CS101 Computer Programming and Utilization
Milind Sohoni

May 13, 2006

Milind Sohoni ()

CS101 Computer Programming and Utilization

DA

© So far

© Functions-Preliminary

© Avoid Duplications

0 Conceptual Separation

© Recursion

o F = = = 9ar
Milind Sohoni () CS101 Computer Programming and Utilization

The story so far ...

@ We have written some non-trivial programs

@ We have seen various control flows.

@ We have seen multi-dimensional arrays and the char data type.
9 Finally, we saw how to get formatted output.

Functions

We come now to an important conceptual step called functions. Again
www.cplusplus.com /doc/tutorial for reference.

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 3/28

Motivation for Functions

In programming, functions usually
arise from three basic conceptual
requirements.

@ As a piece of code which
appears to be repeated.

@ As a utility which should be
viewed as an independent
task.

@ As a conceptual
understanding leading to a
solution to the problem.

We will see examples of all three.

Problem 1

Write a program to solve the

#include <iostream.h>

float det(float a,float b,

}

float c,float d)

return (axd-bxc);

int main()

{

float all,al2,a21,a22,bl1,b2,d1
cin >> all >> al2 >> a2l >> a2
cin >> bl >> b2;
d=det(all,al2,a21,a22);
if (d==0)

cout<< "error";
di=det(bl,al2,b2,a22);
d2=det(all,bl,a21,b2);

. . << < " on << <<
equation Ax = b, when A is an cout di/d d2/d
invertible 2 X 2-matrix. ¥

May 13, 2006 5/ 28

Motivation for Functions

We use Kramer’s rule:

det bl al2
| b2 a22
X1 =
o (] 211 al2
| a2 a2
all bl
det([a2 b2 D
2= all 12
det([al2 222 D
Input/Output
Input
1213
34
Output

11

#include <iostream.h>

float det(float a,float b,
float c,float d)

{
return (axd-b*c);
}
int main()
{

float all,al2,a21,a22,bl,b2,d1
cin >> all >> al2 >> a21 >> a2
cin >> bl >> b2;
d=det(all,al2,a21,a22);
if (d==0)

cout<< "error";
di=det(bl,al2,b2,a22);
d2=det(all,bl,a21,b2);
cout << di/d << " " << d2/d <<

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 7/28

#include <iostream.h>

float det(float a,float b,

|AxB.c Execution Flow| float c,float d)

{

float det(float a,....)) return (a*d-bxc);

{ body 1nt main()

} float all,al2,a21,a22,bl1,b2,d1
cin >> all >> al2 >> a2l >> a2
cin >> bl >> b2;

prevline; d=det(all,al2,a21,a22);

d=det(all,a12,a21,a22) if (d==0)

. cout<< "error";
nextline

di=det(bl,al2,b2,a22);
d2=det(all,bl,a21,b2);

The variables are copied in order
cout << di1/d << " " << d2/4 <<

and the output copied back.)

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 9 /28

#include <iostream.h>
float det(float a,float b,
float c,float d)
{
return (a*xd-bxc);

}

int main()

{
float
cin >>
cin >> bl >> b2;
d=det(all,al2,a21,a22);
if (d==0)

cout<< "error";

di=det(bl,al2,b2,a22);
d2=det(all,bl,a21,b2);
cout << ...

}

)

]

Note that the function is
specified before the main and
used after its specification.

The function det has four
inputs and one output. Each
input has a given data-type
and so does the output.
When called, the correct
order and type must be used.

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 11 /28

@ Note that the function is
specified before the main and
used after its specification.

@ The function det has four
inputs and one output. Each

#include <iostream.h>

float det(float a,float b,
float c,float d)

{ roturn (asdobro) input has a given data-type
} and so does the output.
When called, the correct
int main() order and type must be used.
{ @ Control temporarily goes to
float ... the function. Upon the
cin >> ... return statement, control
cin >> bl >> b2; returns to the line after the
d=det(all,al2,a21,a22); calling statement. Thus, for
if (d==0) each call, . .
cout<< "error"; » The point of return, is
stored.
di=det(bl,a12,b2,a22); » The input arguments are
d2=det(all,bl,a21,b2); copied out, and

> upon, return, the output
} argument copied into the
calling variable.

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 11 /28

cout <<

Rootfinding again

‘rootfinding.c

We modify the earlier
cubicroot.c to find the roots of
sin(x) or for that matter any
function.

#include <iostream.h>
#include <math.h>

float f(float x)
{ // ANY FUNCTION HERE
return(sin(x)) ;

}

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 13 /28

Rootfinding again

‘rootfinding.c

We modify the earlier

cubicroot.c to find the roots of desired '

sin(x) or for that matter any root hi

function. \/‘/

lo

#include <iostream.h> | |

#include <math.h> J mid

float f(float x)

{ // ANY FUNCTION HERE B
return(sin(x)) ;

}

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 13 /28

Rootfinding again

‘rootfinding.c ‘

We modify the earlier
cubicroot.c to find the roots of
sin(x) or for that matter any
function.

#include <iostream.h>
#include <math.h>

float f(float x)
{ // ANY FUNCTION HERE
return(sin(x)) ;

}

INPUT

34 0.00001
OUTPUT
3.1416

i

{

nt main()

float lo,hi,mid,fhi,fmid, flo,
cout << "low high tolerance" <
cin >> lo >> hi >> tol;
mid=(lo+hi)/2;
flo=f(1lo) ;fhi=f (hi) ;fmid=f (mid
while (fabs(fmid)>tol)

{
if (floxfmid >0)
{
lo=mid; flo=fmid;
}
else
{
hi=mid; fhi=fmid;
};

mid=(lo+hi)/2;fmid=f (mid);
}; // end of while
cout << mid << "\n";
return 0;

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 15 / 28

Recursion

The function achieved a
separation of the evaluation of
the function from its root finding.
Thus the two activities can be
separately implemented.

We have seen the use of function
to

@ Avoid duplication of code.
AxB.c
@ Separate two concepts.

rootfinding.c

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 17 / 28

Recursion

The function achieved a
separation of the evaluation of
the function from its root finding.
Thus the two activities can be
separately implemented.

We have seen the use of function
to

@ Avoid duplication of code.
AxB.c

@ Separate two concepts.
rootfinding.c

@ think differently!

Compute N! J

factorial.c

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 17 / 28

Recursion

The function achieved a
separation of the evaluation of

the function from its root finding.

Thus the two activities can be
separately implemented.

We have seen the use of function
to

@ Avoid duplication of code.
AxB.c

@ Separate two concepts.
rootfinding.c

@ think differently!

Compute N!

factorial.c

Milind Sohoni ()

#include <iostream.h>
#include <math.h>
int fact(int x)
{
if (x==1) return(l);
else return(xxfact(x-1));
}
int main()
{
int N;
cout << "N7";
cin >> N;

cout << fact(N);

J }

CS101 Computer Programming and Utilization May 13, 2006 17 / 28

@ The function fact calls itself, but with

#include <iostream.h>
a smaller argument.

#include <math.h>
@ ltisclear that Nl = Nx((N—1)!)and it fact(int x)

the code imitates that. {

@ Note that fact has one part which if (x==1) return(l);
stops the recursion, i.e, when x==1. else return(xxfact(x-1));
The other calls fact (x-1). }

@ The calling sequence is the order in int main()
which factorial are executed and the {
input arguments. int N;

@ The values are returned in the reverse cout << "N
order. Thus the call to fact (5) is cin >> N;
complete only after fact(4) has cout << fact(N);
returned a value. }

calling sequence
fact(4) fact(3) fact(2) fact(1)
-~ S _ - ~S__—
valuesreturned

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 19 /28

Old Problem

Count the number of sequences
of length n over 0-1 with NO
consecutive zeros.

a, = strings as above but ending in 0
b, = strings as above but ensing in 1
Our interest is in a, + b,. We
have:

bn—l
ap—1+ bn—l

an
b

Old Solution

Using Arrays int A[10],
B[10].

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 21 /28

Old Problem

Count the number of sequences
of length n over 0-1 with NO
consecutive zeros.

an, =
b, = strings as above but ensing in 1

Our interest is in a, + b,. We

have:

bn—l
ap—1+ bn—l

an
bn

Old Solution

Using Arrays int A[10],
B[10].

Milind Sohoni ()

strings as above but ending in 0

CS101 Computer Programming and Utilization

#include <iostream.h>
#include <math.h>

int B(int x);

int A(int x)

if (x==1) return(l);
else return(B(x-1));
}
int B(int x)
{
if (x==1) return(1);
else return(A(x-1)+B(x-1));
}
int main()
{
int N;
cin >> N;
cout << A(N)+B(N);
}

May 13, 2006 21 /28

#include <iostream.h>
#include <math.h>

int B(int x);

int A(int x)
{
if (x==1) return(1);
else return(B(x-1));
}
int B(int x)
{
if (x==1) return(1);
else return(A(x-1)+B(x-1));
}
int main()
{
int N;
cin >> Nj
cout << A(N)+B(N);

Many things to note here:
@ The programs for A and B

mimic their mathematical
definitions.

There are two functions
calling each other recursively.

Note the peculiar single line
header of B . If this were
absent, the program would
not compile.

AnBn.c: In function ‘int A (i
AnBn.c:6: error: ‘B’ undecla
(first use this fun
AnBn.c: In function ‘int B(i:
AnBn.c:9: error: ‘int B(int)
prior to declaratio:

This just means that B
occurs in A but its identity is
not declared beforehand.

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 23 /28

WARNING: Recursion is simpler
to implement but

@ Harder to debug.
@ Generally Inefficient.

In this case:
@ A4 calls B3 which will call
A2, B2 and so on.

@ B4 will call A3,B3. However,
the A4 call of B3 is forgotten
and cannot be re-used.

Milind Sohoni ()

CS101 Computer Programming and Utilization

#include <iostream.h>
#include <math.h>
int B(int x);
int A(int x)
{
if (x==1) return(l);
else return(B(x-1));
}
int B(int x)
{
if (x==1) return(1);
else return(A(x-1)+B(x-1));
}
int main()
{
int N;
cin >> N;
cout << A(N)+B(N);
}

May 13, 2006 25 /28

In Total

A4 —= B3 A2—=Bl1

B2 Al
Bl

B4 A3—=B2c Al
Bl

BSiA2> Bl
32<§:A1
B1
We see that there are:
@ 5 calls to B1, 3 calls to Al.
@ 3 calls to B2 and 2 calls to A2.
@ 2 calls to B3 and 1 call to A3.

Thus, there is a lot of duplication in

effort. The array code is much much

more efficient.

Milind Sohoni ()

CS101 Computer Programming and Utilization

#include <iostream.h>
#include <math.h>
int B(int x);
int A(int x)
{
if (x==1) return(l);
else return(B(x-1));
}
int B(int x)
{
if (x==1) return(1);
else return(A(x-1)+B(x-1));
}
int main()
{
int N;
cin >> N;
cout << A(N)+B(N);
}

May 13, 2006 27 /28

Summary

@ Functions have three typical uses:
» save code repetition.
» separate distinct parts of the code
» conceptualize mathematical definitions
@ The function must be specified before the main program. It must have input
arguments and an output value.
@ The calling program must respect these attributes.

@ Control temporarily passes to the function and returns to the next statement.

Problems
@ Let Ry and R; be two rectangles in a plane. Show that there is a line which
will cut both rectangles into equal halves. Write a program to input two sets
of four points. Then (i) check that each set marks a rectangle, and (ii)
compute the cut above.
@ Write a program which takes in a positive integer and prints one factorization
of it into primes.

Milind Sohoni () CS101 Computer Programming and Utilization May 13, 2006 28 /28

	Outline
	So far
	Functions-Preliminary
	Avoid Duplications
	Conceptual Separation
	Recursion

