Stabilizer Limits and Alignment - Lie Algebraic Methods for the Orbit Closure Problem.

Bharat Adsul, Milind Sohoni - IIT, Bombay K V Subrahmanyam - CMI, Chennai

Key Reference: Orbit Closures, Stabilizer Limits and Intermediate G-varieties, arxiv 2309.15816 [1] 24th February 2025

Outline

- Problem definition and motivation
- Stabilizer limits Main result, some examples. The genericity "obstacle" and Plans A and B.
- Plan A (Alignment). Examples and a "genericity" result
- Consequences An entry point for combinatorial analysis?
- Classical cases
 - Instability, Kempf optimal one-PS
 - Unstable and stable points alignment and tangent-vector orbits
- Plan B The Pictures
- Going ahead Lie algebraic evidence to algebraic geometry.
 - Co-dimension 1 varieties in $\overline{O(det_3)}$.

Notation

- X over \mathbb{C} and dim(X) = n. $G \subseteq GL(X)$, connected reductive algebraic group over \mathbb{C} . Typically $G = GL(X) = GL_n(\mathbb{C})$.
- $\rho: GL(X) \to GL(V)$, representation such that the center $Z = \{tI | t \in \mathbb{C}^*\}$ acts as $\rho(tI)(v) = t^d v$ for a fixed d. Moreover, $Z \subseteq G$. Think $V = Sym^d(X^*)$.
- $y \in V$. Orbit of y, $O(y) := \{g \cdot y | g \in G\}$.
- O(y) need not be closed, it is constructible.
- $\overline{O(y)}$, orbit closure of y Zariski topology or Euclidean topology. $\overline{O(y)}$ is a cone and its $I(y) \subseteq \mathbb{C}[V]$ is homogeneous.
 - GL_n action on \mathbb{C}^n . $\overline{O(v)} = \mathbb{C}^n$, $v \in \mathbb{C}^n, v \neq 0$.
 - GL_n adjoint action on M_n . $\overline{O(J_n)} = \mathcal{N}$, the *nilpotent cone*.

The Question of interest

Question:

- Given $z, y \in V$, is $z \in \overline{O(y)}$? Distinctive stabilizers, G_z, G_y .
- Given $[z], [y] \in \mathbb{P}(V)$, is $[z] \in \overline{O([y])}$?
- MOTIVATION algebraic complexity theory.

Conversely

• Given 1-PS $\lambda(t) \subseteq G$ and the action:

$$\lambda(t)y=t^dz+\ldots+t^Dy_D$$

What connects $K = G_V$ and $H = G_Z$?

• By applying a suitable power $t^a I$, we have:

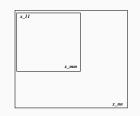
$$\lambda'(t)y=t^0z+\ldots+t^{D'}y_{D'}$$

Thus $z \in \overline{O(y)}$.

The Big Picture

The permanent vs. determinant question

$$X=\mathbb{C}^{n\times n}, V=Sym^n(X)$$
 and $y=det_n(X), z=x_{nn}^{n-m}perm_m$. Is there a homogenous substitution AX so that the determinant $det_n(AX)=x_{nn}^{n-m}perm_m(X_{mm})$?



Therefore there is a 2-block 1-PS $\lambda_A(t) \subseteq G$ such that:

$$\lambda_A(t)y = z + \sum_{i>0} t^i y_i$$

Note that this puts $z = x_{nn}^{n-m} perm_m \in \overline{O(y)}$ where $y = det_n$.

Question: What is the smallest n which does the job? Note that this does not require stabilizer containment!

Stabilizers¹

 $K_n =$ **Stabilizer of** $det_n \in Sym^n(X_n)$

What is the stabilizer of det_n in GL(X)?

- $X_n \to CX_nD$ such that $C, D \in GL_m$ and $det_n(CD) = 1$ and $X \to X^T$.
- $K = G_y$ is reductive, $dim(G_y) = 2n^2 1$ and X_n is an irreducible G_y -module.

$H_m =$ Stabilizer of $perm_m \in Sym^m(X_m)$

What is the stabilizer of $z' = perm_m$ in $GL(X_m)$?

- $X_m \to CX_mD$ such that $C, D \in D_m$ and $det_m(CD) = 1$ and $X \to PX^TP'$, with P, P' permutation matrices.
- $G_{z'}$ is reductive, $dim(G_{z'}) = 2m 1$ and X_m is an irreducible G_{perm_m} -module.

More stabilizers and GCT

$H_{n,m}$ =The stabilizer of the homogenized permanent

$$z=x_{nn}^{n-m}perm_m(X_m)\in Sym^n(X_n)$$
. We may divide $X_n=\overline{X_m'}\oplus \mathbb{C}x_{nn}\oplus X_m\cong X_1\oplus X_0$. Then $H_{n,m}=G_z\subseteq GL(X)$ in the ordered basis is as below:

$$\begin{bmatrix} * & * & * \\ \hline 0 & * & 0 \\ 0 & 0 & g \end{bmatrix} \quad \text{with } g \in H_m$$

We also have the limit: $\lambda(t) \cdot y = z + \sum_{i>0} t^i y_i$.

Stabilizers change dramatically under taking limits!

- Both *det_n* and *perm_m* are *SL*-stable (their orbits are closed) and *determined* by their stabilizers in their respective spaces.
- Stabilizer data enough to determine containment of $z \in \overline{O(y)}$

GCT and Representations as Obstructions

- Let $Y = \overline{O(y)}$ and $Z = \overline{O(z)}$, and $\mathbb{C}[Y] = \sum_{\mu} d_{\mu} V_{\mu}$ and $\mathbb{C}[Z] = \sum_{\mu} p_{\mu} V_{\mu}$ be their coordinate rings as G-modules.
- Stability of det_n , $perm_m$ and Peter-Weyl determine exactly which G-modules V_u appear in $\mathbb{C}[Y]$ and $\mathbb{C}[Z]$.
- $Z \subseteq Y \Rightarrow \mathbb{C}[Y] \twoheadrightarrow \mathbb{C}[Z]$ and thus $d_{\mu} \geq p_{\mu}$ for all μ .

GCT-II Conjecture

If $z \notin Y$ then there is a μ such that $p_{\mu} > 0$ and $d_{\mu} = 0$.

And its failure...

All V_{μ} which appear in $\mathbb{C}[Z]$, or for that matter, for the coordinate ring $\mathbb{C}[W]$ of the orbit closure $\overline{O(w)}$ of any homogenized form w, appear in $\mathbb{C}[Y]$.

So the numbers do matter.

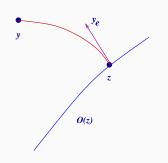
Our work - more geometric

We begin with:

$$y(t) = \lambda(t).y = y_d t^d + y_e t^e + \sum_{i=e+1}^{D} y_i t^i$$

with $z = y_d$. We call y_e as the tangent of approach.

We use the notation $y \stackrel{\lambda}{\to} z$.



Transversality Assumption. Vector space spanned by y_e, \ldots, y_D intersects $T_g O(g)$ trivially. Let $K = G_y$ and $H = G_z$. Let $\mathcal{G} = Lie(G)$ and $\mathcal{K} = Lie(K), \mathcal{H} = Lie(H) \subseteq \mathcal{G}$.

Question

How do we connect K with H using λ ?

Preliminaries

- We have the usual action of λ on V and the weight space decomposition $V=\oplus V_i$.
- $\lambda(t)$ also acts on $\mathcal G$ by conjugation and thus we have $\mathcal G=\oplus \mathcal G_i.$
- For any $v \in V$, $v = \sum_i v_i$, let the **leading term** \widehat{v}^{λ} or simply \widehat{v} be v_j where $v_j \neq 0$ and $v_i = 0$ for all i < j. Similarly, we define $\widehat{\mathfrak{g}}^{\lambda}$ or simply $\widehat{\mathfrak{g}}$ for any $\mathfrak{g} \in \mathcal{G}$.

Basic result: For any $g \in \mathcal{G}$ and $v \in V$:

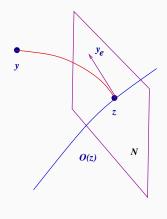
$$\lambda(t)(\mathfrak{g}v) = (\lambda(t)\mathfrak{g}\lambda^{-1}(t))(\lambda(t)v) = \mathfrak{g}(t)v(t)$$
. Thus either $\hat{\mathfrak{g}}\hat{v} = 0$ or $\widehat{\mathfrak{g}}v = \hat{\mathfrak{g}}\hat{v}$ and $deg(\mathfrak{g}v) = deg(v) + deg(\mathfrak{g})$.

Proposition

Let $\mathcal K$ be a Lie subalgebra of $\mathcal G$ and $N\subseteq V$ a $\mathcal K$ -module. Then

- (i) $\hat{\mathcal{K}}$ is a graded Lie subalgebra of \mathcal{G} , and $dim_{\mathbb{C}}(\hat{\mathcal{K}}) = dim_{\mathbb{C}}(\mathcal{K})$,
- (ii) $\hat{N} \subseteq V$ is a $\hat{\mathcal{K}}$ -module with $dim_{\mathbb{C}}\hat{N} = dim_{\mathbb{C}}N$.

The \overline{N} -action



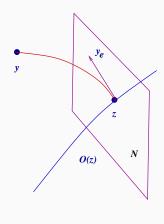
The condition:

$$\lambda(t) \cdot y = t^d z + t^e y_e + \ldots + t^D y_D$$

implies that $\hat{y} = z$. In other words $\hat{y}^{\lambda} = z \Leftrightarrow y \xrightarrow{\lambda} z$

- Let $T_z(O(z)) \subseteq V$ be the tangent space of O(z) at z and N be a complement.
- $T_z \subseteq V$ is an \mathcal{H} -module and so is $\overline{N} = V/T_z$.
- ullet $\overline{y_e} \in \overline{\textit{N}}$ and $\mathcal{H}_{\overline{y_e}}$ its stabilizer.

The first theorem



Theorem (ASS)

Let $y \stackrel{\lambda}{\to} z$ with stabilizers Lie algebras \mathcal{K}, \mathcal{H} as above. Let \overline{N} be the the quotient $V/T_zO(z)$ and $\overline{y_e} \in \overline{N}$. Then we have $\hat{\mathcal{K}} \subseteq \mathcal{H}_{\overline{y_e}} \subseteq \mathcal{H}$.

Proof: (Assume e = d + 1). If $\mathfrak{k} \in \mathcal{K}$, then we have: $\mathfrak{k} \cdot y = (\lambda(t)\mathfrak{k}\lambda(t)^{-1}) \cdot (\lambda(t)y) = \mathfrak{k}(t) \cdot y(t) = 0$. If $\mathfrak{k}(t) = \sum_{i \geq i_0} t^i \mathfrak{k}_i$ and $y(t) = \sum_{i \geq d} t^j y_i$

then we have $\hat{\mathfrak{k}}=\mathfrak{k}_{i_0}$ and :

$$\hat{\mathfrak{t}}y_d = 0$$

$$\hat{\mathfrak{t}}y_e + \mathfrak{t}_{i_0+1}y_d = 0$$

Permanent vs. Determinant

Therefore...

If
$$z = x_{nn}^{n-m} perm_m = det_n(AX_n)$$
, then $z = \widehat{det}_n^{\lambda}$ for a suitable 2-block λ_A . Thus $\hat{\mathcal{K}}_n \subseteq \mathcal{H}_{n,m}$. How does $\hat{\mathcal{K}}_n$ sit inside $\mathcal{H}_{n,m}$?

Recall

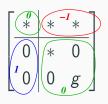
$$X_n = \overline{X_m'} \oplus \mathbb{C} x_{nn} \oplus X_m \cong X_1 \oplus X_0.$$

Then $H_{n,m}$ is as below (with $g \in H_m$):

$$\begin{bmatrix} * & * & * \\ \hline 0 & * & 0 \\ 0 & 0 & g \end{bmatrix}$$

Given a
$$\mathfrak{k} \in \mathcal{K}_n$$
 with $\mathfrak{k} = \mathfrak{k}_{-1} + \mathfrak{k}_0 + \mathfrak{k}_1$.

As per the weights of λ_A , we have:



What if \mathfrak{k} , $\hat{\mathfrak{k}} = \mathfrak{k}_{-1}$ for all \mathfrak{k} ? Then the stabilizer of det_n will be tucked away from H_m ! Can λ_A be "generic"?

Measuring Generic-ness

For $\lambda(t)$ be as below, see the weight-spaces:

$$\lambda(t) = \begin{bmatrix} t^2 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathcal{G} = \begin{bmatrix} \underline{\mathcal{G}_0} & \underline{\mathcal{G}_{-1}} & \underline{\mathcal{G}_{-2}} \\ \underline{\mathcal{G}_1} & \underline{\mathcal{G}_0} & \underline{\mathcal{G}_{-1}} \\ \underline{\mathcal{G}_2} & \underline{\mathcal{G}_1} & \underline{\mathcal{G}_0} \end{bmatrix}$$

Thus, for a general λ , $\hat{\mathcal{K}}=\oplus_i\hat{\mathcal{K}}_i$, with $dim(\hat{\mathcal{K}}_i)=k_i$. The vector $\overline{k}=(k_i)$ measures the generic-ness of λ vis a vis \mathcal{K} . The more negative the weights, the more generic is λ .

What if, λ_A is completely generic and \overline{k} is as follows:

weight	-1		1
dimension	$dim(\mathcal{K}_n)$	0	0

Measuring Generic-ness

For $\lambda(t)$ be as below, see the weight-spaces:

$$\lambda(t) = \begin{bmatrix} t^2 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathcal{G} = \begin{bmatrix} \underline{\mathcal{G}_0} & \underline{\mathcal{G}_{-1}} & \underline{\mathcal{G}_{-2}} \\ \underline{\mathcal{G}_1} & \underline{\mathcal{G}_0} & \underline{\mathcal{G}_{-1}} \\ \underline{\mathcal{G}_2} & \underline{\mathcal{G}_1} & \underline{\mathcal{G}_0} \end{bmatrix}$$

Thus, for a general λ , $\hat{\mathcal{K}}=\oplus_i\hat{\mathcal{K}}_i$, with $dim(\hat{\mathcal{K}}_i)=k_i$. The vector $\overline{k}=(k_i)$ measures the generic-ness of λ vis a vis \mathcal{K} . The more negative the weights, the more generic is λ .

What if, λ_A is completely generic and \overline{k} is as follows:

weight	-1	0	1
dimension	$dim(\mathcal{K}_n)$	0	0

Can interesting forms be generic limits of det_n ? Like to believe that the answer is NO

Two Questions

Theorem (ASS)

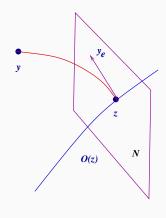
Let $y \stackrel{\lambda}{\to} z$ with stabilizers Lie algebras \mathcal{K}, \mathcal{H} as above. Let \overline{N} be the the quotient $V/T_zO(z)$ and $\overline{y_e} \in \overline{N}$. Then we have $\hat{\mathcal{K}} \subseteq \mathcal{H}_{\overline{y_e}} \subseteq \mathcal{H}$.

Two questions.

- Plan A. (Alignment) Is there a common semisimple element between \mathcal{K} (or its conjugate) and \mathcal{H} .
- Plan B (Lie algebra) Are there intermediate orbits $\overline{O(z)} \subset \overline{O(w)} \subset \overline{O(y)}$ which are simpler? Do the containments $\hat{\mathcal{K}} \subseteq \mathcal{H}_{\overline{Ve}} \subseteq \mathcal{H}$ give us a clue?

Note that the containment $\overline{O(z)} \subset \overline{O(w)} \subset \overline{O(y)}$ may happen without the reverse containment of stabilizers. Indeed, is there a sequence of such orbits where each step in simple?

Alignment



Therefore...

If $z = x_{nn}^{n-m} perm_m = det_n(AX_n)$, then $z = \widehat{det}_n^{\lambda}$ for a suitable 2-block λ_A . Thus $\hat{\mathcal{K}}_n \subseteq \mathcal{H}_{n,m}$.

How does $\hat{\mathcal{K}}_n$ sit inside $\mathcal{H}_{n,m}$?

Alignment

A semisimple element $\mathfrak{s} \in \mathcal{K}$ is called an alignment if it commutes with λ .

Observe: If $\mathfrak s$ is an alignment and $\lambda(t)y=t^dz+t^ey_e+\ldots+t^Dy_d$ then $\mathfrak s(\lambda(t)y)=\lambda(t)\mathfrak sy=0$. Thus $\mathfrak s$ stabilizes every y_i and therefore $z=y_d$. Thus $\mathfrak s\in\mathcal H$.

Example: *det*₃

Let $X = X_3$ be as below and let $det_3(X) \in Sym^3(X)$ be the usual determinant and three 2-block 1-PS with the same 6-3 break:

$$X_{3} = \begin{bmatrix} x_{1} & x_{2} & x_{3} \\ x_{4} & x_{5} & x_{6} \\ x_{7} & x_{8} & x_{9} \end{bmatrix} \lambda_{A} = \begin{bmatrix} tx_{1} & tx_{2} & tx_{3} \\ x_{4} & x_{5} & x_{6} \\ x_{7} & x_{8} & x_{9} \end{bmatrix}$$

$$\lambda_{B} = \begin{bmatrix} tx_{1} & x_{2} & x_{3} \\ x_{4} & tx_{5} & x_{6} \\ x_{7} & x_{8} & tx_{9} \end{bmatrix} \lambda_{C} = \begin{bmatrix} x_{1} & tx_{2} & tx_{3} \\ x_{4} & x_{5} & tx_{6} \\ x_{7} & x_{8} & x_{9} \end{bmatrix}$$

We have the following limits:

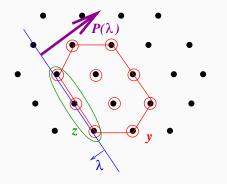
	limit	degree	$dim(\mathcal{H})$	-1	0	1
$\hat{\mathcal{K}}_{A}$	det ₃	1	16	0	16	0
$\hat{\mathcal{K}}_B$	derangements	0	31	12	4	0
$\hat{\mathcal{K}}_{\mathcal{C}}$	X ₁ X ₅ X ₉	0	56	14	2	0

$P(\lambda), U(\lambda)$ generalities

Let $T \supseteq \lambda(t)$ be a maximal torus and $\Xi(V)$, the weight space. Let $\mathcal{T} = Lie(T)$. For any $\mathfrak{t} \in \mathcal{T}$, let $t^{\mathfrak{t}}$ be the 1-PS corresponding to \mathfrak{t} . Let us assume that $\lambda'(t)$ is such that d=0, i.e., $y(t)=y_0+t^1y_1+\ldots+t^Dy_D$ with $z=y_0$. Let ℓ be such that $t^\ell=\lambda'(t)$. Thus λ' stabilizes z and $\ell\in\mathcal{H}$. Let \mathcal{G}_i be the weight space decomposition of \mathcal{G} w.r.t λ (or λ').

- Recall $P(\lambda) = \{ p \in G | \lim_{t \to 0} \lambda(t) p \lambda(t)^{-1} \text{ exists} \}.$
- $L(\lambda)$ is precisely elements of $P(\lambda)$ which commute with λ .
- There is a Levi decomposition $P(\lambda) = L(\lambda) \ltimes U(\lambda)$, with $L(\lambda)$ reductive and $U(\lambda)$ unipotent.
- $Lie(P(\lambda)) = \mathcal{P}(\lambda) = \bigoplus_{i \geq 0} \mathcal{G}_i$, $Lie(U(\lambda)) = \mathcal{U}(\lambda) = \bigoplus_{i > 0} \mathcal{G}_i$ and $Lie(L(\lambda)) = \mathcal{L}(\lambda) = \mathcal{G}_0$.

The Picture



- We have $V = \bigoplus_r V_r$, the λ -decomposition and the $P(\lambda)$ -space $V_{\geq 0} = \bigoplus_{i \geq 0} V_i$.
- We also have the $L(\lambda)$ -equivariant projection $\pi_i: V \to V_i$, and in particular $\pi_0: V_{\geq 0} \to V_0$.

Lemma

For any $p \in P(\lambda)$ with p = us, where $u \in U(\lambda), s \in L(\lambda)$, we have $\widehat{py}^{\lambda} = sz \in O(z)$.

Theorem: Nilpotency or Alignment

Let $\overline{U}(\lambda) = U(\lambda(t^{-1}))$ be the *opposite* unipotent group and $\overline{U}(\lambda) = \bigoplus_{i<0} \mathcal{G}_i$ be its Lie algebra. We then have:

$$\mathcal{G} = \overline{\mathcal{U}}(\lambda) \oplus \mathcal{L}(\lambda) \oplus \mathcal{U}(\lambda)$$

Proposition

Either there is a \mathfrak{k} such that $deg(\hat{\mathfrak{k}}) \geq 0$ or $\hat{\mathcal{K}} \subseteq \overline{\mathcal{U}}(\lambda)$ and is nilpotent and there is a $\mathfrak{u} \in \overline{\mathcal{U}}(\lambda)$ such that $[\mathfrak{u}, \hat{\mathcal{K}}] = 0$. For λ_A in Valiant's construction, $\mathfrak{u} \in \mathcal{H} - \hat{\mathcal{K}}$. The normalizer!

Theorem

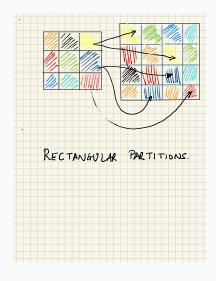
Let y, z, λ be as above and $\mathcal{H} = \mathcal{G}_z$ and $\mathcal{K} = \mathcal{G}_y$. Then either (i) there is a $u \in U(\lambda)$ such that $\widehat{uy}^{\lambda} = z$ and a semisimple $\mathfrak{s} \in \mathcal{G}_{uy}$ which commutes with λ , OR (ii) $\hat{\mathcal{K}} \subseteq \mathcal{H}$ is a nilpotent Lie alegbra.

Consequences of Alignment

If there is an alignment $\mathfrak{s} \in \mathcal{K}_n$, the stabilizer of det_n and $x_{nn}^{n-m}perm_m$ via λ_A for some A. Then there is a 1-PS $u^{\mathfrak{s}} = \mu(u)$ such that the weight spaces of $X_m \dot{\cup} \{x_{nn}\}$ and X_n are linked by A.

- Variables $\{x_{11}, \ldots, x_{mm}\} \cup \{x_{nn}\}$ of $x_{nn}^{n-m}perm_m$ get partitioned into rectangles, and variables $\{x_{11}, \ldots, x_{nn}\}$ of the determinant get partitioned into rectangles.
- ullet Each rectangle corresponds to the weight spaces w.r.t μ .
- The map A puts the permanent variables into the corresponding rectangles of the determinant.
- For both the permanent and the determinant, these rectangular spaces are also linear subspaces within their respective hypersurfaces.

Entry point for combinatorial analysis?



Alignment in Grenet's construction

 Grenet's implementation of the permanent is also via rectangular partitions

$$\begin{bmatrix} 0 & 0 & 0 & 0 & x_{33} & x_{32} & x_{31} \\ x_{11} & x_{77} & 0 & 0 & 0 & 0 & 0 \\ x_{12} & 0 & x_{77} & 0 & 0 & 0 & 0 \\ x_{13} & 0 & 0 & x_{77} & 0 & 0 & 0 \\ 0 & x_{22} & x_{21} & 0 & x_{77} & 0 & 0 \\ 0 & x_{23} & 0 & x_{21} & 0 & x_{77} & 0 \\ 0 & 0 & x_{23} & x_{22} & 0 & 0 & x_{77} \end{bmatrix}$$

- $I = \{1\}\{2\}\{3\}\{7\}$ and $J = \{1, 2, 3\}\{7\}$ for permanent variables.
- $I = J = \{1\}\{2,3,4\}\{5,6,7\}$ for determinant variables.

Alignment - Relating eigenspaces of stabilizers

The eigenspaces of semi-simple elements of $perm_n$ or det_n happen to be similar. Moreover, these are linear supspaces of the corresponing hypersurfaces.

Result (Ressayre - Mignon)

If $perm_m$ is obtained as a pull-back of det_n , then $n > m^2/2$. Analysis of the curvature tensor of the hypersurfaces.

Proposition (ASS)

Suppose that, there is a sequence of points $(p_m) \in P_m$ and a function k(m), and the guarantee that the dimension of any linear subspace $L \subseteq P_m$ containing p_m is bounded by k(m). If $perm_m$ is obtained as a pull-back of $det_n(X)$ is $perm_m(W)$. Then $n \ge m^2 - k(m)$.

Conjecture: $k(m) = o(m^2)$.

Classical Case - Unstable and semistable points G = GL(X)

Question

How does our analysis apply to classical limits in GIT?

Definition: Instability

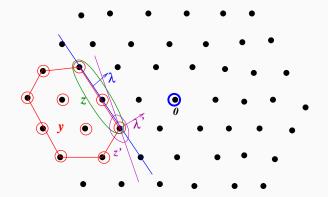
Let S be a closed G-invariant subset of V. Then, y is said to be S-unstable if $\overline{O_{SL(X)}(y)}$ intersects S. If $S=\{0\}$, then S-unstable is called unstable. If S=O(z), an SL(X)-closed orbit, then y is called semi-stable.

Hilbert-Mumford criterion

y is S-unstable, if and only if there exists $\lambda(t) \in SL(X)$ such that if $\lambda(t)y = t^d y_d + t^e y_e \ldots + t^D y_d$, then d = 0 and $y_0 \in S$.

Two cases: (1) y unstable, limit z = 0 and tangent y_e (2) y semistable, limit $z \neq 0$ and tangent y_e .

Kempf and the unstable Case 1



There is a unique optimal λ' (upto conjugation by $u \in U(\lambda')$).

$$\lambda'(t)y = y'_{e'}t^{e'} + \ldots + y_{D'}t^{D'}$$

with e'>0. Moreover, $u\lambda'u^{-1}y=y'_{e'}t^{e'}+\ldots$ so $e'_{e'}$ is well defined. Thus $y\stackrel{\lambda'}{\to} 0$ and y_e is the tangent, $K=G_y$ and H=G.

The unstable case - by Kempf

- The stabilizer subgroup K of G is contained in $P(\lambda')$.
- Let R ⊆ K be a reductive subgroup fixing y. Then there is an optimal λ" = uλ'u⁻¹, with u ∈ U(λ') which commutes with R. Thus, if K has semisimple elements, then we may choose λ' to commute with a maximal subgroup and alignment holds.
- Since the limit z=0, $\overline{O(z)}=\{0\}$ and $\overline{N}=V$. Hence $H_{\overline{y'_{e'}}}=G_{y'_{e'}}$. If this does not equal K, then $0\subsetneq \overline{O(y'_{e'})}\subsetneq \overline{O(y)}$, and the required intermediate variety also exists.
- Indeed, if $S = \overline{O(y'_{e'})}$, then S is a cone and y is S-unstable and λ' itself is a witness to it.
- True for general reductive *G*.

The semi-stable Case 2 - by Kempf and Luna

Let z be a stable point, i.e., $O_{SL(X)}(z)$ be closed. Example: det_n or $perm_m$. Let $H=G_z$ and $K=G_y$.

Let y be S-unstable and λ be Kempf-optimal and so:

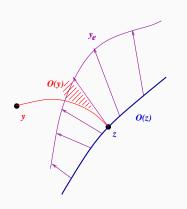
$$\lambda(t)y = z + t^{e}y_{e} + \ldots + t^{D}y_{D}$$

- By Luna, (i) H is reductive and we may assume that there is an H-module N complementary to $T_z O(z)$.
- We may then assume that $y \in z + N, K \subseteq H$ and $\lambda \subseteq H$.
- This then reduces to Case 1 with the reductive group H
 replacing G and N replacing V.
- Thus semisimple elements in K descend to H.
- Consider $O_H(y_e) \subseteq N$ and let $W = G \times^H O_H(y_e)$. Then $\overline{O(z)} \subsetneq W \subsetneq \overline{O(y)}$. Thus the intermediate variety condition holds as well.

Plan B - The Pictures - The tangent vector

Lets look at...

The two block case and $\hat{\mathcal{H}} \subseteq \mathcal{H}_{\overline{y_e}} \subseteq \mathcal{H}$.



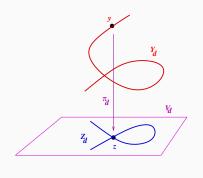
This examines the gap $\hat{\mathcal{K}} \subsetneq \mathcal{H}_{\overline{y_e}}$. Then dim(O(y)) in V is greater than $dim(O(\overline{y_e}))$ in $G \times^H \overline{N}$.

So is there...

an element $w \in V$ with stabilizer \mathcal{H}' such that $\widehat{\mathcal{H}'}^{\mu} = \mathcal{H}_{\overline{y_e}}$? Is there an "extension" of y_e into V?

Would indicate $\overline{O(z)} \subsetneq \overline{O(w)} \subsetneq \overline{O(y)}$, help in finding forms simpler than det_n with $x_{nn}^{n-m}perm_m$ as limits.

Plan B - The Pictures - Co-limits



This examines the gap $\mathcal{H}_{\overline{y_e}}\subsetneq\mathcal{H}.$

Let $Y_d = O(y) \cap V_{\geq d}$ and $Z_d = \pi_d(Y_0)$. Note that $y \in Y_d$ and $z \in Z_d$, the space of co-limits of z. Let $Z = \overline{O(Z_d)}$, then $\overline{O(z)} \subseteq Z \subseteq \overline{O(y)}$ is an intermediate variety.

What is $T_z Z_d$?

Let $\mathcal{G}_{y,d} = \{ \mathfrak{g} \in \mathcal{G} | \mathfrak{g}y \in V_{i \geq d} \}$. Then $\pi_d(\mathfrak{g} \cdot y) = T_z Z_d$. How does H_0 act?

The Claims B1 and B2

- There is a suitable extension of y_e into V.
- $dim(\mathcal{H}/\mathcal{H}_{\overline{y_e}})_{(-1)} > 0$ indicates the presence of a $z' \notin O(z)$.

Way Ahead

det_n -the master of all stabilizers

Since all forms f arise out of some det_n , perhaps all stabilizers arise out of a sequence of limits:

$$det_n \stackrel{\lambda_1}{\rightarrow} F_1 \dots \stackrel{\lambda_k}{\rightarrow} F_k = f$$

Important to analyse how $\mathcal{L}_i = \mathcal{G}_{F_i}$ change.

- Representation Theory and combinatorics
- Stabilizer limits and the data that is associated with it.
- Alignment the consequences and the hunt.
- Parallels with classical limits
- Deeper orbit-level analysis.

Way Ahead: Codimension 1 forms in $\overline{O(det_n)}$.

det_n -the master of all stabilizers

Since all forms f arise out of some det_n , perhaps all stabilizers arise out of a sequence of limits:

$$det_n \stackrel{\lambda_1}{\rightarrow} F_1 \dots \stackrel{\lambda_k}{\rightarrow} F_k = f$$

Important to analyse how $\mathcal{L}_i = \mathcal{G}_{F_i}$ change.

Since the stabilizer of det_n is reductive, the boundary is pure of codimension 1. Suppose these are special forms Q_i . So what is $Q = F_1$ for a form f?

Corollary

Suppose that $W = \overline{O(Q)}$, a component of the boundary, and $Q = \widehat{\det}_n^{\lambda}$. Then $\mathcal{L}_1 = \widehat{\mathcal{K}_n} \oplus \ell$ (where $t^{\ell} = \lambda_1'$). Moreover, if there is no alignment, then \mathcal{L}_1 is of rank 1.

Alignment - The co-dimension 1 forms for det_3

Let $X = X_3$ be as below and let $det_3(X) \in Sym^3(X)$ be the usual determinant:

$$\lambda_1(t)X_3 = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & -x_1 - x_5 \end{bmatrix} + t \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Thus $X=X_0\oplus X_1$ where X_0 are trace zero matrices and $X_1=\mathbb{C}I$, the multiples of the identity.

dimension 17,
$$\mathcal{H}_1 = \widehat{\mathcal{K}_3}$$
, and $Lie(R_1) \subseteq (\mathcal{H}_1)_0$.

Then $\mathcal{H}_1 = \mathcal{G}_{\mathcal{O}_1}$ is of

$$R_1 = \{X \rightarrow AXA^{-1}\} \subseteq K_3$$

Note that R_1 commutes with λ_1 .

Let:

$$\lambda_1(t)det_3 = Q_1 + tQ_1'$$

$$\widehat{\mathcal{K}}_3 = \left[\begin{array}{c|c} * & \mathfrak{u} \\ \hline 0 & \mathfrak{r} \end{array} \right] \overline{k} = \left[\begin{array}{c|c} -1 & 0 & 1 \\ \hline 8 & 8 & 0 \end{array} \right]$$

8-dimensional alignment.

Alignment - The co-dimension 1 forms for det_3

Let $X = X_3$ be as below and let $det_3(X) \in Sym^3(X)$ be the usual determinant:

$$\lambda_2(t)X_3 = \left[egin{array}{ccc} 0 & -x_3 & -x_7 \ x_3 & 0 & -x_8 \ x_7 & x_8 & 0 \end{array}
ight] + t \left[egin{array}{ccc} x_1 & x_2 & x_3 \ x_2 & x_5 & x_6 \ x_3 & x_6 & x_9 \end{array}
ight]$$

Thus $X=X_a\oplus X_a$ where X_a is the space of anti-symmetric and X_s , symmetric matrices. Let

$$R_2 = \{X \to AXA^T | A \in SL_3\} \subseteq K_3$$

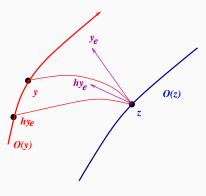
$$\lambda_2(t)det_3 = tQ_2 + t^3Q_2'$$

Then $\mathcal{H}_2=\mathcal{G}_{Q_2}$ is of dimension 17, $\mathcal{H}_2=\widehat{\mathcal{K}_3}$, and $Lie(R_2)\subseteq (\mathcal{H}_2)_0.$

$$\widehat{\mathcal{K}_3} = \left[\begin{array}{c|c} \mathfrak{r}' & \mathfrak{u} \\ \hline 0 & \mathfrak{r} \end{array} \right] \overline{k} = \overline{ \begin{array}{c|c} -1 & 0 & 1 \\ \hline 8 & 8 & 0 \end{array}}$$

8-dimensional alignment.

The Correspondence



The limit $y \stackrel{\lambda}{\to} z$ also implies:

- $y \xrightarrow{k\lambda k^{-1}} kz$, for any $k \in K$.
- $hy \xrightarrow{h\lambda h^{-1}} z$, for any $h \in H$.

Let $H_0 \subseteq H$, the subgroup which commutes with λ . Then for an $h \in H_0$, we have:

$$\lambda(t)hy = z + hy_e t^e + \dots hy_D t^D$$

If
$$\hat{\mathfrak{t}} = \sum_{i} \mathfrak{t}_{i}$$
, then $h\mathfrak{t}h^{-1} = \sum_{i} h\mathfrak{t}_{i}h^{-1}$.
Thus $h\hat{\mathcal{K}}h^{-1} \subseteq \mathcal{H}_{\overline{h_{Y_{\bullet}}}} \subseteq \mathcal{H}$.

Normalizers

Thus, H_0 acts on the graded objects and the normalizer $N_{H_0}(\hat{\mathcal{K}})$ and $N_{H_0}(\mathcal{H}_{\overline{y_e}})$ have special significance.

Others forms in $\overline{O(det_n)}$

Let $X_m \subset X_n$ as before. Let $A_1, A_2 : X_m \to X_m$ be two linear maps and let B_1, B_2 be the $m \times m$ -matrices $B_i = A_i X_m$, i.e., with entries as formal linear combinations of entries of X_m . Let $f_i = det(B_i)$, then $f_i \in \overline{O(det_m)}$. Let G be the $r \times r$ -gadget matrix constructed out of B_1 and B_2 such that $det(G) = f_1 + f_2$. Let Y be the $n \times n$ -matrix below:

$$\left[\begin{array}{cc} G & 0 \\ 0 & I_{n-r} \end{array}\right]$$

Then $f = det(Y) = f_1 + f_2 \in Sym^m(X_m)$, is of degree m. The homogenization of f is indeed $f' = x_{nn}^{n-m} f \in Sym^n(X_n)$, and thus $W = \overline{O(f')} \subseteq \overline{O(det_n)}$ and we have the surjection.

$$\mathbb{C}[\overline{O(det_n)}] \twoheadrightarrow \mathbb{C}[W]$$

What are the G-modules in $\mathbb{C}[W]$?