
CS101 Computer Programming and Utilization

Milind Sohoni

June 17, 2006

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 1 / 37

1 So far

2 Queues-Introduction

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 2 / 37

The story so far ...

functions

file handling

structs

Srirang’s problem

Classes

This week...

Queues

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 3 / 37

A practical problem

Gulmohar has a limited
number of seating (say 10).

If a seat is empty, then a
guest may occupy it.

However, if there is no seat
empty, the guest should form
a queue outside.

How is this queue implemented?

The queue is two operations:

I pop pulls out the first

person in the queue.
I push name registers the

person to be in the queue.

It is assumed that the order
of exiting the queue is the
same as joining.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 5 / 37

A practical problem

Gulmohar has a limited
number of seating (say 10).

If a seat is empty, then a
guest may occupy it.

However, if there is no seat
empty, the guest should form
a queue outside.

How is this queue implemented?

The queue is two operations:

I pop pulls out the first

person in the queue.
I push name registers the

person to be in the queue.

It is assumed that the order
of exiting the queue is the
same as joining.

The queue may be implemented
as an array:

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

0

last

1 N−1

We estimate that there will
be no more than N people in
the queue.

The queue is then an array
of names, say list.

The first is list[0] and the
last is list[last].

push and pop are easily
implemented.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 5 / 37

Qarray.cpp

const int N=5;

struct entry

{

char name[7];

};

class Q

{

private:

entry list[5];

int last;

public:

void init(void);

// initializes the queue

int push(entry);

// pushes an entry on Q

entry pop(void);

// returns the first entry

};

Here N is fixed to be 5.

Q is a class:
I list stores the list of

entrys.
I last stores the location of

the last entry in the list.

The class functions are
typical. Here is init:

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 7 / 37

Qarray.cpp

const int N=5;

struct entry

{

char name[7];

};

class Q

{

private:

entry list[5];

int last;

public:

void init(void);

// initializes the queue

int push(entry);

// pushes an entry on Q

entry pop(void);

// returns the first entry

};

Here N is fixed to be 5.

Q is a class:
I list stores the list of

entrys.
I last stores the location of

the last entry in the list.

The class functions are
typical. Here is init:

void Q::init(void)

{

last=-1;

}

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 7 / 37

class functions

int Q::push(entry ee)

{

if (last==N-1)

{

return(1);

}

else

{

list[last+1]=ee;

last=last+1; return(0);

};

}

entry Q::pop(void)

{

entry ee;

ee=list[0];

for (int i=0;i<last;i=i+1)

list[i]=list[i+1];

last=last-1; return(ee);

}

Whats happening:

push: if the last entry is N-1,
then Q is full; return 1
(error).

push: Otherwise append the
entry after last and update
it.

pop: first, return the first
entry in the list, i.e., list[0].

pop: Next, move all
elements one step left.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 9 / 37

The main program

What is the main program? It is
to test the following input:

1 ace

1 king

-1

-1

1 queen

1 jack

1 ten

1 nine

-1

-1

0

1 ace means push ace.

-1 means a pop

0 means shut this program.

The program should give a
trace:

[sohoni@nsl-13 talk14]$./a.out <input

push ace

push king

pop ace

pop king

push queen

push jack

push ten

push nine

pop queen

pop jack

done

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 11 / 37

Structure of the main program

Initialize the Q.

while option != 0 do
I If option==1, read in

name and push.
I If option==-1, pop the Q.
I If option==0 do nothing.

endwhile;

int main()

{

entry ee; Q QQ;

QQ.init(); int option=1;

WHILE code HERE

cout << "done\n";

}

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 13 / 37

Structure of the main program

Initialize the Q.

while option != 0 do
I If option==1, read in

name and push.
I If option==-1, pop the Q.
I If option==0 do nothing.

endwhile;

int main()

{

entry ee; Q QQ;

QQ.init(); int option=1;

WHILE code HERE

cout << "done\n";

}

while (option!=0)

{

cin >> option;

if (option==1)

{

cin >> ee.name;

cout << "push " << ee.name << "\n";

h=QQ.push(ee);

if (h==1)

{

cout << "error \n";

option=0;

};

};

if (option==-1)

{

ee=QQ.pop();

cout << "pop "<< ee.name << "\n";

};

};

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 13 / 37

The output again

1 ace

1 king

-1

-1

1 queen

1 jack

1 ten

1 nine

-1

-1

0

1 ace means push ace.

-1 means a pop

0 means shut this program.

The program should give a
trace:

[sohoni@nsl-13 talk14]$./a.out <input

push ace

push king

pop ace

pop king

push queen

push jack

push ten

push nine

pop queen

pop jack

done

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 15 / 37

Problems?
Well, we havent
really implemented
pop properly: pop
on an empty queue
should be an error.

When the number
in the Q exceeds
N, then there is an
error.

A pop on a Q
takes O(n)-time.
We need to move
the entries.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 17 / 37

Problems?
Well, we havent
really implemented
pop properly: pop
on an empty queue
should be an error.

When the number
in the Q exceeds
N, then there is an
error.

A pop on a Q
takes O(n)-time.
We need to move
the entries.

Solutions:

Implement pop
correctly.

Make N large.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 17 / 37

Problems?
Well, we havent
really implemented
pop properly: pop
on an empty queue
should be an error.

When the number
in the Q exceeds
N, then there is an
error.

A pop on a Q
takes O(n)-time.
We need to move
the entries.

Solutions:

Implement pop
correctly.

Make N large.

Wasteful.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 17 / 37

Problems?
Well, we havent
really implemented
pop properly: pop
on an empty queue
should be an error.

When the number
in the Q exceeds
N, then there is an
error.

A pop on a Q
takes O(n)-time.
We need to move
the entries.

Solutions:

Implement pop
correctly.

Make N large.

Wasteful.

There is actually an array implementation
which does not move elements.
This is called the circular queue
implementation.
Two new variables:

head: the first element.

tail: the last element.

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

tailhead

head tail

headtail

many push

pop
new new

push

Implement cicrularQarray.cpp.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 17 / 37

Static and Dynamic Memory allocation

So far, all our variables and
their sizes were declared
up-front.

This means that we can
estimate the memory
requirement of your program
even before the program has
started running.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 19 / 37

Static and Dynamic Memory allocation

So far, all our variables and
their sizes were declared
up-front.

This means that we can
estimate the memory
requirement of your program
even before the program has
started running.

This seems to be the
essential bottle-neck for
implementing a queue where
there is no bound on the
length.

C++ allows this: Dynamic
Data Structures

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 19 / 37

Static and Dynamic Memory allocation

So far, all our variables and
their sizes were declared
up-front.

This means that we can
estimate the memory
requirement of your program
even before the program has
started running.

This seems to be the
essential bottle-neck for
implementing a queue where
there is no bound on the
length.

C++ allows this: Dynamic
Data Structures

Implement the following
requirement:

A long list and increasing list
is to be maintained. The
length of this list is not
predictable.

The program should readin
in inputs of the type:

1 ashank

2 vibha

0

1 ashank: add ashank to the
list.

2 vibha: check if vibha is in
the list.

0: end the session.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 19 / 37

Static and Dynamic Memory allocation

A popular technique of
implementing dynamic data
structures is through the use of
Pointers. Recall:

struct entry

{

char name[7];

};

Here is a pointer:

entry *w;

This says that w is a pointer to a
data-item of type entry.

Our first objective will be to
create long lists using pointers.
A pointer is declared using the
*-notation.

classname *PointerVariableName

This declares
PointerVariableName as the
address of a location which stores
an entity of the type classname.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 21 / 37

A looong list

Let us create a very long list of
entrys.

struct Qentry

{

entry field;

Qentry *next;

};

This creates a structure which has
a field to store the data, and next

which points to a similar Qentry.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 23 / 37

A looong list

Let us create a very long list of
entrys.

struct Qentry

{

entry field;

Qentry *next;

};

This creates a structure which has
a field to store the data, and next

which points to a similar Qentry.

Qentry *w,*head;

head->field=firstentry;

head->next=NULL;

while (cond)

{

w=new Qentry;

w->field=newentry();

w->next=head;

head=w;

};

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 23 / 37

A looong list

Let us create a very long list of
entrys.

struct Qentry

{

entry field;

Qentry *next;

};

This creates a structure which has
a field to store the data, and next

which points to a similar Qentry.

Qentry *w,*head;

head->field=firstentry;

head->next=NULL;

while (cond)

{

w=new Qentry;

w->field=newentry();

w->next=head;

head=w;

};

w=1448 w=1448

new1 nullfirst null

head=1357

w=1448

new1new1 first null

head=1448

1357 1357

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 23 / 37

A looong list

What happens is:

The statement w=new entry

creates a template, i.e.,
storage of the type Qentry

with junk entries.

These fields are accessed by
w->....

Once correctly set, we have
created a network of data
items.

Qentry *w,*head;

head->field=firstentry;

head->next=NULL;

while (cond)

{

w=new Qentry;

w->field=newentry();

w->next=head;

head=w;

};

w=1448 w=1448

new1 nullfirst null

head=1357

w=1448

new1new1 first null

head=1448

1357 1357

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 25 / 37

A looong list

What happens is:

The statement w=new entry

creates a template, i.e.,
storage of the type Qentry

with junk entries.

These fields are accessed by
w->....

Once correctly set, we have
created a network of data
items.

Qentry *w,*head;

head->field=firstentry;

head->next=NULL;

while (cond)

{

w=new Qentry;

w->field=newentry();

w->next=head;

head=w;

};

new2 new1 first null

head

new1 firstfirst null null

head head

2

0 1

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 27 / 37

How do I search?

Qentry *head, *runner;

entry field0, currfield;

runner=head;

currfield=runner->field;

int found=0;

while ((runner!=NULL)&&

{ (found==0))

currfield=runner->field;

if (currfield==field0)

found=1;

runner=runner->next;

};

return (found);

The program needs a head
which is a pointer to the
head of the list.

Next, it needs field0 which is
the field to be searched.

It maintains a runner which
goes from the head of the
list to the tail until field0 is
found.

This is done by the
statement:

runner=runner− >next;

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 29 / 37

How do I search?

Qentry *head, *runner;

entry field0, currfield;

runner=head;

currfield=runner->field;

int found=0;

while ((runner!=NULL)&&

{ (found==0))

currfield=runner->field;

if (currfield==field0)

found=1;

runner=runner->next;

};

return (found);

The program needs a head
which is a pointer to the
head of the list.

Next, it needs field0 which is
the field to be searched.

It maintains a runner which
goes from the head of the
list to the tail until field0 is
found.

This is done by the
statement:

runner=runner− >next;

ME U XT IM

head runner

nullKO

(UR)

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 29 / 37

Queues again

1 ace means push ace.

-1 means a pop

0 means shut this program.

1 ace

1 king

-1

-1

1 queen

1 jack

1 ten

1 nine

-1

-1

0

[sohoni@nsl-13 talk14]$./a.out <input

push ace

push king

pop ace

pop king

push queen

push jack

push ten

push nine

pop queen

pop jack

done

We want...

No LIMITS on how long the
queue can get!

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 31 / 37

The classes

struct Qentry

{

entry field;

Qentry *next;

};

class Q

{

private:

Qentry *head, *tail;

public:

void init(void);

// initializes the queue

int push(entry);

// pushes entry onto queue

entry pop(void);

// returns the first entry

};

Our old implementation had
an array of entry.

Now, instead, we have a
Qentry with a pointer.

head points to the head of
the Q, while tail points to
the last entry.

I entry leaves from the

head, but
I comes in at the tail.

The class interface remains
the same. This means that
the old main program will
still work!

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 33 / 37

The functions
void Q::init(void)

{

head=NULL; tail=NULL;

}

int Q::push(entry ee)

{

Qentry *w;

w=new Qentry;

w->field=ee;

w->next=NULL;

if (head==NULL)

{

head=w; tail=w;

}

else

{

tail->next=w;

tail=w;

};

return(0);

} Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 35 / 37

The functions
void Q::init(void)

{

head=NULL; tail=NULL;

}

int Q::push(entry ee)

{

Qentry *w;

w=new Qentry;

w->field=ee;

w->next=NULL;

if (head==NULL)

{

head=w; tail=w;

}

else

{

tail->next=w;

tail=w;

};

return(0);

}

init is nothing. Set head, tail
to NULL.

push has two cases:
I When the Q is empty and

a new element is to be

added.
I When the Q is non-empty.

Both cases are easy.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 35 / 37

The functions
void Q::init(void)

{

head=NULL; tail=NULL;

}

int Q::push(entry ee)

{

Qentry *w;

w=new Qentry;

w->field=ee;

w->next=NULL;

if (head==NULL)

{

head=w; tail=w;

}

else

{

tail->next=w;

tail=w;

};

return(0);

}

init is nothing. Set head, tail
to NULL.

push has two cases:
I When the Q is empty and

a new element is to be

added.
I When the Q is non-empty.

Both cases are easy.

If head is NULL → make w

the head, tail.

If head exists → append to
the tail, and modify it.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 35 / 37

entry Q::pop(void)

{

entry ee; Qentry *dum;

if (head==NULL)

cout << "error\n";

if (head==tail)

{

ee=head->field;

delete(head);

head=NULL;tail=NULL;

}

else

{

ee=head->field;

dum=head;

head=head->next;

delete(dum);

};

return(ee);

}

pop is simple as well except
for the delete function.

delete(pointerVar); returns
the memory location back
from the program to the
system.

If head is NULL, error.

If head==tail then there is
only one element, so the Q
becomes empty.

Else, everything is normal:
I Remove the head entry,

and update the head.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 37 / 37

entry Q::pop(void)

{

entry ee; Qentry *dum;

if (head==NULL)

cout << "error\n";

if (head==tail)

{

ee=head->field;

delete(head);

head=NULL;tail=NULL;

}

else

{

ee=head->field;

dum=head;

head=head->next;

delete(dum);

};

return(ee);

}

pop is simple as well except
for the delete function.

delete(pointerVar); returns
the memory location back
from the program to the
system.

If head is NULL, error.

If head==tail then there is
only one element, so the Q
becomes empty.

Else, everything is normal:
I Remove the head entry,

and update the head.

Note how delete is used.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 37 / 37

Summary

Pointers enable us to request
and release memory for our
use.

They enable us to create
intricate data-structures with
great conceptual ease.

The main functions are new,
delete.

For a program using
pointers, it CANNOT be
predicted how much memory
it will use.

If we dont delete what we
dont need, then that is called
a MEMORY LEAK.

Assignment

Two lists of students exist in two
files db1.txt and db2.txt.
Using pointers, prepare a list of
students which exist on both lists.
In other words, compute the
intersection.

Milind Sohoni () CS101 Computer Programming and Utilization June 17, 2006 38 / 37

	Outline
	So far
	Queues-Introduction

