CS101 Computer Programming and Utilization
Milind Sohoni

June 13, 2006

Milind Sohoni ()

CS101 Computer Programming and Utilization

DA

O So far

© What is sorting

© Bubble Sort

© Other Sorts

© Searching

o F = = = 9ar
Milind Sohoni () CS101 Computer Programming and Utilization

The story so far ...

@ We have seen various control flows.

@ We have seen multi-dimensional arrays and the char data type.
@ We saw the use of functions and calling methods.

@ We have seen structs and file input/output

This week...
Sorting and Searching J

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 3/25

A Problem

Recall that we have the struct:

struct student

{
char name[6] ;
char roll[8];
int hostel;

}

Suppose next that we have a list
(array) of students and we wish
to

@ Insert into that list.
@ Delete from that list.
@ Check if present in that list.

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 5/25

A Problem

Recall that we have the struct:

struct student

{
char name[6];
char roll[8];
int hostel;

}

Suppose next that we have a list
(array) of students and we wish
to

@ Insert into that list.
@ Delete from that list.
@ Check if present in that list.

Milind Sohoni () CS101 Computer Programming and Utilization

It is then clear that we must store

the array in a sorted order.
What does sorting mean?

@ Every element of the lis must

have a key on which the
sorting will be done.

@ For two keys k; and ko, we

must have that either
ki < ko, or ky = ky or

ki > ko. This is called total

ordering.

@ Sorting then means that

arranging the in the order

S1,...Sp so that
ki < ky <...< k.

For our example, the alphabetical

ordering is the required total
order.

June 13, 2006

5 /25

Sorting

Let us assume, for simplicity, we
have a struct called key and a
function which implements the
total order:
@ int CompareKey (key
k1,k2), which returns
> 1if ky > ko.
» 0 if k1 = kz.
> -1if ki < k.
Our problem then is to sort an
array of keys.

Let us first write this
CompareKey for char name[6].

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 7/25

Sorting

Let us assume, for simplicity, we
have a struct called key and a
function which implements the
total order:
@ int CompareKey (key
k1,k2), which returns
> 1if ky > ko.
» 0 if k1 = kz.
> -1if ki < k.
Our problem then is to sort an
array of keys.

Let us first write this

CompareKey for char name[6].

Milind Sohoni () CS101 Computer Programming and Utilization

#include <iostream.h>
int main()

{

char namel([7],name2[7];

int i;

cout << "student names?\n";
cin >> namel >> name?2;

for (i=0;i<7;i=i+1)

{ if (nameil[i]l<name2[i])

{
cout << "-1 \n"; return O;
};
if (namel[i]>name2[i])
{
cout << "1 \n"; return O;
};
}; // of for

cout << "0 \n"; return O;
return O;

June 13, 2006 7/25

Sorting

#include <iostream.h>
int main()

i—th location {

Whats happening?

char namel([7],name2[7];

int i;

cout << "student names?\n";
cin >> namel >> name?2;

[slufe]x] |

[sTup]x] | for (i=0;i<7;i=i+1)
{ if (nameil[i]l<name2[i])
{
@ If x; > xo return 1.
1 2 cout << "-1 \n"; return O;
@ If x; < xo return -1. }:
@ If x;y = xo then increment i. if (namel[i]>name2[i])
@ If i == 7 then return 0. {
cout << "1 \n"; return O;
};
}; // of for
cout << "0 \n"; return O;
return O;

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 9/25

Bubble Sort

Now that key comparison is clear,
let us now sort an array of
integers. Obviously this algorithm
can be used to sort any key.

We look at the bubble sort whose
basic step is the flip(i):
@ Compare two adjacent
elements x;_1, X;.

o If x; > x;_1 then

interchange.

. 14[3]... 1.
I

. [314]...].]

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 11 /25

Bubble Sort

Now that key comparison is clear,
let us now sort an array of
integers. Obviously this algorithm
can be used to sort any key.

We look at the bubble sort whose
basic step is the flip(i):

@ Compare two adjacent
elements x;_1, x;.

o If x; > x;_1 then

interchange.
. 14[3]... 1.
I
. [314]...].]

Milind Sohoni () CS101 Computer Programming and Utilization

A Phase(N-1) is a sequence of

flips:

flip(1), flip(2), ..., flip(N — 1)

[3[1[4]3]1]4]
U 7iip(1)
[L[3][4]3]1]2]
 flip(2)
[1[3]4]3[1]2]
I 7iip(3)
[1[3]3[4]1[2]
I lip(4)
[1[3]3[1[4]2]
I 7ip(5)
[1[3[3]1]2]4]

June 13, 2006

11/ 25

Bubble Sort

Thus, we see that:

@ At the end of Phase(N-1),
the largest element is in the
last location.

We may thus run:

@ Phase(N-1) which fixes the
(N-1)-th element.

@ Phase(N-2) which fixes the
(N-2)-th element.

°:
@ Phase(1) which fixes the
(1)-th element. and obtain:

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 13 /25

Bubble Sort

Thus, we see that:

@ At the end of Phase(N-1),
the largest element is in the
last location.

We may thus run:

@ Phase(N-1) which fixes the

(N-1)-th element.

@ Phase(N-2) which fixes the
(N-2)-th element.

°:
@ Phase(1) which fixes the
(1)-th element. and obtain:

Milind Sohoni () CS101 Computer Programming and Utilization

[3]1]4]3]1[4]
| Phase(5)
[1]3]3]1]2]4]
|l Phase(4)
[1]3]1]2]3]4]
| Phase(3)
[1]1]2]3]3]4]
|l Phase(2)
[1]1]2]3]3]4]
|l Phase(1)
[1]1]2]3]3]4]

‘ This sorts the array‘

June 13, 2006

13 /25

Bubble Sort sort.cpp

@ | is counting phase.

#include <iostream.h> @ j is counting flip
void sort(int c[],int N) @ array c is passed by
{ int i,j,temp; reference.

for (i=N-1;i>=1;i=i-1)
// beginning Phase (i)

for (j=1;j<=i;j=j+1)
// beginning flip (j)
if (cl[jl<clj-1D)
{ temp=c[jl; cljl=cl[j-1];
c[j-1]=temp;
+;

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006

15 / 25

Bubble Sort sort.cpp

@ | is counting phase.

#include <iostream.h> @ j is counting flip.
void sort(int c[],int N) @ array c is passed by
{ int i,j,temp; reference.

for (i=N-1;i>=1;i=i-1)

// beginning Phase (1) Question How many steps does

it take to sort an

for (j=1;j<=1i;j=j+1) array of size N
// beginning flip (j)
if (cljl<clj-11) Answer (N —1)+ (N —2)+
{ temp=c[jl; cl[jl=clj-11; oo+ 1
c[j-1]=temp; =N(N —1)/2
}s

Thus it takes quadratic, i.e.,
O(N?) time to bubble-sort.

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 15 /25

Other Sorts

There are faster ways to sort:
@ Merge-Sort, Heap-Sort,
O(N log).
@ Quick-Sort, expected time
O(N log).
All of these are fairly simple but

clever. We will look at
Merge-Sort though, not in detail.

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 17 /25

Other Sorts

There are faster ways to sort:

@ Merge-Sort, Heap-Sort

O log) Eﬁ "
@ Quick-Sort, expected time
O(N'Og N) recursve

sort

All of these are fairly simple but

clever. We will look at
Merge-Sort though, not in detail. Merge

Merge has three basic steps: | |

@ Split the given array A into
two equal halves A; and As.

@ Recursively, sort A;, Ay to
get sorted B, B».

@ Merge By, By to get sorted

Milind Sohoni () CS101 Computer Programming and Utilization

June 13, 2006 17 /25

Other Sorts

There are faster ways to sort:

@ Merge-Sort, Heap-Sort

O log) Eﬁ "
@ Quick-Sort, expected time
O(N'Og N) recursve

sort

All of these are fairly simple but

clever. We will look at
Merge-Sort though, not in detail. Merge

Merge has three basic steps: | |

@ Split the given array A into

two equal halves A; and A. How much time does Merge-Sort J

@ Recursively, sort Ap, A to take?
get sorted B, B».

@ Merge By, By to get sorted

Milind Sohoni () CS101 Computer Programming and Utilization

June 13, 2006 17 /25

Merge-Sort

@ Split the given array A into
two equal halves A; and As.

@ Recursively, sort A;, Ay to
get sorted B, B».

@ Merge Bj, B, to get sorted

B.
| |
% spllt ?
recursive

sort

% Merge

Milind Sohoni () CS101 Computer Programming and Utilization

June 13, 2006

19 / 25

Merge-Sort

@ Split the given array A into

two equal halves A; and As.

@ Recursively, sort A;, Ay to
get sorted B, B».

@ Merge Bj, B, to get sorted

B.
| |
% spllt

recursive

Lets say T(N) is the time taken
to merge-sort an N-array.

@ Split-ting an N-array into
two equal parts is easy. At
most a single for loop.

@ Recursive Merge: this should
take time 2 x T(N/2).

@ Merge is the operation of
merging two sorted arrays
into a single sorted array.
We will see that this takes
time 2/.

Thus we have:
T(N)=3N+2T(N/2)

We may expand this to check
that T(N) = O(Nlog N).

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006

19 / 25

Merge

Let us look at the
merge-operation:
9@ Merge merges two sorted
arrays into a single sorted
array.

full

Bl

We use three markers:
headl,head?2,tail.

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 21 /25

Merge

Let us look at the
merge-operation:
9@ Merge merges two sorted
arrays into a single sorted
array.

full

[=

We use three markers:
headl,head?2,tail.

void merge(int B1[],B2[],B[],int

{

int tail=0, head1=0, head2=0;
while (head1<N1 && head2<N2)

if B1[head1]<B2[head2]
{ BI[tail]=B1[headl];
headl=headil+1;
}
else
{ B[taill=B2[head2];
headl=headil+1;
};
tail=tail+1;

} // of while

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006

21 /25

Merge

Let us look at the
merge-operation:
9@ Merge merges two sorted
arrays into a single sorted
array.

full

[=

We use three markers:
headl,head?2,tail.

void merge(int B1[],B2[],B[],int
{
int tail=0, head1=0, head2=0;
while (head1<N1 && head2<N2)
if B1[head1]<B2[head2]
{ BI[tail]=B1[headl];
headl=headil+1;
}
else
{ B[taill=B2[head2];
headl=headil+1;
};
tail=tail+1;
} // of while
if (head1==N1) { push B2}
else {push B1};

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 21 /25

Search

@ Check if the integer n occurs
in a sorted array B of size .
The simplest way is to

@ Start at the beginning and
stop at the end. .

Milind Sohoni ()

CS101 Computer Programming and Utilization

Search

@ Check if the integer n occurs
in a sorted array B of size .

The simplest way is to

@ Start at the beginning and

stop at the end. . Ignore the
sorting.

Milind Sohoni () CS101 Computer Programming and Utilization

Search

@ Check if the integer n occurs
in a sorted array B of size .
The simplest way is to
@ Start at the beginning and
stop at the end. . Ignore the
sorting.
@ » Look at the mid-point of
B, say it is k.
> if k = n donel
» if k < n, Check(n,B2).
> if k > n, Check(n,B1).

S

| B [k] B2 |

Milind Sohoni () CS101 Computer Programming and Utilization June 13, 2006 23 /25

Search

@ Check if the integer n occurs

in a sorted array B of size N.

The simplest way is to

@ Start at the beginning and
stop at the end. . Ignore the

sorting.
@ » Look at the mid-point of
B, say it is k.

> if k = n donel!
» if k < n, Check(n,B2).
> if k > n, Check(n,B1).

lo hi

L1 |
mid

lo | i

LT |

lo hi

LT |
lohi

CS101 Computer Programming and Utilization

June 13, 2006

23 /25

Slowly...
mid
lo | hi

@ First ensure that c[hi]!=ip,

c[lo]!=ip. .
@ Now enter the infinite while
loop.

» Compute mid and check
that c[mid] !=ip.
» Check that 1o,hi have a
gap.
@ Now, redefine 1o,hi.

Milind Sohoni ()

int search(int c[],int N,

{

CS101 Computer Programming and Utilization

int ip)

int lo=0, hi=N-1, done=0,mid;
if (c[lo]==ip) return (lo);
if (c[hi]==ip) return (hi);
while (done==0)
{

mid=(lo+hi)/2;

if (c[mid]==ip) return (mid

if (hi-lo<2) return (-1);

if (c[mid]l<ip)

{ 1lo=mid; }

else

hi=mid;

}

June 13, 2006 25 /25

	Outline
	So far
	What is sorting
	Bubble Sort
	Other Sorts
	Searching

