

the variance is a sum of non-negative terms whence the variance of a data set is zero iff each

entry yi is equal to y. Thus, even if one entry deviates from the mean, the variance of the

data set will be positive.

Much of quantitative research goes into the analysis of variance, i.e., the reasons by which

it arises. Fo example, if (yi) were the weights of 1-year-old babies, then the reasons for their

variation will lead us to malnutrition, economic reasons, genetic pool and so on. A high

variance will point to substantial deviations in the way that these children are raised, maybe

the health of the mothers when they were born, and so on. A higher variance is frequently

a cause for worry and discomfort, but sometimes is also the basis of many industries, e.g.,

life insurance. If our mortality was a fixed number with zero variance then the very basis of

insurance will disappear.

Example 2 Let there be two trains every hour from Kalyan to Kasara, one roughly at xx:10

and the other roughly at xx:50. Suppose that roughly 10 customers arrive at Kalyan bound
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for Kasara every minute and suppose that the discomfort in a train is proportional to the

density, what is the average discomfort?

Solution: Well, for the xx:10 train, there will be 200 customers and for the xx:50 train,

there will be 400 customers. Whence the density at xx:10 is 200 and that for xx:50 is 400.

Thus the average density is (200 ∗ 200 + 400 ∗ 400)/600 = 2000/6 = 333. Thus, se see that,

on the average there is train every 30 minutes and thus the average density should be 300,

however, since this the variance is high, i.e., the departure times are 20 and 40 minutes

apart, the average discomfort rises. It is for this reason that irregular operations of trains

cause greater discomfort even though the average behaviour may be unchanged. �

Example 3 For a given data-set (yi), minimize the function f(λ) =
∑

i(yi − λ)2.

Example 4 Consider the census data set for Thane and for each taluka, compute the mean,

variance and standard deviation for the number of house-holds in each village.

Sometime you need to be careful with computing the means. Here is an example. Part

II data lists for each village if its people have access to tap water or not. Thus, let yi = 1 if

the i-th village has access to tap-water and yi = 0 otherwise. If we ask, what fraction of the

people of Thane have access to tap-water then we would be tempted to compute y =
∑

i yi/n

and we would be wrong, for different villages may have different populations. Whence we

need the data as a tuple (wi, yi), where wi is the population of the i-th village and thus the

correct answer would be:

µ = y =

∑
iwiyi∑
iwi

Thus, one needs to examine if there is a weight associated with each observation yi. Similarly,

the variance for this weighted data is similarly calculated as:

σ2 =

∑
iwi(yi − y)2∑

iwi

4 Data representation

Given a large set of data-items, say in hundreds, the mean µ and the variance σ2 are but two

attributes of the data. A simple representation of the data is the histogram. If (yi) are real

numbers, then, we may group the range into a sequence of consecutive intervals and count

the frequencies, i.e., the number of occurences of data-items for each interval. Fox example,

consider the taluka of Vasai and the item (yi) of the number of house-holds in village i. This

is a data-set of size 100. The mean is 597, the variance 34100 and the standard deviation 583,
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and the maximum size of a village is 3152 households. However, we may construct intervals

[0, 99], [100, 199], [200, 299] and count the number of villages with the number of households

in each interval. This aggregated data may be shown in a table:

0-100 100-200 200-300 . . .

4 15 38 . . .

This table may be conveniently represented as a histogram below, Fig. 4. Locate the

mean 597 in the diagram and the points µ ± 3σ, viz., roughly 0 and 2200. We notice that

there are very few points outside this range. In fact, this is a routine occurence and σ

actually is a measure of the dispersion in the data so that most of the data is within µ± 3σ.

At this point, another attribute of a data-set is the median which is that value ymed

such that there are as many items above it as there are below. In other words, if we were to

sort the list, then ymed = yn/2. For the data-set above, it is 403. The mode of a dat-set is

the value which occurs the most number of times. For a data-set which has a lot of distinct

possibilities, this has no real significance. However, e.g., if (yi) were the number of children

in a household, the mode would be important. For the current data-set, a reasonable mode

could be read from the histogram and it would be 250, which is of course, the middle value

of the interval [200, 300]. A mode could also be a local maxima in the number of occurences

of a data-item (or a band of data items). Existence of two or more modes may point to

two or more phenomena resposible for the data, or some missing information. Consider

for example, the weights of students in a classroom. Upon plotting the histogram, we may

notice two peaks, one in the range 43-45 and another in the range 51-53. Now, it may be

that the class is composed of students from two distinct cultural groups, with students from

one group weighing more, on the average. Or even simpler, the girls may be lighter than the

boys. Thus, the data seems to point that an additional item, e.g., community or sex, should

have been recorded while recording yi.

Example 5 Suppose that we are given data (yi) as above. Suggest a mechanism of estimating

the two expected mean weights for the two communities/sexes.

Coming back to histograms, there is usually ample room for innovation for selecting the

actual variable and the intervals. Here is an example. Consider for example, the data set

composed of the tuple (si, ci, ni, ai) of drinking water schemes for villages in Thane district

sanctioned in the years 2005-2011. Here, ni is the village name, ai is the sanctioned amount,

si is the sanction year and and ci is the completion year. There are about 2000 entries in

this data-set. Here would be a table to illustrate a fragment of this data:
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Figure 3: Number of households in villages in Vasai and Shahpur
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Completion Year

Sanction 2005 2006 2007 2008 2009 2010 Incomplete Total

Year

2005 0 0 3 15 10 13 15 56

2006 0 6 18 33 63 72 182

2007 1 11 12 15 36 75

2008 0 34 55 160 249

2009 1 13 83 97

Reading across a row tells us the fate of the schemes sanctioned in a given year, which

reading a column gives us an idea of the number of schemes completed in a particular year.

We see that there are considerable variations in the data with 2007 being a lean year and

2008 being an active year in sanctioning and 2009 in completing. In fact, both these years

did mark some event in the national drinking water policy.

The second important representation is the scatter plot. This is done for a data-

set consisting of tuples (xi, yi) where both are numeric quantities. For example, we could

take Shahpur taluka and let xi be the fraction of literate people in the i-th village. Thus,

xi =P-LIT/TOT-P. Let yi be the fraction of people under 6 years of agei, i.e., yi =P-06/TOT-P.

Thus, we for any village i, we have the tuple (xi, yi) of numbers in [0, 1]. Now the scatter plot

below merely puts a cross at the point (xi, yi). Note that we see that as literacy increases,

the fraction of people under 6 years of age decreases. However, one must be very careful to

assume causality! In other words, it is not clear that one caused the other. It could well be

that few children induced people to study.

Warning 6 The reader should be aware that each village is our individual data item. For

example, while calculating the mean literacy of the village, we should add up P-LIT for all

villages and divide it with the sum of TOT-P. However, we have chosen not to do this. One

reason is that it tends to drop the identity of the village as site for many correlations which

cannot be understood at the individual level. For example, suppose that P-LIT=450 and

P-ST=300 for a village with TOT-P=600. At the individual level, it would be impossible from

this data to come up with a correlation on ST and literacy. Thus, for correlation purposes,

it is only the aggregate which makes sense. There is another reason and that is the lack of

independence. For example, if the overall literacy in Murbad is 0.7, then for a village of

size 300, if an individual’s literacy is independent of others, then the number of literates in

the village should be very close to 210. But thats simply not true. Many large villages will

show substantial deviation from the mean. The reason of course is that the literacy of an

individual in a village is not independent of other individuals in the village.
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Figure 4: Population under 6 vs. literacy fractions for Shahpur

Not all scatter-plots actually lead to insights. Here is another example where we plot

the P-06 fraction vs. the size of the village (measured as the number of households). In this

example, we dont quite see anything useful going on. The natural question is if there is a

measure of how related are the xi’s with the yi’s. There are indeed metrics for this and the

simplest are covariance and correlation. For a paired data (xi, yi), where µX and µY are

the means of the individual components, the covariance of X, Y , denoted as cov(X, Y ) is

defined as the number

cov(X, Y ) =

∑n
i=1(xi − µX)(yi − µY )

n

The correlation, denoted by corr(X, Y ) is:

corr(X, Y ) =
cov(X, Y )√

cov(X,X)cov(Y, Y )

Lemma 7 We have cov(X, Y ) = cov(Y,X) and that cov(aX + b, cY + d) = ac · cov(X, Y )

and corr(aX + b, cY + d) = corr(X, Y ). Furthermore, −1 ≤ corr(X, Y ) ≤ 1.

The first part is a mere computation. The second part is seen by recalling the property

of the inner product on n-dimensional vectors, which says that a ·b = ‖a‖ ·‖b‖ ·cos(θ), where

θ is the angle between the two vectors.

We see that the correlation of (P-06/TOT-P, P-LIT/TOT-P) is −0.76 while that between

P-06/TOT-P and , no-HH is −0.16. A correlation close to 1 or -1 conveys a close match

between X and Y . The correlation between (p-06/TOT-P) with (P-ST/TOT-P) is 0.57 thus

indicating that the fraction of children is more tightly correlated with literacy than with

being tribal. Scilab allows a 3-way plot and we plot the fraction of children with that of ST
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Figure 5: Population under 6 fraction vs. number of HH for Shahpur

and LIT in Fig. 4 below.

Example 8 Show that cor(X, Y ) = 1 (or −1) if and only if Y = aX + b with a > 0 (or

a < 0). This exercise shows that if the coorelation of two variables is ±1 then all points of

the scatter plot lie on a line. Furthermore the sign of the slope is determined by the sign of

the correlation. Thus, the correlation measures the dependence of X on Y (or vice-versa).

5 The Gini Coefficient

This is yet another interpretation of a tuple data (xi, yi) which is also used frequently as a

measure of inequality. Suppose that the tuple is a frequency data for a variable yi, e.g., the

income. In other words, suppose that for each i, there were xi persons with income yi. Such

data is frequently available, e.g., for professors in IIT-B and their scale of pay. The variable

yi need not always be economic, e.g., yi could be from 1-15, denoting the number of years

for formal education and then xi would be the number of people having i years of formal

education.

Now, we would like to measure the inequality in the data. Our first step is to assume that

the yi’s are sorted, i.e., y1 < y2 < y3 . . . < yn. Next, let Xi =
∑i

j=1 xi, in other words, Xi

is the number of people with values less than or equal to yi. Let X = Xn be the number of

people in the sample. Next, we define Yi =
∑i

j=1 xj ∗ yj, i.e., net value for the first i groups

of people. Let Y = yn, the total value of the population. The Lorenz curve is the plot which

begins at (0, 0) and plots (Xi/X, yi/Y ).
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Figure 6: A 3-way plot for Shahpur

Example 9 A company has 100 employees at various levels. The number of employees at

each level and their salaries are given below:

No. of Employees 60 25 10 4 1

Pay (in lakh Rs.) 1 1.5 2.5 4 8

We thus see that X = 100, Y = 146.5 and the plots for the Lorenz curve will have the

following data:

0.00 0.60 0.85 0.95 0.99 1

0.00 0.41 0.67 0.84 0.95 1

The curve is shown below:

It is easy to see (show this as an exercise) that yi/Y < Xi/X, i.e., the Lorenz curve

always sits below the 45-degree straight line joining (0, 0) with (1, 1). Note that in the above

example, if the salaries were more equal then the Lorenz curve will be closer to the 45-degree.

The Gini coefficient is the ratio of the area A between the Lorenz curve and the 45-degree

line to the area below the line. Since area under the line is 0.5, the Gini coefficient is exactly

2 · A. The Gini ceofficient is easily computed using the trapezium rule, as follows:

2 ·G =
n∑
i=1

xi
X

(xi − Yi) + (xi−1 − Yi−1)
2

This is available as a function gini.sci which inputs a matrix of two columns, where

the first column are the xi’s and the second column are the yi’s. Make sure that the second

column is increasing. It turns out that our company has a Gini coefficient of 0.245.
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Figure 7: The Lorenz plot for the company data

Figure 8: The Lorenz plot for Murbad literacy

Let us try another example for aggregate data. For the Murbad taluka census data, we

have for each village i, its population (TOT-P) and the number of literates (P-LIT). The i-th

village literacy fraction yi is then given by PLITi/TOTPi. Let us denote xi by TOTPi. Let

us understand what this tuple data and its Gini coefficient (xi, yi) would mean. Since the

data is aggregated for each village, we will measure the inequality in the literacy levels across

villages. This will smoothen out the education levels within the village, at the individual

level. For Murbad, we see that the coefficient is 0.0878 which is quite small. This is also

evident from the histogram which is bunched around the mean. The plots appear below.

Warning 10 The Gini coefficient must be used with care. For aggregate data, it will tend

to under-compute the inequality. You should try this for say part II data, e.g., total agricul-

tural land. The Gini may be quite low but may hide that within each village, land may be
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concentrated in very few households. So unless household data is available, the inequality in

land ownership cannot be measured.

6 Linear regression

Consider we have a 2-attribute sample (xi, yi) for i = 1, . . . n, e.g., where xi was the ST

population fraction in village i and yi was the population fraction below 6 years of age.

Having seen the scatter plots, it is natural to determine if the value of x determines or

explains y to a certain extent, and to measure this extent of explanation. The simplest

functional form, of course, is the linear form y = bx + a, where the constants b, a are to be

determined so that a measure of error is minimized. The simplest such measure is

E(b, a) =
n∑
=1

(yi − (bxi + a))2

Since E(b, a) is a continuous function of two variables, its minimization must be obtained at

a derivative condition:
∂E

∂a
= 0

∂E

∂b
= 0

These simplify to:

2
∑n

=1(yi − (bxi + a)) = 0

2
∑n

=1 xi(yi − (bxi + a)) = 0

This gives us two equation:[ ∑
i 1

∑
i xi∑

i xi
∑

i x
2
i

][
a

b

]
=

[ ∑
i yi∑
i xiyi

]

These are two linear equations in two variables. An important attribute of the matrix is

(where µX is the mean):

det

([ ∑
i 1

∑
i xi∑

i xi
∑

i x
2
i

])
= n

∑
i x

2
i − (

∑
i xi)

2

= n
∑

i(xi − µX)2 + 2nµX
∑

i xi − n2µ2
X − n2µ2

X

= n
∑

i(xi − µX)2

This shows that the determinant is actually non-zero and positive and in fact, nσ2. By

the same token:
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det

([ ∑
i 1

∑
i yi∑

i xi
∑

i xiyi

])
= n

∑
i xiyi − (

∑
i xi)(

∑
i yi)

= n
∑

i(xi − µX)(yi − µY ) + nµY
∑

i xi + nµX
∑

i yi − n2µXµY − n2µXµY

= n
∑

i(xi − µX)(yi − µY )

Thus, the slope of the line, viz., b is:

b =

∑
i(xi − µX)(yi − µY )∑

i(xi − µX)2

which is a close relative of the correlation correl(x,y). It is easy to check (how?) that the

value of b, a as obtained above, actually minimize the error. Thus, our best linear model or

linear regression is y = f(x) is now totally defined. Also observe that f(µX) = µY , i.e.,

the linear regression is mean-preserving. This is seen by the first defining equation ∂E
∂a

= 0,

which gives us
∑

i(yi − (bxi + a)) = 0, and which implies that
∑

i yi − f(xi) = 0, and which

is exactly what we have claimed.

Two examples of the best fit lines are shown below, where we use the Census dataset

for Vasai taluka. We map for each village, the fraction of people 6 years old or under as a

function of (i) the literacy, and (ii) the fraction of tribal population in the village. Note that

the sign of the slope matches that of the correlation.

If we denote ei = yi− bxi− a, the error in the i-th place, then (i)
∑

i ei = 0 and the total

error squared is obviously
∑

i e
2
i . We will show later that

∑
i e

2
i <

∑
i(yi − µY )2. A measure

of the goodness of the fit is the ratio

r2 = 1−
∑

i e
2
i∑

i(yi − µY )2

The closer r2 is to 1, the better is the fit. The difference 1− r2 is the residual or unexplained

error. See for example, the two data-sets for Vasai: (i) ST-fraction vs. Population below 6,

and (ii) male literate fraction vs. female literate fraction.

We now prove the claim that 0 ≤ r2 ≤ 1.∑
i ei(f(xi)− µY ) = b

∑
i eixi − a

∑
i ei − µY

∑
i ei

=
∑

i eixi

= 0 since this is the second basic equation

Thus, we see that the n-vectors (ei) and (f(xi) − µY ) are perpendicular, and sum to (yi −
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Figure 9: Regression: Population under 6 vs. literacy and ST fraction
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Figure 10: Vasai female vs. male literacy. Both way regression.

f(xi) + f(xi)− µY ) = (yi − µY ). Thus we must have
∑

i e
2
i ≤

∑
i(yi − µY )2. In other words

0 ≤ r2 ≤ 1.

Another point to note is that if the input tuple were reversed, i.e., if x were to be explained

as a linear function of y, say x = b′y + a′, then this line would be different from the best-fit

line for y as a function of x. To see this, note that bb′ 6= 1 in general. In fact:

bb′ =
〈x, y〉2

〈x, x〉〈y, y〉

and thus unless (x, y) are in fact linearly related bb′ < 1 and thus the two lines will be

distinct. See for example below, the two lines for the Vasai female literacy vs. male literacy.

The blue line is the usual line while the red line inverts the role of X and Y . Note that the

point of intersection is (µX , µY ).

7 The general model

The above linear regression is a special case of a general class of best-fit problems. The

general problem is best explained in the inner product space Rn, the space of all n-tuples of

real numbers, under the usual inner product, i.e., for vectors v, w ∈ Rn, we define 〈v, w〉 =∑n
i=1 viwi. Note that 〈v, v〉 > 0 for all non-zero vectors v and is the square of the length of

the vector.

Let W be a finite subset of Rn, say W = {w1, . . . , wk}. Suppose we have an observation
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vector y ∈ Rn. For constants α1, . . . , αk, let w(α) =
∑k

j=1 αjwj. Thus w(α) is an α-

linear combination of the vectors of W . A good measure of the error that w(α) makes in

approximating y is given by:

E(α1, . . . , αk) = 〈yi − w(α)i, yi − w(α)〉
= 〈y −

∑
j αjwj, y −

∑
j αjwj〉

The best possible linear combination is given by find those αj which minimize the error

E(α1, . . . , αk). This is done by the equations:

∂E

∂αj
= 0 for j = 1, . . . , k

If we simplify this, we see that these equations reduce to:

〈y −
∑
i

αiwi, wj〉 = 0 for j = 1, . . . , k

which in turn reduces to the system:
〈w1, w1〉 〈w1, w2〉 . . . 〈w1, wk〉
〈w2, w1〉 〈w2, w2〉 . . . 〈w2, wk〉

...
...

〈wk, w1〉 〈wk, w2〉 . . . 〈wk, wk〉



α1

α2

...

αk

 =


〈w1, y〉
〈w2, y〉

...

〈wk, y〉


This matrix system is actually invertible (but we will not prove this) and this solves for the

optimal values of the constants α1, . . . , αk. Let f =
∑

j αjwj be this linear combination and

let e = y − f be the error.

Remark: To see how our earlier linear case is a specialization, we see that for the tuple

(xi, yi), our W consists of just two vectors, viz., the vector x = (x1, x2, . . . , xn) and 1 =

(1, 1, . . . , 1). The general linear combination is precisely α11 + α2x, with the i-th entry

(α1 + α2xi), which after relabelling is (a+ bxi).

We see that if 1 ∈ W , then the condition 〈e, wi〉 = 0 for all i says that:

〈e,1〉 = 0⇒ µY = (
∑
i

yi)/n = (
∑
i

fi)/n = µf
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Figure 11: The male and female literacy and P-06

We also see that
〈y − f, f − µf1〉 = 〈y − f, f〉+ µf〈y − f,1〉

=
∑

j αj〈y − f, wj〉+ 0

= 0

This implies that y − f and f − µf1 are perpendicular and thus ‖e‖2 ≤ ‖y − µY 1‖2, and

thus the error in the approximation does not exceed the variance of the observations y and

we may thus define r2, the goodness of fit, and the residual error similarly.

One useful application of the above formulation is to construct the multi-variable regres-

sion. Suppose that we are given the tuples (xi, yi, zi)
n
i=1 and we seek a regression of the type

z = ax+ by + c. This is computed by considering the set W = {(xi), (yi),1} and solving for

a, b, c as:  〈x, x〉 〈x, y〉 〈x,1〉〈y, x〉 〈y, y〉 〈y,1〉
〈1, x〉 〈1, y〉 〈1,1〉


 a

b

c

 =

 〈x, z〉〈y, z〉
〈1, z〉


One example of the above is given below- expression of population fraction below 6 as a

function of ST-fraction and literacy fraction for Shahpur gives us the coefficient of literacy

as −0.2, that of ST fraction as −0.004 and the constant term of 0.227. This indicates that

the ST fraction is actually negatively correlated with number of children, once literacy is

accounted for. Another interesting statistic is the r2 values for the fits of P-06 with male

and female literacy separately. This is shown below for all the talukas of Thane.
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8 Probability

The notion of probability comes from a random variable, which is just an abstract data

source. Think for example, of a cannon which may be fired repeatedly. Every firing i will

yield a transit distance di of the cannon ball. Clearly, as there are variations in the sizes

and weights of the cannon ball, variations in the wind conditions, and so on, we will have

that the di’s will not be all equal. All the same, a repeated observation will indeed give us

an estimate of the range of the cannon.

We now define a random variable X as (i) an outcome set S, (ii) a collection E of

subsets of S, called the event set, and (iii) a probability function p : E → R, all with

certain properties. For E , we must have that (E1) S ∈ E , (E2) if A,B ∈ E , then so are

A ∩ B and A, i.e., the complement of A. These conditions say that the subsets in E are

closed under boolean operations. Now, we move to the probability function p. It must have

the following properties: (P1) p(A) ≥ 0 for all A ∈ E , (P2) p(φ) = 0 and p(S) = 1, and (P3)

if A ∩B = φ then p(A ∪B) = p(A) = p(B).

Example 11 The biased coin. Here we construct the random variable C(q) corresponding

to the biased coin. Let S = {H,T}, i.e, heads or tails, be the only possible outcomes of a

coin toss. Let E be the set of all possible (i.e., 22) subsets of S, and let 0 < q < 1 be a fixed

real number. We define p by the table below:

set φ {H} {T} {H,T}
p 0 q 1− q 1

This merely says that the probability of the coin falling H is q, of T is (obviously) 1− q, of

not falling at all is zero, and of falling either H or T is 1.

Example 12 The cannon-ball. Here, let S = [100, 101], ie., the possible outcomes are

all real numbers between 100 and 101. Let E be the collection of all sub-intervals, open or

closed, of [100, 101] and their unions. For an interval [a, b] we define p([a, b]) = b− a. This

random variable CB simulates the falling of a cannon ball. It says that the cannon ball will

always fall between 100m and 101m from the cannon and the probability that a particular

trial falls within the interval [a, b] is in fact b − a. For example, the probability of the ball

falling between [100, 100.2] or [100.5, 100.7] is equal and 0.2. In other words, every outcome

between 100 and 101 is equally likely.

Two random variables X and Y are called independent if the outcome of one do not

affect the outcome of the other. Here are some dependent random variables. Let B be a box
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containing k red and n − k black balls. Let us first draw one ball and note its (random)

colour as X1 and throw it away. Next, let us draw a second ball and denote its colour by the

variable X2. Note that as individual random variables, X1 and X2 are identical, viz., the

probability of a red ball is k/n. However, they are certainly not independent. If we know the

outcome of one then we do know something more about the outcome of the other. Another

example is when X is the time that you will wait for your bus and Y is the time elapsed since

the last bus, measured at the instant that you show up at the bus-stop. Another example is

say the life-expectancy of one resident of a village with that of another in the same village.

We will not study independence formally but assume an informal understanding that

one should be careful before assuming that two random variables are independent.

We will denote by E0 the collection of all open/closed intervals and their disjoint unions.

Verify that it satisfies condition E1 and E2. When S is a finite set, we assume that E is the

collection of all subsets of S. Note that p is then defined by specifying its value on singletons,

i.e., p({s}) (this we abbreviate as p(s)) for all s ∈ S. For if A = {s1, . . . , sk}), then p(A) is

clearly p(s1) + . . .+ p(sk).

Next, let us construct new random variables from old. The simplest is the cross product.

If (S1, E1, p1) and (S2, E2, p2) are two random variables, then we can construct the product. We

define S = S1×S2, E as the sets which include E1×calE2, and define p(A×B) = p1(A)p2(B).

Example 13 Lets look at C(q) × C(r). This corresponds to two independent coin throws,

where one coin has bias q and the other r. We see that S = {HH,HT, TH, TT} and

p(HH) = p1(H)p2(H) = qr, while p(HT ) = p1(H)p2(T ) = q · (1− r), and so on.

We may construct CB×CB, i.e., the random variable corresponding to two independent

ordered cannon ball firings. Clearly the outcome set is [100, 101] × [100, 101], i.e., the unit

square situated at (100, 100). The probability p([100, 100.2] × [100.3, 100.4]) = 0.2 × 0.1 =

0.02. Thus the probability of the first shot falling in the first named interval and the second

in the second interval is 0.02.

There is another technique of constructing random variables. Let R = (S, E , p) be a

random variable and let S ′ be another set and f : S → S ′ be a onto function. We define the

new variable R′ = (S ′, E ′, p′), where S ′ is as above. We say that A′ ∈ E ′ iff f−1(A) ∈ E , and

when this happens, we define p′(A′) = p(f−1(A)).

Let us now construct our first important example and that is the Binomial random

variable Binom(q, n).

Definition 14 The variable Binom(q, n) has the outcome set [n] = {0, 1, . . . , n} with p({k}) =(
n
k

)
qk(1−q)n−k. The binomial random variable arises from the n-way repeated trials of C(q),
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i.e., C(q)× . . .× C(q). Note that sample space of this product is Sn which is the collection

of 2n sequences in H and T, corresponding to the fall of the i-th coin. Now consider the

map f : Sn → [n] where each sequence goes to the number of H’s in it. For example, for

n = 4, f(HHTH) = 3 while f(TTHH) = 2 and so on. Thus, the function f merely counts

the number of heads. Now, if we consider any k ∈ [n], then then f−1(k) is precisely the set

of sequences with k heads, and the probability of the occurence of k heads in an n-toss of a

biased coin then is precisely the number above.

Here is an example where Binom(q, n) will find use. Suppose that we must judge the

fraction q of tribals in a large village. One test, if we are unable to survey the whole village,

would be to take a sample of n people (more about sampling later), and count the number

of tribals, say k. Whence, if q were this fraction, then the chance of our meeting exactly

k tribals from a sample of n is exactly
(
n
k

)
qk(1 − q)n−k. We will see later that k/n is a

reasonable estimate of q.

9 Probability Density Functions

We now come to the important case of probability density functions. These arise, in

their simoplest form, when the outcome set S is a simple subset of R, say an interval or the

whole real line, and the event set is E0. Let f : S → R be a smooth function such that (i)∫
S
f(x)dx = 1, (ii) f(x) ≥ 0 for all x ∈ S, and f(x) = 0 when x 6∈ S. We may define the

probability of an interval I as p(I) =
∫
I
fdx, i.e., the area under the curve f(x) over the

interval I. When we construct a random variable in such a manner, f is called its probability

density function. In a crude sense, the probability that an outcome of the random variable

is between x and x+ dx is f(x)dx.

Example 15 The uniform random variable. Let S = [0, 1] and let f(x) = 1 for

x ∈ [0, 1] and zero otherwise. We see that for any sub-interval [c, d], p([c, d]) =
∫ d
c

1.dx =

d − c. If we wished to construct the uniform random interval over another interval [a, b],

then f(x) = 1
b−a for x ∈ [a, b] would do the job, and then, as expected, p([c, d]) = d−c

b−a .

Example 16 Here is a more interesting case. Let S = [0, 1] and let f(x) = 2x for x ∈ S and

zero otherwise. We see that
∫
S

2x.dx = (x2)10 = 1− 0 = 1. Also, f(x) ≥ 0 for all x, and thus

f defines the pdf of a random variable. We see that p([0, 0.5]) = 1/4 while p([0.5, 1]) = 3/4

and thus this random variable prefers higher values than lower ones.

The Normal density function.
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We now come to the famous Normal or Gaussian random variable. The outcome set for

this is R, the whole real line. Let

f(x) =
1√
2π
e

−(x2)
2

This is a curious function which arises from classical mathematics and is plotted as the red

curve in the image below (from wikipedia). We see that the curve is smooth and symmetric.

The integral
∫
R f(x)dx is known to be 1. We see that the normal random variable allows for

all real numbers as outcomes but prefers smaller numebrs (in absolute value) to bigger one.

The integral values of
∫ b
a
f(x)dx are rather hard to calculate analytically and are usually

tabulated. We see for example that p([−2, 2]) =
∫ 2

−2 f(x)dx = 0.95, roughly. As can be seen

from the graph below, most of the area under the red curve is indeed between −2 and 2. In

terms of randomness, we see that the chance that the random outcome is in [−2, 2] is about

95%.

The above denisty function is usually denoted by N(0, 1). The general function is N(µ, σ)

and is given by:

N(x;µ, σ) =
1

σ
√

2π
e

−((x−µ)2)
2σ2

Assuming that
∫
f(x)dx = 1, it is easily shown that N(x;µ, σ) also gives a density

function. This is called the normal density function with mean µ and variance σ2.

The figure shows some plots for various µ and σ2. We see that µ decides the center value

around which the random variable is symmetric. Increasing σ increases the spread of the

outcomes. For example, ∫ 2

−2
N(x; 0, 2)dx =

∫ 1

−1
N(x; 0, 1)dx = 0.65

Thus, the spread of N(0, 2) is more than N(0, 1).

The obvious question is: where and how do normal random variables arise? The answer

is really from the Binomial case when n is large and x is taken to be k/n − 0.5. But more

on that later.

The density function approach is an important analytic tool in understanding many other

random variables. For example, we may wish to understand how is the maximum score in a

quiz for a class distributed, or for example, the distribution of the mean of n repeated trials

and so on.

Let us look at the first problem. Let R1, R2 be two variables given by density functions

f1, f2, then the outcome set of the cross-product is clearly (x, y) with x, y ∈ R, or in other
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Figure 12: The Normal density function (from wikipedia)

Figure 13: The cross-product of two uniform variables.

words, the plane R2. Whence, the proabability that x ∈ I and y ∈ J would be
∫
I
f1dx ·∫

J
f2(y)dy. Thus, the density function for the cross-product is merely f(x, y) = f1(x)f2(y)

with the outcome set R× R.

Example 17 Let us pick two random numbers uniformly between 0 and 1, say x1 and x2.

Let x = max(x1, x2). What is the probability that 0 ≤ x ≤ b? To solve this, let us look at the

random variable z = (x1, x2) where each x is uniform over [0, 1]. Thus, the density function

of z = (x1, x2) is merely f(x1, x2) = f1(x1)f2(x2), which is 1 · 1 = 1. Note that the function

f is zero outside the unit square and that
∫ 1

0

∫ 1

0
f(x1, x2)dx1dx2 = 1.

Next, we see that for the maximum of (x1, x2) to be less than b, both x1 ≤ b and x2 ≤ b,

and thus, the probability of this event is b2. See Fig 9 below.

One common operation is a scale and translate of an existing random variable. Thus,

for example, Y = aX + b, where f(x) is the density function for X. In other words,

f(x)dx is the probability that X lies in the interval [x, x + dx]. Now, if Y ∈ [y, y + dy]

then X ∈ [y−b
a
, y−b

a
+ dy

a
]. Thus if fY (y) is the probability density function of Y , then
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Figure 14: The temperature at Shimla as see by a thermometer

fY (y) = 1
a
f(y−b

a
). We see for example, that

N(x;µ, σ) =
1

σ
√

2π
e

−((x−µ)2)
2σ2 =

1

σ
N(

x− µ
σ

; 0, 1)

In other words, the Y = N(µ, σ) random variable is related to the the variable X = N(0, 1)

by Y = σX + µ.

Another common operation is restriction. Assume that X is a random variable with

density function f(x) and outcome set S ⊆ R. Now consider the random variable Y , where

Y only reports X if it lies in a sub-range [a, b] of S. For example, Let X represent the

temperature at Shimla on 1st of January over the years. However, our thermometer measures

temperatures in the interval [−3, 15] and reports an error if the temperature lies outside this

interval. Let Y be the reported temperature by this thermometer, whenever an error does

not occur. Thus Y is a restriction of X to the interval [−3, 15]. Now suppose that X was

actually N(2, 4), i.e., normal with mean 3 and standard deviation 4. What would be the

density function of Y ? If fY is the density function of Y , then clearly, it must be zero outside

[a, b]. Next, it must mimic the shape of f within this interval, i.e., must be a multiple of f ,

i.e., fY (x) = αf(x) when x ∈ [a, b], for a constant α. This is determined easily by requiring

that
∫ b
a
fY (x)dx = α

∫ b
a
f(x)dx = 1. Thus, we see that α = 1/

∫ b
a
f(x)dx.

For our example, the Shimla temperature variable is shown in blue in Figure 9 below.

The range −3, 15] is marked in red. α turns out to be 1/0.896 which is 1.11. Thus, fY is a

scaled version of f in the interval [−3, 15] and is shown in red.
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10 Data and probability models

The basic use of probability models is to simulate real data and to predict the effect of

certain interventions with a level of confidence. Here is a concrete example.

Example 18 A literacy program was implemented in 120 revenue villages in the eastern

part of Shahpur, which has a total of 222 revenue villages. The program entailed a teacher

training program, introduction of new kits and so on. The program director wishes to a quick

and economical mid-term appraisal of the program now that 1.5 years have elapsed. Please

come up with a project plan for this task and list the technical outcomes.

It is clear that this calls for understanding the status of the villages which were a part

of the program and compare it with others in the taluka which were not. Next, perhaps, a

sample of the 120 program villages will be taken up for a detailed (and expensive) survey. The

selection of these villages is crucial to make a concrete assertion, with a level of confidence,

on the success of the program. It is in this confidence assertion where known probability

models become very useful, for here these calculations can be done a priori and a testing

regime designed based on these assumptions.

The first task is of course, to check if the data that you have matches with some known

probability density function. We shall briefly examine this question. The first point is to

check that most standard density functions can be programmed on a computer and repeated

trials generated. In other words, for any density function, we may produce a virtual cannon

which will fire according to that density function. For the standard ones, such as Binomial or

normal, Scilab provides ready-made function grand with appropriate arguments and inputs,

see Section 18. Let us use grand to generate 200 random numbers distributed in the Binomial

density function with N = 100 and q = 0.6. After generating this sample of 200, let us plot

it as a histogram for a width of 2, i.e, {k, k + 1}, for even k. Let us also plot the expected

number of occurences, which will be 200 ∗ (pr(k) + pr(k+ 1)), where pr(k) is the probability

thaty the bionomial random variable of q = 0.6 and N = 100 will yield k. This combined

plot is shown below in Fig. 10. We see fairly nice things in the plot that the number of

actual outcomes fairly match with the predicted numbers. Moreover, the maximum is close

to 60 = 0.6 ∗ 100.

We try it next with the normal density function with mean 1 and SD 0.6. We plot for

1200 trials and 200 trials as below in Fig. 10. We see the important outcome that as the

number of trials increase, the observed numbers match with the predicted numbers much

better.

We now consider the case of real data and checking if it matches known density functions.

Let us start with the case of number of households per village in Murbad taluka. After
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Figure 15: The binomial sample and expectation

Figure 16: The normal trial and expectation
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Figure 17: The normal fit to Murbad and Shahpur HH data

several attempts, we see that N(135, 60), i.e., the normal denisty function with mean 135

and standard deviation 60 ( plotted in blue) fits the data fairly well. The actual mean and

SD of the data set are 145 and 85 respectively. We plot that in red. As we see, this is not

as good for many reasons. Firstly, we see that the data naturally has a truncation effect,

i.e., there cannot be any villages with negative number of households. This truncation also

causes a change in the variation which is not very predictable. So, the question remain,

is the observed data from N(135, 60) or not and with what confidence? Such questions are

important and are tackled through specific tests. One of them is the Kolmogorov-Smirnov

test which we will discuss later. We also note that the Shahpur households dont quite fit

the normal density function.

We may try the same with some other attributes. Below, in Fig. 10 we have the female

literacy fraction for various villages of Shahpur. The mean and SD of the data are 0.428 and

0.136 respectively. This is plotted in blue. The best suited (according to my eyes) is with

mean and SD 0.43 and 0.12 respectively. This is plotted in magenta. Of course, not all data

sets are so normalizable. See for example, the ST-fraction for Shahpur. We see that far from

being close to normal, it in fact shows bi-modal behaviour, i.e., with two peaks, at close to

0 and at close to 1. This indicates that Shahpur villages are fairly divided into those which

are largely ST and those which are largely non-ST.

Example 19 Write scilab code to obtain each of the above plots. Also, consider the question

of verifying whether ST communities tend to have better sex-ratios than non-ST communities.

How would you test the above proposition?
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Figure 18: Shahpur female literacy fraction and ST fraction
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11 Functions and expectation

In this section, we will delve deeper into the theory of random variables. For the purpose

of this section, we will assume that the outcome set of our standard random variable is R
and is given by density functions f and so on. In other words, for an interval I, we have

p(I) =
∫
I
f(x)dx.

Frequently, we have a function g : S → R. This g may represent a value g(s) that we

attach to each outcome s ∈ S. For example, S = {HH,TH,HT, TT}, and G(HH) = 4

while g(TT ) = g(TH) = g(HT ) = −1. This may model the outcomes of a game of two coin

tosses with two heads fetching Rs. 4 while any other outcome resulting in a loss of Rs. 1.

Definition 20 Given such a function g on the outcomes of a random variable X, we define

the expectation EX(g), or simply, E(g) =
∑

s g(s)p(s), or as the integral
∫
S
f(x)g(x)dx.

Example 21 For the example above, for an unbiased coin, we have p(HH) = p(HT ) =

p(TH) = p(TT ) = 0.25, whence E(g) = 0.25. Thus, the games is expected to benefit you Rs.

0.25 every time you play it.

Example 22 Let X be the uniform density function on [0, 1] and let Y = X × X. Thus

fY (x1, x2) = 1 for all x1, x2 ∈ I. Let g(x1, x2) = max(x1, x2). Let us compute E(g). We see

that the set S may be divided into two halves along the diagonal. The first domain would be

Si where x1 ≥ x2 and the other, where x2 ≥ x1. Clearly

E(g) =

∫
S

g(x1, x2)f(x1, x2)dx1dx2 =

∫
S1

g(x1, x2)dx1dx2 +

∫
S2

g(x1, x2)dx1dx2

By symmetry, both integrals must be equal and we evaluate the first one. We see that∫
S1

g(x1, x2)dx1dx2 =

∫ 1

x1=0

∫ x1

x2=0

x1dx1dx2 =

∫ 1

x1=0

x21dx1 = 1/3.

Thus E(g) = 2/3. We should recall that the maximum of two uniform random variable

is also a random variable Z with outcome set [0, 1] and density function 2x. In this case,

g(x) = x and the desired number of merely EZ(x) for the random variable Z. We see that∫
[0,1]

2x · xdx = 2/3.

Let us note some elementary properties of expectation.

• E(g1 + g2) = E(g1) + E(g2). This follows from the linearity of integration.

• If Y = aX + b then µY = aµX + b. This follows from the previous item above.
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• If Y = aX + b, then σ2
Y = a2σ2

X . This is an honest calculation:

σ2
Y =

∫
fY (y)(y − µY )2dy

= 1
a

∫
f(y−b

a
)(y − µY )2dy

=
∫
f(x)(ax+ b− µY )2dx (after substituting y = ax+ b)

= a2σ2
X

Definition 23 The mean µX of a random variable X with outcome set contained in R is

defines as E(x), i.e., the expectation of the identity function g(x) = x. The quantity µX is

a real number. The variance σ2
X is defined as E((x− µX)2).

Let us now compute the means and variances of the standard random variables.

• Uniform. Here f(x) = 1 on the outcome set [0, 1]. We have E(x) =
∫ 1

0
xdx =

[
x2

2

]1
0

=

1/2. This is expected. We have the variance as

∫ 1

0

(x− 1

2
)2dx =

[
(x− 1

2
)3

3

]1
0

=
1

12

• Binomial. We have p(k) =
(
n
k

)
qk(1− q)n−k and thus

µ =
∑n

k=0 k ·
(
n
k

)
qk(1− q)n−k

=
∑n

k=1 n ·
(
n−1
k−1

)
qk(1− q)n−k

= nq
∑n−1

j=0

(
n−1
j

)
qj(1− q)n−1−j

= nq

This establishes the expected value nq as the mean. The variance is also similarly

calculated and equals nq(1− q).

• Normal N(µ, σ).By the linear combination result, we only need to prove this forN(0, 1),

i.e., the standard normal. Now, x · 1√
2π
e

−x2
2 is an odd function, whence its integral must

be zero. Thus the mean of the standard normal is indeed zero. The mildly harder case

is the variance. We see this in the following steps:

σ2 =
∫∞
−∞ x

2 · 1√
2π
e

−x2
2 dx

= −
∫∞
−∞ x ·

d
dx

( 1√
2π
e

−x2
2 )dx

=
[
−x · 1√

2π
e

−x2
2

]∞
−∞

+
∫∞
−∞

1√
2π
e

−x2
2 dx

= 1
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Here is another expectation which is very important in the theory of random variables,

esp. in repeated trials and the structure of the normal distribution.

Definition 24 The transform ΦX(s) of the random variable X given by the density func-

tion f is E(e−sX) =
∫
f(x)e−sxdx.

In fact, the transform of a function f determines (more or less) determines it uniquely. We

present three results on the transform.

• If X is normal with mean µ and variance σ2 then ΦX(s) = eµs+
σ2s2

2 . We see this in the

following steps:

ΦX(s) =
∫∞
−∞ e

−sx · 1
σ
√
2π
e

−(x−µ)2

2σ2 dx

= 1
σ
√
2π

∫∞
−∞ e

2σ2sx−(x−µ)2

2σ2 dx

= 1
σ
√
2π

∫∞
−∞ e

−(x−(µ+σ2s))2

2σ2 e
s2σ4+2µσ2s

2σ2 dx

= e
s2σ2

2
+µs

• Suppose that X1 and X2 are independent random variables with density functions

f1(x) and f2(x), and transforms Φ1(s) and Φ2(s). Let Y = X1 +X2, then the density

function fY is given by fY (y) =
∫∞
−∞ f1(x)f2(y− x)dx. This is called the convolution

of f1 and f2. This is readily seen by considering the random variable X1 × X2 with

density function f1(x1)f2(x2). Let FY (y) denote the probability that x1 + x2 ≤ y. We

see that:
FY (y) =

∫∞
x1=−∞

∫ y−x1
x2=−∞ f1(x1)f2(x2)dx1dx2

=
∫∞
x1=−∞ f1(x1)dx1

∫ y−x1
x2=−∞ f2(x2)dx2

Now differentiating under the inetgrals gives us:

fY (y) = d
dy

(FY (y)) =
∫∞
x1=−∞ f1(x1)dx1

d
dy

[∫ y−x1
x2=−∞ f2(x2)dx2

]
=

∫∞
x1=−∞ f1(x1)dx1f2(y − x1)

The transform of fY (y) is the product ΦY (s) = Φ1(s) · Φ2(s). This is seen by:

ΦY (s) =
∫∞
y=−∞ e

−sy ·
∫∞
x=−∞ f1(x)f2(y − x)dxdy

=
∫∞
x=−∞

∫∞
y=−∞ e

−syf1(x)f2(y − x)dydx

=
∫∞
x=−∞ e

−sxf1(x)
[∫∞

y=−∞ e
−s(y−x)f2(y − x)dy

]
dx

=
∫∞
x=−∞ e

−sxf1(x)Φ2(s)dx

= Φ1(s)Φ2(s)
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• If for i = 1, . . . , n, the variables Xi are normal with mean µi and variance σ2
i then so

is the variable Y = X1 + . . . + Xn and it has mean
∑

i µi and variance
∑

i σ
2
i . This

directly follows from the above two facts. We see that

ΦY =
∏
i

e
s2σ2i

2
+sµi = e

s2
∑
i σ

2
i

2
+s

∑
i µi

This is clearly the transform of the normal random variable fo the said mean and

variance.

12 Repeated trials and normality

Let us now consider a random variable X and for i = 1, . . . , n, let Xi be an independent

trial of X. This corresponds to, e.g., a repeated firing of a cannon, or a sampling of a few

villages of Murbad and so on. Let Y =
∑

iXi and X =
∑
iXi
n

.

Lemma 25 The mean µY of Y equals nµX and its variance σ2
Y = n · σ2

X . For X, we have

µX = µX and σ2
X

= σ2
X/n.

.

The linearity of expectation explains most things. The only calculation is the calculation

of the variance of the sum C of two independent random variables, say A and B, which we

do now.
σ2
C = E((c− µC)2)

= E((a+ b− µA − µB)2)

= E((a− µA)2) + E((b− µB)2) + 2E((a− µA)(b− µB))

= σ2
A + σ2

B +
∫
A

∫
B
fA(a)fB(b)(a− µA)(-

¯
µB)dadb

= σ2
A + σ2

B + {
∫
A
fA(a)(a− µA)da}{

∫
B
fB(b)(-

¯
µB)db}

= σ2
A + σ2

B

Thus, we see that the variance of the variable X diminishes with n while its mean remains

invariant. This, in fact, is the basis of much of sampling. Let us try this in an example.

Example 26 A team of CTARA students studied 12 randomly chosen villages of Shahpur.

In that exercise, they observed the mean female literacy of the 12 villages to be 0.36. Given

that the census data puts female literacy as normal with mean 0.43 and standard deviation

0.13, what is the probability that the mean of 12 independent samples should come out to be

0.36 or below?
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We see that X = X1+...+X12

12
should be normal with mean 0.43 and variance 0.13/

√
12 =

0.038. We see that 0.43− 0.36 is 0.07, i.e., 1.8 · σX . We use cdfnor(-1.8,0,1) in Scilab to

get 0.035. In other words there was a 3.5% chance that if the census data was correct, the

team would have the above observations from 12 villages. Thus this puts into grave doubt

either the census data or the methodology used by the team.

Consider next Zn = X1+...+Xn−nµX
σX
√
n

, i.e., the sum of independenat repeated trials of a

variable X scaled and translated by some constants. We see that µZn = 0 and σ2
Zn

is

nσ2
X/nσ

2
X = 1. Thus Zn has mean 0 and variance 1.

Theorem 27 Central Limit Theorem. For a wide class of random variables X, as

n→∞, the variable Zn approaches the standard normal N(0, 1). Thus, the simple repeated

sum
∑n

i=1Xi also approaches the normal density function with mean nµX and variance nσ2
X .

The good thing about the above theorem is that it applies to a wide variety and almost

certainly to most commonly occuring density functions.

Let us conduct an experiment to verify the Central Limit Theorem. Let X be the simplest

of all random variables, viz., with the uniform random variable with outcome set [0, 1]. We

see that E(X) = 0.5 and σ2
X = 1/12. Let us consider n trials and the variable

Zn =
X1 + . . .+Xn − nµX

σX
√
n

=
X1 + . . .+Xn − n/2√

n/12

We make 500 trials and plot the observed frequencies for n = 10, i.e., Z10. The blue line is

the expected frequencies for the normal curve. We see a close match.

Example 28 The basis for assuming normality in social data. Scientists studied

for Thane, the passing percentages of girls and boys in their school years and considered all

factors such as economic conditions, social status, distance from school and so on, and came

out with the following probability estimates for a girl/boy to pass the 10th standard exam:

Xth passing

ST non-ST

Boy 0.13 0.33

Girl 0.21 0.26

Next, consider the village of Dhasai with population structure given below. Let X be the

random variable modelling the number of Xth standard pass adults.
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Figure 19: 500 trials of a 10-uniform-sum

Dhasai Adult Population

ST non-ST

Male 123 312

Female 133 286

It is clear that if X11X12, X13, X14 are random variables expressing if a given boy/girl who

is ST/non-ST is Xth pass, then X is merely the sum of repeated trials 123 copies of X11,

312 copies of X12 and so on. Now if Yij are these repeated sums then the theorem says that

each of these is close to being normal. Thus X, the sum of the Yij’s is also almost normal.

This settles the argument that the number of Xth pass (or its fraction) in Dhasai should be

normal. However, it does not answer why should this quantity for another village Mhasa be

distributed by the same mean and variance as Dhasai. This is argued as follows. Suppose

that the number of adults Nij in Murbad taluka of various categories is known. Suppose next

that a village has some n number of adults. Then we may assume that the composition of

this village by various categories is obtained by n independent trials on the whole Murbad

taluka population. If that is valid, then a further counting of Xth pass may proceed along

earlier lines, giving an argument why the Xth pass fractions across all villages be distrbuted

by a common normal random variable.

This is partly the basis in assuming many of these social variables as normal. There are of

course, serious limitations to this approach. First is the non-independence of many attributes
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of individuals with those in his/her village, community etc., as pointed out earlier. Secondly,

as we saw in Shahpur the ST-fraction in villages is not normally distributed. In fact, there

is a divergence towards the extremes of 0 and 1. All the same, the literacy fractions do show

some match with a common normal variable. This may be due to some other mechanisms at

work which are common to both ST and non-ST.

13 Estimation and Hypothesis testing-The Binomial

Case

Let us now to the question of estimating a parameter of a random variable of a known type.

The simplest example is when the elements of a population P may be divided into two

disjoint parts, say A and B and we are required to estimate q = |A|/|P |. Standard examples

include estimating the fraction of ST people in Murbad, literate people in a village and so

on. Note that the parameter space for q is Q = [0, 1] and we must estimate the correct q by

conducting some experiment. The standard procedure would be to sample n items of P and

count the number k of elements who actually belong to A. The the outcome set S of our

experiment is S = {0, 1, . . . , n}. Now we devise the estimator e : S → Q as e(k) = k/n. In

other words, if there were k on n elements in A, then our estimate of q would be k/n. Let

us try and understand this process in more detail, through an example.

Consider the situation when we have made 10 trials and observed 3 successes. For

various possible values of q, let us calculate and plot the probability of the event of k

successes happening. This is clearly the Binomial density function Bin(q, 10) and computing

p(3) =
(
10
3

)
q3(1 − q)10−3 for various values of q. The plot in Figure 13. We see that the

probability of the event k = 3 is indeed maximized when q = 0.3, although the probability

itself is only about 0.266. Moreover, for q = 0.25, the probability of the event k = 3 is about

0.25 which is not far from 0.266.

Let us first prove the simple fact that q = k/n is indeed where the probability p(k) is

maximum. Let us differentiate
(
n
k

)
qk(1− q)n−k and equate this to zero to obtain q.

d
dq

[(
n
k

)
qk(1− q)n−k

]
= 0(

n
k

) [
kqk−1 − (n− k)(1− q)n−k−1

]
= 0

kqk−1(1− q)n−k − (n− k)qk(1− q)n−k−1 = 0

k(1− q)− (n− k)q = 0

k − nq = 0

Thus q = k/n is where the derivative is zero. It is easy to check that this is a maxima. Thus
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Figure 20: Estmating q when k=3 and n=10

Figure 21: p(3) for all q and the confidence interval [0.25, 0.35]

our function e : S → Q with e(k) = k/n actually estimates a q such that the probability of

the outcome k is maximized. Such an estimator is called the parameter q ∈ Q is called as

the maximum likelihood estimator of q.

The next matter is of confidence. Suppose that, a priori, we had no guidance on the

possible values of q and that every q ∈ [0, 1] was equally possible. We then plot p(k) for all

values of q ∈ [0, 1]. This is plotted in Fig. 13. We may well assert that q = 0.3, but there

is no reason to doubt that q = 0.28, in fact. Let us quantify our assertion that q = 0.3 by

looking at the area under the curve in the interval [0.25, 0.35]. We see that this is roughly

31% of the total area. Thus, assuming that all values of q were equally likely, we may assert

that we have 31% confidence in our assertion.

How do we strengthen our assertion? The first option is to widen the interval. For

example, we check that for the interval [0.2, 0.4] we have a larger confidence of 56%. The

other, and wiser, option is to increase the number of trials. Suppose now that n = 50 and

k = 15 and thus q = 0.3. Thus the estimated value remains the same. However, the q-plot
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Figure 22: p(16) and n=50 for all q and the confidence interval [0.2, 0.3]

changes dramatically, as seen in Fig. 13. Also, now the confidence in the interval [0.2, 0.4]

goes to roughly 91%.

All of this crucially depends on the fact that all q ∈ [0, 1] were equally likely. Suppose, a

priori, we knew that q is in fact in the interval [0.2, 0.8]. In which case, our confidence in our

assertion would increase to area(0.2, 0.3)/area(0.2, 0.8) which is 93%. In general, we have a

general a priori probability density f on [0, 1] for q. In such a situation, the confidence for

the interval [a, b] when we have observed k successes for n trials would be:∫ b
a
f(q)

(
n
k

)
qk(1− q)n−kdq∫ 1

0
f(q)

(
n
k

)
qk(1− q)n−kdq

Such an analysis is called a Bayesian analysis since it bases its estimate of q by conditioning

on the case for each q ∈ [0, 1].

Let us now turn the tables and assume that a claim has been made, say that q = q0. It

is our task to check the validity of the claim. Such a claim is called the null hypothesis

and is denoted by H0. Our task is to design an experiment with outcome set S and based

on the outcome, either reject or accept the hypothesis. There are clearly two types of error

we can make and this is given in the table below:

H0 Our assertion Type of Error

True False Type I

False True Type II

Our strategy will be as follows. We will design an experiment and specify an event set

E0 ⊆ S. If the outcome of the experiment o ∈ E0 then we assert with some confidence

that H0 is false. This takes care of Type I errors of labelling something as false when it was
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actually true. Now consider Type II errors. We construct another hypothesis H1 so that

both H0 and H1 cannot simultaneously hold. For H1 we construct an event E1 ⊆ E0 such

that if the outcome o ∈ E1 then we can claim with confidence that H1 is true. Since H1

is true, H0 is certainly false, and we would have concluded from our experiment that H0 is

false. Thus, the correct task is to design the experiment so that if H0 were false then E1

should be as large as possible.

Thus, the task is to design an experiment and an event E0 and conduct the experiment.

Next, we observe the outcome o. Based on whether the outcome o ∈ E0 or not:

• for a fixed and small α conclude that H0 is false with a confidence 1− α.

• produce another hypothesis H1 and an event E1 ⊆ E0 which contradicts H0 and a

small number β, o ∈ E1 asserts that H1 holds with confidence 1− β.

• remain silent and plan for further experimentation.

Let us suppose that the null hypothesis is H0 ≡ q0 = 0.4. We are now supposed to built

an event set E0 which will help us refute the hypothesis. Let us suppose that we intend to

conduct 100 trials and observe k, the number of successes. Thus S = {0, 1, . . . , 100}. We see

that if the hypothesis is true then the sum
∑50

i=30B(100, 0.4)(i) = 0.96, thus we chooose E0

as the event set [0, 29] ∪ [51, 100] ⊆ S, and α = 5%. Clearly if the outcome o ∈ E0, then we

can reject the claim H0 with confidence 1 − α, for if the hypothesis were true than o ∈ E0

is a very unlikely event. Next we set E2 = [0, 20], β = 1% and H1 as the hypothesis that

q0 < 0.35. We see that if for example, the outcome is 20, then using our earlier theory of

estimatation, we can claim with 99% confidence (check this) that q0 < 0.35. If the outcome

is lower than 20, then the confidence in fact strengthens. Thus we have:

• H0 ≡ q0 = 0.4, E0 = [0, 29] ∪ [51, 100] and α = 5%.

• H1 ≡ q0 < 0.35, E1 = [0, 20] and β = 1%.

• However, if the outcome is in the set [30, 50], i.e., the complement to E0 ∪E1, then we

are forced to remain silent.

What do we do when o ∈ [30, 50]? Well we could conduct a fresh experiment with an

additional 900 trials to get a total of 1000 trials. We see that the set E0 in fact swings closer

to the the number 0.4n and the forbidden set, where we cannot draw any conclusion becomes

smaller. In fact, for n = 1000, the inconclusive set becomes [0.37n, 0.43n].
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Figure 23: The matix M of Q vs. Outcomes

14 The abstract estimation problem

The abstract estimation problem is the following. LetX be a random variable with its density

function f(q;x), depending on a parameter from the set Q. We design an experiment with

outcome set S. In our earlier case, Q = [0, 1] and S = {0, 1, . . . , n}. We construct a Q× S
matrix M where M(q, x) = f(q;x). We see that each row of the matrix M , i.e., when

q ∈ Q is fixed, is merely the density function. While, for a fixed outcome x ∈ S, we see

the dependence of the parameter on the oucome x. For our example, we see that for the

outcome k, the column function is a smooth function with variable q, while the row function

is the discrete probability Bin(q, n) with a discrete outcome set S.

For the problem of estimation, since the outcome of the experiment is known, it is the

column function which assumes importance. Thus, for Type II error analysis, the column

function must be understood. The Type I error analysis is about a particular hypothesis on

the parameter and thus it is the row function, i.e., the ordinary density function which must

be understood.

15 The mean of a normal distribution with known vari-

ance

Suppose next that X is a normal variable with an unknown mean but with a known variance

σ. The first question is of course, to ask where do such situations arise? These arise when an

additive intervention is made on a subset A of a normal population whose mean and variance

is known. It is expected that the mean of the members of A shifts to an unknown new mean.

Example 29 The government decides to impose an additional tax of Rs. 400 per tonne of

steel. Consequently, while some of the tax is absorbed by the industry, the remaining part is
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passed on to the consumer. Given the price of steel in open market as a time series, estimate

the fraction which was passed on to the consumer.

This is possibly an example where the mean and the variance of the price data is a normal

random variable. By observing this before the intervention, this old µ and σ may be accurately

estimated. The economic mechanism suggests that the tax will merely cause a shift in the

mean price from µ to µ+ δ without affecting σ.

Example 30 Karjat tribal block is a fairly homogenous sub-taluka of about 200 habitations

with child literacy fraction normally distributed with mean µ = 0.68 and σ = 0.14. Since

distances to school coould be an important factor, an intervention was designed to serve a

region of about 120 habitations by school rickshaws. The mechanism of literacy suggests that

the intervention will move σ without significantly changing σ.

Our task is to estimate µ of an unknown normal random variable X with known variance

σ2. We define our experiment as an n-way repeated trial with the outcome set X1 ×X2 ×
. . . × Xn. The parameter set Q = R is the set of possible µ values, i.e., the set of real

numbers. We define the estimator

e : X1 . . .×Xn → R

e(x1, . . . , xn) =
x1 + . . .+ xn

n

Note that this is merely the mean of the observations. We see that if each Xi were indeed

independent normal N(µ, σ) then the expectation E(e) would merely be n·µ
n

= µ. Thus the

estimator is unbiased, i.e., its expected value is indeed the correct value, if there is one.

We will next show that it is also a maximum likelihood estimator. To see this, the

probability of an n-observation sitting within [x1, x1 + δ]× . . .× [xn, xn + δ] is proportional

to f(x1) · . . . · f(xn), where f(x) = φ(µ, σ;x), the normal density function. We may write

this as:
Pr([x1, x1 + δ]× . . .× [xn, xn + δ]) = f(x1) · . . . · f(xn)δn

= ( 1
σ
√
2π

)ne
−

∑
i(xi−µ)

2

2σ2 δn

Now let us assume that σ and δ are fixed, and x1, . . . , xn are given observations, and that we

would like to determine the best possible µ which will maximize the RHS. Next, we see that

the RHS is maximized iff its log is maximized. But the log of the RHS as a function of µ, and

upto constants, is merely
∑

i−(xi − µ)2. Thus the RHS is maximized when
∑

i(xi − µ)2 is

minimized. This is easily seen by choosing µ =
∑
i xi
n

. This proves that e(x1, . . . , xn) =
∑
i xi
n

is indeed the maximum likelihood estimator.
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Let us denote
∑
i xi
n

as x, i.e., the observation, while
∑
iXi
n

by X, the random variable.

We know that X is also normal with mean µ and variance σ2 = σ2/n. The decrease in the

variance of X is the key. We see right away that if µ were the unknown mean and x was the

observation, then the abstract matrix M has

M(µ, x) =
1

σ
√

2π
e

(x−µ)2

2σ2

Thus, both the row and the column functions have the same behaviour, which makes things

much easier. We see that:

Pr(µ− 2σ ≤ x ≤ µ+ 2σ) ≥ 0.95

We may rearrange this (using our observation on M) to get:

Pr(x− 2σ ≤ µ ≤ x+ 2σ) ≥ 0.95

Example 31 Suppose that X is the random variable denoting the child literacy in a village

of Karjat tribal block. Suppose that it is known to be normal with an unknown mean but

a known σ = 0.14. Suppose a team visits 10 villages and finds x = 0.76. (i) What is the

assertion we can make with 99%, 95% and 90% confidence? (ii) Suppose that an expert

asserts that µ = 0.68. With what confidence can you refute the claim?

Let us solve (i) first. Firstly, we see that the effective standard deviation is only 0.14/
√

10 =

0.044. Next, We see that for a both-sided interval around 0.76, using cdfnor, we see that the

intervals as a multiple kσ, we have k(0.99) = 2.58, k(0.95) = 1.96 and k(0.9) = 1.65. Thus,

we see that these intervals are [0.65, 0.87], [0.67, 0.85] and [0.69, 0.83].

For (ii), we see that (0.76 − 0.68)/0.044 = 1.82. Again, using cdfnor, we see that the

event of x = 0.76, assuming that µ = 0.68 is in the (one-sided) 4% and lower. Thus, we

refute the claim with 96% confidence.

16 The variance of a normal distribution

Our next situation is to estimate the variance of a random variable which we know is normal.

This arises frequently in engineering, pollution, ethnography and so on. Before we go on, we

need to understand a new density function called the chi-squared density function which

has a parameter n and is denoted by χ2
n. This arises most commonly as the square of the

distance of a random point. Let X1, . . . , Xn be independent normal random variables with

mean 0 and variance 1, i.e., N(0, 1). Let Y = X2
1 + . . .+X2

n, then χ2
n is the density function
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Figure 24: The χ2
n density function for various n

of Y . Clearly E(Y ) =
∑

iE(X2
i ) = n · 1 = n. See the plots below in Fig. 16 (use cdfchi

("PQ",x,n*ones(1,m))).

Again, we make n trials X1, . . . , Xn to obtain samples x1, . . . , xn and the sample mean

x = (
∑

i xi)/n. The estimator of the variance is S2 =
∑n
i=1(xi−x)2
n−1 . The curious term is

of course, the denominator. To understand this, let us look at a related summation as a

function on X1, . . . , Xn (where µ is the unknown mean).

∑
i(Xi − µ)2 =

∑
i((Xi −X) + (X − µ))2

=
∑

i(Xi −X)2 +
∑

i(X − µ)2 + 2
∑

i(Xi −X)(X − µ)

=
∑

i(Xi −X)2 +
∑

i(X − µ)2 + 2(X − µ)
∑

i(Xi −X)

=
∑

i(Xi −X)2 +
∑

i(X − µ)2

=
∑

i(Xi −X)2 + n · (X − µ)2

Taking expectations on both sides, we see that:

nσ2 = E(
∑
i

(Xi −X)2) + n · σ
2

n

Thus, we see that E(
∑

i(Xi − X)2) = (n − 1)σ2, and thus E(S2) = σ2. Thus, S2 is an

unbiased estimator.

Lets start with the last equality:∑
i

(Xi − µ)2 =
∑
i

(Xi −X)2 + n · (X − µ)2
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and divide everything by σ2 to obtain:

∑
i

(
Xi − µ
σ

)2

= (n− 1)
S2

σ2
+

(
X − µ
σ
√
n

)2

Since the LHS is a variable of density χ2
n and the second term of the RHS χ2

1, by a leap

of faith, the variable (n − 1)S
2

σ2 is distributed by the χ2
n−1 density function, i.e., a known

density function. Note that this does not need us to assume knowledge of µ at all. Let us

now apply this in an example.

Example 32 A sample of 10 fractional literacy levels in 10 villages was the sequence [0.82, 0.73, 0.70, 0.69, 0.67, 0.56, 0.45, 0.44, 0.43, 0.43].

Give 90% and 99% confidence interval estimates for σ2. With what confidence will you refute

the claim that the SD is 0.1?

We see that S2 = 0.0217. The variance is 0.0195 and the sample SD is 0.140. Since

n = 10, we are dealing with χ2
9 with expected value 9. We will find intervals [a, b] around 9

such that Prχ2
9
([a, b]) = 1− α for α = 0.1 and 0.01. We use cdfchi("PQ",x,9*ones(1,m))

and get these intervals as [3.3, 18.9] and [1.8, 24]. Thus, we see that:

Pr(3.3 ≤ 9 · 0.0217
σ2 ≤ 18.9) = 0.9

Pr(2.727 ≥ σ2

0.0217
≥ 0.476) = 0.9

Pr(1.651 ≥ σ
0.147
≥ 0.69) = 0.9

Pr(0.242 ≥ σ ≥ 0.101) = 0.9

Thus, we can claim with 90% confidence that σ lies in the interval [0.101, 0.242]. A similar

(but larger) interval may be found for our 99% confidence assertion.

Next, we move to refuting the H0 ≡ σ = 0.1. We see that 9·0.0217
0.01

= 1.953. cdfchi("PQ",1.953,9)

gives the answer 0.0078, which is outside 1%. Thus, the observed S2 is outside the 1% chance

and thus we can claim with 99% confidence that σ = 0.1 is false.

17 Normal with both mean and variance unknown

We now take up the common case that the only information we know about a data set that

it is normal, without knowing its mean of variance. Again, the experiment is a repeated

trial X1, . . . , Xn followed by a computation of the sample mean X and sample variance S2.

Suppose that the mean µ were known, and consider the function:

T =
X − µ√

(S2)
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Figure 25: The t-density

The variable T is distributed by a classical distribution called the t-distribution of pa-

rameter n. This marks the number of trials. Let us plot the t-density function along with

the normal N(0, 1). Note that each of the curves is symmetric about the origin, and as

expected bell-shaped. Also note that as n gets larger, the t-density function approaches the

normal distribution. This is because as n increases, the denominator S2 comes closer to the

the variance σ2.

The problem here is to estimate µ or to test assertions on it. Again, we do this through

an example.

Example 33 A sample of 10 fractional literacy levels in 10 villages was the sequence

[0.82, 0.73, 0.70, 0.69, 0.67, 0.56, 0.45, 0.44, 0.43, 0.43]. Give 90% and 99% confidence interval

estimates for µ. With what confidence will you refute the claim that is 0:55?

We see that the sample mean is 0.592 and S2 = 0.0217. Thus, we have the variable

T = 0.592−µ√
S2/10

= 0.592−µ
0.0466

. Next, we use cdft (with n − 1 = 9 degrees of freedom) to compute

the intervals for 90% and 99%. This we get by using the command:

cdft("T",[9 9],[0.9 0.99],[0.1 0.01]) to get 1.383, 2.827. We start with the first

problem, i.e., 90%. We have that:

Pr(−1.383 ≤ 0.592− µ
0.0466

≤ 1.383) ≥ 0.9
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By rearranging, we see that:

Pr(0.527 ≤ µ ≤ 0.656) ≥ 90%

This gives us the confidence interval for the 90% as [0.527, 0.656]. Note that this interval is

larger than what would have been for the normal case with σ = 0.0466. The above interval

would correspond to a confidence of 91.66% in the normal case. This is because there is an

inherent uncertainty about the variance and that causes the t-density to be more broad than

the normal case.

Next, we see that 0.592−0.55
0.0466

= 0.901. The p-value can be found by cdft("PQ", -0.901,9)

which is 0.196. Thus 1−2∗p = 0.609 and we reject the claim with a mere 60.9% confidence.
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18 A few scilab commands and code

Reading a .xls file: In the beginning there is an .xls file. To input it into your scilab

session, you need to use the readxls command, such as:

murbad=readxls("thane murbad census I.xls")

This creates a copy of the .xls file in your session and the file is called murbad. These will

have as many sheets as your original file had and these are refered as murbad(1), murbad(2)

and so on. So lets do the following.

mu=murbad(1) // this picks out the first sheet

size(mu) // should output 211. 64.

mu.value // will list out the numeric part of the sheet

// and put a NaN (not a number) where it sees text

mu.text // does it for the non-numeric data

We see that columns 56, and 10 onwards are numeric, while the others are text. Now,

let us select all the rows which correspond to VILLAGE (column 7) and all the numeric

columns. This is done as follows:

I=[]; for i=1:211 if mu(i,7)=="VILLAGE" I=[I i]; end; end;

murbadnumeric=mu(I,[10:64]);

size(murbadnumeric) // should give you 205. 55.

save murbadnumeric // now a load will get this back for us

Now, we load all the index names. This is done by exec "index.sci". What this will do

is to define variables such as TOT P and NON WORK M and put the correct column index

for them, which are 11 and 63 respectively. Remember that while creating murbadvillage we

have deleted the first 9 columns and hence murbadvillage(:,TOT P-9) will be the column

vector of the total populations of all villages in Murbad. Just for fun, we extract the

population fraction under 6 as follows:

for i=1:205 y(i)=murbadnumeric(i,P_06-9)/murbadnumeric(i,TOT_P-9); end;

Next, let us list a few scilab functions.

• mean(X) returns the mean of the entries of the matrix X. Example mean([1 2; 3 4])

returns 2.5.

• nanstdev(X) returns the standard deviation of the argument X.
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• variance(X,1), variance(X,1,1), variance(X,2): This computes the variance of

the matrix X. If the second arument is 2 then it computes the variance of each

row, while if it is 1 (default), then it does it for each column. The normalization

is either (default) m − 1 (where m is the appropriate dimension) of m. The op-

tion of m, which you would normally require, is obtained by adding a third argu-

ment 1. Example: variance([1 2 3],1), variance([1 2 3],1,1), variance([1

2 3],2), variance([1 2 3],2,1) returns error, [0, 0, 0], 1 and 0.66 respectively.

• covar(X,Y,eye(n,n)) returns the covariance of the two (row or column) vectors X

and Y of equal length. Here n is the size of X (or Y ). Example covar([1 2 1],[2

2 3],eye(3,3)) returns −0.111. Instead of eye(3, 3) you could feed in the frequency

matrix f , where f(i, j) would be the number of times that you have observed the tuple

(xi, yj).

• correl(X,Y,eye(n,n)) returns the correllation of the two (row or column) vectors X

and Y of equal length. Here n is the size of X (or Y ). Example correl([1 2 1],[2

2 3],eye(3,3)) returns −0.5. As above, instead of eye(3, 3) you could feed in the

frequency matrix f , where f(i, j) would be the number of times that you have observed

the tuple (xi, yj).

• histplot(M,X): plots a histogram of the entries in X. M is either an integer or a

row-vector of values M = [m1,m2, . . . ,mk]. If M is an integer, the produced figure

has M divisions. If M is a vector, then the plots are for frequencies in [mi−1,mi].

he Y -axis is normally fraction of entries. Use histplot(M,X,normalization=%f) for

frequencies.

• plot2d(x,y): x and y should be vectors of the same size. This will plot a poly-line

connecting (xi, yi) to xi+1, yi+1) for each i. plot2d(x,y,’r+’) will not draw the line,

but only the points. These will be marked red and with a ”+” sign.

• title("my title") will add a title to your graph. legend("my legend"), xlabel("mylabel"),

ylabel("mylabel") will add the labels and legends to your plot.

• grand(m,n,"type",param-list): is the basic random number generator.

– grand(m,n,"bin",N,q): generates an m × n matrix of numbers in [0, N ] with

the binomial density function.

– grand(m,n,"nor",mu,sig): generates an m× n matrix of reals drawn from the

normal density function with mean mu and SD sig.
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– grand(m,n,"unf",Low,High): generates an m × n matrix of reals drawn from

the uniform denisty function for the interval [Low,High].

• X=binomial(q,n) produces a vector X of size n+ 1, where X(k+ 1) is the probability

that the outcome of the binomial density function Binom(q,n) is k. In other words,

X(k + 1) =
(
n
k

)
qk(1− q)n−k.

• XX=cdfnor("PQ ",X,µ,σ). The matrices X,µ, σ must be of the same dimensions and

so will the output be.

XX(i, j) =

∫ X(i,j)

−∞
φ(µ(i, j), σ(i, j);x)dx

where φ is the gaussian function. Thus cdfnor implements the cumulative density

function.

Example 34 Drawing histograms for actual and predicted frequencies Consider

the case when we have an array of values HH, which has, say, the number of households of

all the villages in Shahpur taluka. Let us draw a histogram for this number and compare it

with the ideal normal for the same mean and variance as the data HH.

Here is a sample code fragment., with the output indicated after the % sign:

mu=mean(HH) // 201

variance(HH,1) // 34484

max(HH) // 1635

sig=sqrt(varr) // 186

xx=linspace(0,1700,86) // this creates an array of 86 equally spaced point from

//0 to 1700, i.e., 20 apart

histplot(xx,HH,normalization=%f) // creates the histogram below

// now we set about creating the expected normal frequencies

size(HH) // is 222

cdf=cdfnor("PQ",xx,mu*ones(1,86),sig*ones(1,86));

// this produces the vector in cdf for all the stopping points

// of the histogram

pdf=differ(cdf)*222 // this is what we want

// differ is our function to compute input(i+1)-input(i)

//
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Figure 26: The households in Shahpur

$\chi^2_n $ density function for various $n$}

plot(xx,pdf) // does the job by plotting the normal on the histogram

// the first flick to 30 corresponds to the number which

// should have been there less than zero
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