

SM37: Reconstruction of Feature Volumes and Feature Suppression

Sashikumar Venkataraman1
Geometric Software Solutions Ltd.

Plant 14, Pirojshanagar,
Vikhroli, Mumbai-400079, India

92-22-5960982

sashiv@geometricsoftware.com

 Milind Sohoni
Dept. of Computer Science and Engg.
Indian Institute of Technology, Powai

Mumbai-400076, India
91-22-5767729

sohoni@cse.iitb.ac.in

ABSTRACT

This paper describes a systematic algorithm for reconstructing the
feature volume from a set of faces in a solid model. This
algorithm serves a dual purpose. Firstly, the algorithm generates
the feature volume by extending or contracting the neighboring
faces of the set of faces. Secondly, the algorithm may also be used
to remove (or suppress) the face-set from the model. The
algorithm uses a divide-and-conquer strategy and geometric cues
to identify the correct topology. It robustly handles a wide class
of feature volumes with complex topology and geometry. A
simplified version of the algorithm has also been presented to
handle volumes resulting from 2.5D features.
Keywords

Feature volume reconstruction, feature suppression, delete faces.

1. INTRODUCTION
Feature recognition is an important step in many CAD/CAM
applications. In the area of manufacturing, feature recognition
provides an important bridge between CAD and CAM by
automatically or interactively extracting manufacturing features
from a part. These features represent negative volumes associated
with a particular machining operation. In the area of design,
feature recognition is used to extract specific set of form features
from parts that do not have design information. The original
design tree may be lost in translation of data from one CAD
system to another. Feature recognition is then used to recreate the
design intent. For a comprehensive review of feature recognition,
the reader is referred to Refs [1,2,3].
An important step during feature recognition is the creation of
feature volume corresponding to the feature face-set. Feature
volumes are used in many applications such as tool accessibility
analysis [4] and process planning [5]. Feature volumes also aids
in resolving feature interactions during feature recognition [6,7,8].
For example in [6], the same authors had presented a graph-based
framework for feature recognition. Simple or non-interacting
features are first recognized as a set of faces, and the
corresponding feature volume is constructed. The recognized

feature is then suppressed by removing/filling the feature volume,
and thereby updating the part. The part updation simplifies the
part, and facilitates further recognition of interacting features.
Apart from feature recognition, the delete face operator can also
be used for local editing and modification of features. For
example, deleting certain kinds of features is frequently used to
simplify parts to aid several downstream applications such as
finite element analysis (FEA). This operator is also very useful in
modification of features in parts that do not have the complete
design tree available.
Several researchers have attempted to construct feature volumes
from feature face-sets. One common technique adopted to create
feature volumes is by sweeping 2D-profiles [9, 10]. However, this
technique can be adopted only for swept features. Attempts have
also been made to create feature volume by extending adjacent
faces of the feature faces [8,11,12,13]. These approaches begin by
intersecting all the neighboring faces, and then finding the feature
volume from the intersection graph using some heuristics and
constraints. However, selecting the right edges and vertices is a
difficult problem, and no systematic approach has been presented
to resolve them. Overall, the approaches presented so far are
mainly heuristic in nature and usually work for simple and
specific kinds of feature volumes. No rigorous algorithm has yet
been presented that handles general feature volumes that could be
concave and of arbitrary topology.
In this paper, we present a general algorithm to remove a set of
faces from a part and reconstruct the corresponding feature
volume by extending/contracting the neighboring faces of the
feature. This is referred to as the delete face operation. Our
algorithm is unique from other face-extension algorithms in many
aspects. We use a divide-and-conquer approach in which a
complex feature volume is divided into simpler sub-problems.
Unlike other face-extension approaches, our algorithm does not
perform all possible intersections initially; but resolves edges and
vertices incrementally. Heuristics are used in clearly defined steps,
and are independent of the basic framework of the algorithm. Our
algorithm handles many complex configurations including
concave feature volumes, and can be applied to faces of any
surface type that extends smoothly. Unlike some other
approaches, our algorithm allows extension as well as shrinking of
neighbor faces. Furthermore, the suppression of the feature from
the part and the creation of feature volume take place in a single
step without needing an extra boolean operation.

1 Sashikumar V. is also pursuing a Ph.D. in the Dept of Computer

Science and Engg. at the Indian Institute of Technology, Powai.

The delete face operator is offered by many geometry kernels such
as Parasolid [15] and ACIS [16]. However, the functionality and
robustness varies across kernels and several do not offer it at all.
Our algorithm deals with many cases that are not handled by the
existing geometry kernels. These examples are discussed later in
the paper. Moreover, none of the existing kernels gives the feature
volume as an output of the delete face operator. Furthermore, the
presented algorithm is implemented in a kernel-independent
platform [17], and can be easily ported to any geometry kernel.
The paper is organized as follows. Section 2 presents the
overview of the delete face operator. Section 3 discusses the main
algorithm of delete faces. Section 4 describes finer details of the
algorithm and explains the working of the algorithm in specific
situations. Section 5 describes issues relating to implementation
of the delete face operation. Section 6 presents several examples
that are handled by our algorithm. Section 7 discusses a special
case of the operation applied to 2.5D manufacturing features. A
conclusion to the paper is presented in the final section.

2. OVERVIEW
The input of the delete face operator is a boundary representation
model (brep) and a set of connected faces that is to be removed
from the model. The input set of faces is assumed to correspond to
a feature that either adds or removes volume from a solid. The
output of the operator is a modified model obtained by removing
the set of faces, and patching up the deleted region. We assume
that extension/contraction of neighbor faces suffice to construct
the feature volume without requiring additional faces. Figure 1(a)
shows an example of a pocket feature interacting with two slots.
The bottom faces of the two slots are at different levels. The
pocket feature can be recognized using common feature
recognition techniques. The feature volume is then created using
the delete face operation and is used to suppress the feature as
shown in Figure 1(b).

Figure 1 (a) Feature interaction between a pocket and slots. (b)
Model obtained after suppressing the pocket feature.

2.1 Terminology
The input to the delete face procedure is a set of faces. These
faces are referred to as the feature faces and is denoted by f0, f1, f2,
… fm. The output is an updated model formed after removing the
set of faces and patching the region by extending/shrinking the
neighbor faces. These neighboring faces are referred to as the
external faces and are denoted by F0, F1, F2, … Fn. The edges that
are along the boundary of the feature faces are termed as
boundary edges, and the vertices along the boundary are termed
as the boundary vertices. The edges that are not along the

boundary but touch the boundary vertices are termed as external
edges. The set of boundary edges forms one or more boundary
loops. Figure 2 shows the boundary loop and external edges of a
corner slot. The boundary edges of the slot form one boundary
loop that has three external edges.

Figure 2 Boundary and external edges for a corner slot.

Figure 3 Boundary and external edges for a through poc
through slot.

Figure 3 shows the boundary loops and external edg
through pocket and a slot. Figure 3(a) shows an examp
two boundary loops. Figure 3(b) shows an example
external edges between the same geometric entities. T
termed as co-defined edges. Each external edge has a l
right face associated with it. This is initially assigned
neighbor faces of the external edges. The left face is defin
neighboring face on the left of the edge as one travels a
edge towards the boundary vertex. The other neighborin
assigned as the right face of the external edge. The exter
in a loop are ordered in a circular list such that the left fa
next external edge is the right face of the current exter
For simplifying the analysis, it is convenient to visu
boundary loop and the external edges in a planar graph
in Figure 4 below.

Figure 4 Schematic representation of the external edg
corner slot.

F0

F1
F2

e2

e1

e0

C
e

B

1

F2

F0

f

A
e

e

 e
Boundary loop

S
l

odefined external
dges
oundary
F

2
 f1
f0
n external
dge
0

e1
2
econd boundary
oop

First boundary
loop
(a)

ke

es
le
 o
he
eft
fro
ed
lo
g

nal
ce
nal
ali
as

es
(b)

t and

 for a
having
f two
se are
 and a
m the
 as the
ng the
face is
 edges
 of the
 edge.
ze the
shown

 of the

2.2 Nature of Solutions
The solution to the delete face operation is better understood in
terms of the feature volume. As discussed before, we assume that
the face-set to be deleted arose from a boolean subtract (or unite)
of the feature volume from the part. Figure 6 shows a volumetric
feature created by an extrude cut and the corresponding feature
volume.

Figu

The
set
face
need
requ
shri
stitc
solu
vert
its v
grap
exte
Furt
from
com
solu
non
con
heu
the
dele

Figu
for t

There is, however, another ingredient required to construct the
geometry from a candidate solution graph, namely, the
construction of the local geometry at a vertex. In the purely
convex or concave vertex case, the face geometry suffices to
create the local geometry at the vertex. This is not the case, when
the vertex has negative gaussian curvature. In all, the choice of the
vertex geometry has a total of eight possibilities and is termed as
the sense of the vertex. These have been shown in Figure 7 and
Figure 8 where X, Y, and Z denote faces with fixed face outward
normal along the x, y and z axis. It is important to note that the
vertex sense is directly related to the convexity and direction of
the adjoining edges.

Solution
face-set

Visible
face-set

1

5
2

F3

F4

1

e

e2

+
_

F5

e4

e5
F

re 5 Poc

 boundary
of faces in
-set. The v
 to be de
ired outpu

nking the
hing the
tion face-
ices and w
ery constr
h has one
nsion/cont
hermore,
) the so
pletely spe
tion to th
-determini
structing th
ristics, this
formation
te face ope

re 6 So
he bounda

Boundary
loop

e
Extrude profile
and direction

Z

Y X

+

Z

_ Y
X

F

F

F4

e3

F0
ket

loo
to
isi
let
t o
nei
vis

set
ho
uct
 o
rac
the
lut
cif
e

stic
e g
 is
of
rat

lut
ry

3

0
F

F

 created

p is seen
two part
ble face-
ed from
f the del
ghbor fa
ible fac
is visua

se arcs ar
ion, this
r more b
tion of
 externa
ion grap
ied by it
delete f
ally “gu
eometry
roughly
the solut
ion.

ion graph
loop show

F2

F

e2

e0
e5

e

3

e4
0

as an extruded cut.

 on the feature solid, and partitions the
s, the visible face-set and the solution
set is the collection of feature faces that
the part. The solution face-set is the

ete face and is formed by extending or
ces. The feature volume is formed by
e-set and the solution face-set. The
lized as a graph whose nodes are the
e the edges of the solution face-set. By
is a planar graph and every face of this
oundary edges and corresponds to the

the corresponding neighbor face.
l edges must extend into (or contract
h with the same geometry that is
s neighboring faces. Thus in effect, the
ace problem may be constructed by
essing” the solution graph, and then
. Using a recursion and some geometric
the approach we follow. Figure 6 shows
ion graph for the above example by the

 obtained by the delete face operation
n in Figure 5.

Figure 7 Vertex w
vertex; (b) concave ve

Figure 8 Two exam
curvature.

3. DELETE FA
The delete face algor
by a set of external
initial loop problem
to the boundary loop(
the algorithm is a sol
loop.
The delete face algo
and extending the u
around the boundary
from the set of exte
external edge. This f
vertex of the extend
intersection of the e
simultaneously create
from vc, that are obt
adjacent faces of the e
shows this step starti
determined as face F
intersection of faces F

+
_

(

X

+ Y
Z

_

_

F2
F3

F1

F0

F5

F4
F3 F2

e2

e4

e3

e5 e0

e1

F4
F5

F0
F1

1

e1
a)

ith positive Gaussian curvature.
rtex.

ples of vertices with negative Ga

CE ALGORITHM
ithm mainly solves a loop probl
edges in a well-defined circular
consists of all external edges cor
s) of the face-set to be deleted. Th
ution graph that matches along th

rithm begins by selecting an ext
nderlying curve to an appropri
 vertex of the edge. A face is
rnal faces that most likely int

ace is termed as the opposite fac
ed external edge vc, is determi
xternal edge and the opposite
s two edges of the solution graph
ained by intersection of the cor
xternal edge and the opposite fac

ng at external edge e2. The oppo
0. The edges el and er are determ
2 and F3 with F0.

 Z
X

Y

+

(a) (b)
(b)

(a) convex

ussian

em defined
 order. The
responding
e output of
e boundary

ernal edge,
ate interval
determined
ersects this
e. The end
ned as the
face. This
 emanating
responding
e. Figure 9
site face is
ined as the

+

_

Figure 9 Exte

The above step
sub-problems c
of the selected
form one loop
problem. These
problems. The
combined to p
the breaking
schematically.
problem has an
edge is triviall
graph.

Figure 10 Bre

In the above
opposite face
These heuristic

In certain situations, instead of an opposite face, an opposite co-
defined external edge is found for the selected external edge. In
this case, the extended external edge merges with the other
external edge, and no new edges are created. The loop problem
again splits into two sub-problems corresponding to the external
edges on either side of the selected external edge. Figure 11
shows the external edges of a closed pocket feature over a rib
feature. The figure shows the working of the delete face algorithm

e4

e5

F5

e4

F2

F3 e2

el

er
e

e

3

e
vc
1

nding an e

 naturally
orrespond
external ed
 problem,
 problems
sub-graph
roduce th
of the l
The above
y externa
y discarde

aking the

algorithm
and vertex
s are descr

starting at external edge e1. No opposite face is determined for e1,
but an opposite external edge e6 is found that merges with the
extended edge of e1. In this example e2, e3, e4 and e5 form one
loop problem, while e7 and e0 form another loop problem. These

F5

F4

e3

e5

F4

F0

F0
0
e
xternal edge upt

 breaks the delet
ing to the exter
ge. In the above

 while er, e0 an
 are recursively s
s obtained by th
e final solution
oop problem i
 recursion conti
l edge. A loop p
d since it does

loop problem in

, heuristics are
 sense of the n
ibed later in this

F3

F0

F3 F2

e2

el er

F3
F2

e3

el er
5

e

4

o an opposite face.

e face problem into two
nal edges on either side
 example el, e3, e4 and e5
d e1 form another loop
olved as individual loop
e sub-problems are then
graph. Figure 10 shows
nto two sub-problems
nues as long as the loop
roblem with no external
not change the solution

to two sub-problems.

used to determine the
ewly created vertex vc.
 section in detail.

two sub problems are shown in Figure 12. Note that face F2 and
F6 , have co-defined geometry, while F1 and F7 have co-defined
geometry.

Figure 11 Pocket on a rib. External edge e1 is picked as the
starting external edge.

Figure 12 Sub-problems created while deleting the pocket.

F2

F1

e0

e1

F0

F1

e0

e1

F0

F1

F2

F3

F4
F5

F6
F7

e0

e1

e7

e6 e4
e5

e3

e2

e7

F1

F0

e0

F1

F3 F1

F7
F5

F4
F2

F2

e1

e6

e2

e7

e0

e0

e5

e3

F6

F0

F3

F4

F5

e2 e3

e5

F6

e4

3.1 Algorithm Steps
The delete face algorithm is a systematic recursive procedure that
breaks a loop problem into two sub-problems with lesser number
of external edges. The individual steps of the algorithm are
described below.

Algorithm : Loop problem of delete face operator.
Input : A set of circularly ordered external edges.
Output : Inner solution graph corresponding to the loop.

Procedure DeleteFace (e0, e1, …. en : circular list)
(1) Pick an external edge ei from the loop with boundary

vertex vi, left face Fl and right face Fr.
(2) Find opposite face Fc or co-defined edge ec using

heuristics.
 If opposite face found do

(3) Create vertex vc on Fc and an edge ei’ between vc and vi.
(4) Create edge ei between Fl and Fc and edge er between Fr

and Fc.
(5) Assign vertex sense for vc using angle heuristics.
(6) DeleteFace(el, ei+1, …. ec-1).
(7) DeleteFace(er, ec+1, …. ei-1).

 End do
 If codefined edge found do

(8) Create edge between ei and ec.
(9) DeleteFace(ei+1, ei+2, …. ec-1).
(10) DeleteFace(ec+1, ec+2, …. ei-1).

 End do
End DeleteFaces

The above recursion continues till the sub-problems are reduced
to the terminating step of the recursion that is a problem
containing no external edges which is trivially solved since it does
not affect the final solution graph. In the sections below we
describe the important steps of the above algorithm in detail.
Specifically, we describe the heuristics used in step 2 and 5 of the
algorithm that determine the opposite face and the vertex sense
respectively.

3.2 Opposite face heuristic
An important step in the delete face algorithm is the finding the
opposite face Fc to ei. A simple heuristic is to pick the face whose
underlying surface is closest to the external vertex vi along ei. This
is found by intersecting the extended curve of ei and the geometry
of all the external faces, and finding the face that first intersects
the extended external edge starting from the boundary vertex. In
Figure 11, the opposite face of e2 is found as F0 using this
heuristic. While this heuristic works fine for convex feature
volumes, it may fail when the feature volume has concavities. In
the example in Figure 11, if e0 is chosen as the starting external
edge, the opposite face is found as F2 using this heuristic. This is
shown in the Figure 13 below. The next step of recursion would
continue by finding the opposite face to el and er. The opposite
face of er is wrongly calculated as F5 instead of F3 using the above
heuristic since vc1 comes before vc2.

In order to tackle such problems the heuristic is enhanced to give
preference to vertices that are within the convex hull of the face
excluding the boundary edges. In the above example, vc1 is not
within the convex hull of face F5, while vc2 is within the convex
hull of face F3 excluding the boundary edges. Hence, vc2 is chosen
in preference to vc1 using the modified heuristic.

Figure 13 Conflict in choosing

3.3 Vertex sense heuri
Another important step in th
assignment of the vertex sens
discussed in the previous sectio
the sense of a vertex formed
ordering. Since the convexity
possibilities for the sense assign
can be also be interpreted as
direction of the edges el and er.
In certain cases, the vertex sen
the gaussian curvature. The sig
computed from the dot produc
convexity of ei, and the normal
has positive gaussian curvatur
edges el and er are the same as th
is completely determined. For e
has positive gaussian curvatur
convex, and the vertex sense is c
If the gaussian curvature of th
then there are three possibilities
cannot be predicted determinis
example as in Figure 13 with
edge. The vertex sense for vc is
setting of direction for er. The
instead of convex in this case.
The vertex sense in such ca
heuristics. One such heuristic is
of the neighboring faces. Ever
external edges. The angle betw
termed as the external angle fo
total of the signed angle turn a
edge to the other along the
independent of the nature of th
computed beforehand. Figure
faces F0, F1 and F2. The extern
external angle for F1 is Pi/2.

F2

F3

F

F1

W
f

R
f

1

2

l

e0
er
 opp

stic
e d
e fo
n, th
 by

 of
ed to
 set

se ca
n of
t of
 of th
e, th
at o
xam

e. H
omp
e ve
 for t
ticall
e0 ch
 wro
edge

ses
 obta
y nei

een
r the
s on
solut
e sol
15 s
al an
5

osite fa

elete f
r the o
ere are

 three
ei is k
 vertex

ting eit

n be p
the gau
the tan
e oppo

en the
f ei and
ple, in
ence th
letely d
rtex is
he verte
y. Figu
osen a
ngly co
 er is se

is dete
ined us
ghbor f
 these
 face. T
e traver
ion gra
ution g
hows t
gle for

F0
rong opposite
ace for er
ight opposite
ace face for er
vc
vc
e

ce for edge er.

ace algorithm is the
pposite vertex vc. As
 eight possibilities for
faces in a particular
nown, there are four
 vc. These possibilities
her the convexity or

redicted directly from
ssian curvature can be
gent vector of ei, the
site face. If the vertex
convexity of the two
hence the vertex sense
Figure 9, the vertex vc
e edges el and er are
etermined.
found to be negative,
x sense, and the sense
re 14 shows the same
s the starting external
mputed due to wrong
t wrongly as concave

rmined using certain
ing the external edges
ace typically has two
two external edges is
his angle denotes the
ses from one external
ph. This quantity is
raph and thus may be
he external angle for
face F0 is 0, while the

The total of the absolute value of the angle turn for each face
depends on the solution graph, and is equal to or more than the
external angle. This is referred to as the absolute angle. The
heuristic to assign the direction of edges aims to minimize the
sum of the absolute angles of the neighbor faces. This roughly
corresponds to the “minimum variation” feature volume. Using
this heuristic, the angle variation for the edge directions shown in
Figure 14 result in more variation than those shown in Figure 13.
This is because in Figure 14, the variation for face F2 becomes
large due to the wrong direction set for edge er (since er will have
to turn a full 3*Pi/2 to depart along F2 as e2).

Figure 14 Wrong setting of vertex se
chosen for edge er.

Figure 15 External angle shown for
used in heuristic to predict vertex sense

4. ALGORITHM DETAIL
The examples considered so far demons
the delete face algorithm. In this sectio
of the algorithm, and demonstrate the w
specific situations. These situations inc
with multiple boundary loops, problem
neighbor faces and degeneracy. This
validity of the final solution obtaine
situations that give rise to multiple solu

4.1 Multiple boundary loop
In the example dealt in Figure 9, there
However in certain situations such as
multiple boundary loops. In such cases,
whether the neighbor faces of the bou
each other during the delete face oper
through pocket with two boundary

neighbor faces of the boundary loops do not interact with each
other during the deletion operation.
Figure 16(a) shows an example of a groove around the corner that
can be visualized as an open pocket with an island. The groove
has two boundary loops and four external edges. In this case, the
neighbor faces of the two boundary loops interact with each other
during the deletion operation. The model obtained after the delete
face operation in shown in Figure 16(b).

 F0

F

F e2

e

5

e0

vc

F

0

e

() ()
2

3

r

F

F1
nse du

faces F
.

S
trate t

n, we d
orking
lude d
s inv

section
d by

tions.

s
 is a si
 in Fi
 we fir
ndary

ation.
loops.

5

A
V

Wrong direction of
er. Edge wrongly set
as concave.
el
e to wrong direction

Figure 16 Delete face of a feature with two boundary loops.

The interaction between boundary loops is taken as an input by
the delete face algorithm. This can be set by the caller based on
the type of feature that is passed for deletion. For example, for
through pockets and holes the loops do not interact with other;
while for blind extruded pockets and bosses, the loops would
interact with each other.
In case when the loops do not interact with each other, the delete
face algorithm makes a separate loop problem for each boundary
loop. However, if the loops interact, then a single loop problem is
created for all the boundary loops and external edges. The
algorithm is suitably modified to consider such loop problems.
1

4.2 Shrinking of faces
In all the examples presented so far, the delete face operation is
achieved by only extending neighboring faces. However, the

0
F

e

1

e0
ngle
ariation of
Angle Variation
of +Pi/2
F2
Angle Variation
of +Pi

0 and F1. These are

he broad working of
escribe finer details
 of the algorithm in
elete face problems
olving shrinking of
 also discusses the
the algorithm, and

ngle boundary loop.
gure 3(a), there are
st need to determine
loops interact with

Figure 3(a) shows a
 In that case, the

prese
contr
edge
oppo
Figur
the b
the d
while
17(b)

Figu
a

nted algorithm allows neighboring
act. Face contraction is achieved
to contract from the boundary

site face in step 2 of the algorithm.
e 17(a) shows an example of an un
ottom face f1 and side face f0 are pa
elete face algorithm, face F0, F1,
 F2 contracts within to obtain th
.

re 17 Shrinking of neighbor faces

F2
F0

F1

F3

f1

f0

)
b

 faces to either extend or
by allowing the external
vertex while finding the

even slot. In this example,
ssed for deletion. During

 and F3 extend outward,
e result shown in Figure

)
(a

d

(b

uring delete face.

The choice of the face-set to be sent to the delete face algorithm is
crucial as indicated in Figure 17. In this example, F2 is not passed
in the face set for deletion and is treated as a neighbor face. In
general, the determination of the faces passed for deletion must be
done in the recognition stage itself. Faces of the feature that merge
with other faces of the model are termed as virtual faces (refer
[6]), and are not passed for deletion. Figure 18 shows an example
of pocket with a single virtual face. During suppression, only the
non-virtual faces of the pocket are passed to the delete face
operation. The virtual face acts as a neighbor face and contracts
during the delete face operation.

Figure 18 Deletion of a pocket with a virtual face. The virtual
face is not passed for deletion.

4.3 Degeneracy handling
The discussion so far dealt with manifold bodies that have only
three faces adjacent to each vertex. Degenerate vertices arise when
more than three faces are adjacent to a vertex. In this section, we
show how the algorithm is enhanced to handle bodies with
degenerate vertices.
Degenerate vertices can either arise in the final solution face-set
or in the input boundary loop itself. Figure 19 shows an example
in which face-deletion results in a degenerate vertex. Such cases
are handled by enhancing step 2 of the algorithm. While finding
the opposite face, we allow faces that are at zero distance from the
start external edge. This creates zero length edges in the solution
graph that are finally deleted to create the degenerate vertices.

Figur
degen

The a
presen
of a sl
such
extern
prior t
end of
the ve

Figure 20 Example in which a degenerate vertex is present along
the boundary loop

Figure 21 Breaking of degeneracy prior to delete face operation.

4.4 Validity of solutions
There are two main steps in each recursion of the delete face
algorithm; namely; determining the opposite face and fixing the
vertex sense of the newly created vertex. Theoretically speaking,
there is always a right opposite face and vertex sense that will
work towards the correct solution graph. In our implementation,
these are determined using geometric heuristics as described in
the previous section.
If the feature volume is fully convex, then the opposite face and
vertex sense is always predicted rightly by our heuristics, and the
correct solution is found. However, if the feature volume is
concave such as in Figure 1, then the algorithm obtains the right
solution as long as the heuristics work correctly at each step of the
algorithm. If the heuristics fail at any step, then a wrong solution
or no solution is obtained. A wrong solution is determined by
performing a check on the topological and geometry structure of
the final feature volume. If the check on the feature volume fails,
then the model is restored back to the original state.
In order to avoid overall failure due to the failure of a particular
heuristic, back-tracking can be introduced in the delete face
algorithm to control and refine the search of the correct opposite))

e e

e

e

0

D
V

Virtual face

e

2

 e

e

(a
e 19 Example in which delete
erate vertex.

lgorithm also handles degenerate
t along the boundary loop. Figure 2
ot that has a degenerate vertex alo
situations, zero length edges are
al edges along the boundary loop
o the delete face operation. These
 the delete face operation. Figure 2
rtex degeneracy along the boundary
(b
face opera

 vertices
0 shows an

ng the bou
introduced
to break th
edges are
1 shows th
 loop.
Degenerate
Vertex

tion creates a

that may be
 example of a

ndary loop. In
 between the
e degeneracy

merged at the
e breaking of

face and sense. However, this could take subst
and may not be feasible in applications such as
where feature suppression is used repeatedly.
It is also possible for the delete face algorithm
no solutions. Figure 22 shows a blend face th
rib. In this case, two solutions are possible whe
passed to the delete face operation. From the d
the first solution is preferable to the second on
algorithm outputs any one of the solutions
starting external edge and the results of the
intermediate stages.
Degenerate
Vertex
2
 1
3

4

e

e5
Break
Degeneracy
 egenerate
ertex
6

e

antially more ti
feature recognit

to have multipl
at interacts wit
n the blend fac
esign perspect
e. The delete f
depending on
 heuristics at
e1
e3

me,
ion

e or
h a
e is
ive,
ace
the
the
0

4

e5
 e6

Figure 22 Example showing multiple solutions that may arise
from the delete face operation.

It is of course possible for the delete face problem to have no
possible solution. These are usually cases that need new faces to
be inserted in the solution, and are not within the scope of the
current algorithm.

5. IMPLEMENTATION
The delete face algorithm has been implemented as part of the
Feature Recognition system library at Geometric Software
Solutions Ltd [17]. The implementation uses local operations in
the form of Euler Operators [14] to modify topology locally.
Euler Operations are low-level functions that modify a small
region of topology. Using these operators, topological elements
such as faces, loops, edges and vertices may be added, removed,
or modified in a model. Together with functions to attach and
detach geometry, these functions enable applications to implement
their own modeling operations, such as local operations and
feature creation.
Euler Operation functions always return a body with valid
topological data-structures. However, the functions do not alter
geometry - new topology has no geometry attached, and any
topology that is deleted has its geometry deleted first. This means
that the resulting body is normally invalid. Geometry is later
associated with the model to make the model geometrically valid.
The Euler operators can be divided into two groups; the make
group and the kill group. The make group consists of operators
for adding some elements into the existing model, while the kill
group does exactly the inverse of the make group. For example,
MEV is an operator that makes an edge and a vertex, while KEV
is an operator that kills (or deletes) an edge and vertex. Similarly,
MEF is an Euler operator that makes an edge and face and KEF is
the corresponding inverse operator. These operators are shown
pictorially in Figure 23 below.

�

Figure 23
making/killi
making/killi

The delete
topology of
delete face a
In the first
the boundar
These are t
recursion un
into individ
as describe
corresponds
third stage,
faces and th
then merged
updated mo
individual s

Figure 24
algorithm fo

M M

(a)

(d)

Solution 1

Solution 2
EV
u

t

 K
KEV

 Example of Eulers operators. (a
ng of edge and vertex. (b)
ng of edge and face.

face algorithm calls these operators
 the model. The sequence of these o
lgorithm is in three stages.
stage, the faces passed for deletion a
y loops are capped with a single face
ermed as rubber faces. In the secon
folds, these rubber faces are recursi
al faces corresponding to the evolvin

d in the previous section. Each
 to an extension/contraction of a neig
the feature solid is obtained using th
e faces that are passed for deletion. T
 with the corresponding neighbor fa
del. These stages are shown in
ages are explained below in detail.

Figure showing intermediate stages o
r the pocket feature in Figure 5.

Stage 1

Stage 3

(b)

(c)
EF
h

h

F

EF

) Operators for
Operators for

 to modify the
perations in the

re removed and
or a set of faces.
d stage, as the
vely subdivided
g solution graph
individual face
bor face. In the

e newly created
e new faces are

ce to obtain the
igure 24. The

f the delete face

Rubber
face

Stage 2

Stage 1: Create rubber face(s)
In this stage, the faces to be deleted are removed from the model,
and the boundary loops are capped using new faces without any
associated geometry. Such faces are termed as rubber faces.
Figure 24(b) shows the rubber face created during the suppression
of the slot. At this stage, though the model is topologically valid,
no geometry is yet associated with the rubber face. If there is a
single boundary loop such as in Figure 24, a single rubber face is
capped. However, if there are 2 or more boundary loops, it is
possible to cap each of the boundary loops with a separate face or
cap all boundary loops with a single face with multiple loops
(refer section 4.1). Figure 25 shows the capping of two boundary
loops with a single rubber face.

Figure 25 Creati

Stage 2: Find the
In the second stag
into multiple faces
previous section.
Euler operators. T
euler operator, wh
shows the model
solution graph on
Each new face
extended/contracte
the corresponding
the solution graph
corresponding Eu
step 3 and 8, edge
The geometry of
between the exten
Fc. In case of mult
is selected as the p
of edges el and e
surface of Fc with
multiple curves of
vc is chosen as the
An important as
orientation of the
newly created fac
assigned the co
orientation is base
expansion or a co
This is tested by
checking whether

neighboring face. If the point is in the exterior, then we conclude
that the neighbor face has expanded, and the orientation of the
newly created face is same as the corresponding neighbor face. If
the point is in the interior, then the neighbor face has contracted
and the face normal is set to opposite orientation.

Stage 3: Remove redundant edges and create feature solid
The above face deletion algorithm creates an intermediate solid
that contains new faces that cap the boundary loops. These faces
along with the original deleted faces are stitched together to create
the feature volume. This has been shown pictorially in Figure 5.
During stitching, the faces belonging the visible face-set need to
reversed in orientation before stitching with the newly created
faces of the solution graph. The model can then be simplified by
merging the newly created faces with the neighbor faces. This is
also done using Euler operators that remove the edges and
vertices along the boundary loop, and merge the newly created
faces with the corresponding neighbor face. Figure 24(d) shows
the final updated model after merging the newly created faces
with the corresponding neighbor faces.
Figure 26 shows the individual stages during deletion of an
uneven slot. During step 2 of the implementation as discussed in
the previous section, new faces are created for each of the
neighboring faces as shown in Figure 26(b). The new face G2 fully
overlaps with face F2 and hence is set opposite orientation, while

Rubber face with two loops

)
(a
on of rubber face with two boundar

solution graph
e, the rubber face(s) are recursivel
 using the recursive algorithm des
The topology change is accomp

he steps 3 and 4 of the algorithm u
ile step 8 uses the MEF operator.
after the delete face recursion has
the rubber face.
created in the algorithm corresp
d portion of a neighbor face, and

 face geometry. The inner edges an
 are assigned geometry immediat

ler operation via which they got g
 ei’ is assigned the extended geomet
vertex vc is found as the point of
ded curve of edge ei and the surfac
iple points of intersection, the inter
oint closest to vertex vi. In step 4,
r are computed by intersecting th
the surfaces of Fl and Fr respective
 intersection, the curve that is clos
 respective geometry.
pect during geometry computat
newly created faces. As mentioned
e is adjacent to one neighboring
rresponding face geometry. Ho
d on whether the new face corres
ntraction of the corresponding ne
 choosing a point on the create
 the point lies within the inte
(b)

y loops.

y subdivided
cribed in the
lished using
se the MEV
Figure 24(c)
imposed the

onds to an
 is assigned
d vertices of
ely after the
enerated. In

ry of edge ei.
 intersection
e underlying
section point
the geometry
e underlying
ly. In case of
est to vertex

ions is the
 before, each
 face and is
wever, the
ponds to an
ighbor face.
d face, and
rior of the

the other new faces G0 and G1 have the same orientation as the
corresponding neighbor face. In stage 3, when these faces get
merged with the neighboring faces, face G2 contracts face F2,
while other faces expand their neighbors. Figure 26(c) shows the
model obtained after merging the newly created faces with the
adjacent neighbor faces.

Figure 26 Shrinking of neighbor faces during delete face.

F2
F0

F1

F3

f1

f0

G0

G1

G2 (overlaps
with F2)

Stage 1 & 2

Stage 3
(a) (b)

(c)

Figure 27 Exam

6. EXAMP
Figure 27 show
of the delete fac
and the final m
passed for delet
of these exampl
geometry kernel
Example 1 show
pocket. Example
on either sides a
loops are solved
example, neighb
operation. Exam
chamfer. The ch
back the slot fea
feature volume d
Example 4 and
the delete face o
which a face of
The non-virtual
algorithm. The
contracts during

() (2)
)
1

ples showing the working of the delete face operation in 12 parts.

LES
s several examples that demonstrate the working
e algorithm. Each example shows the input model
odel after the delete face algorithm. The faces

ion are shown in grey. It may be noted that some
es such as example 3 do not work in any existing
, but works correctly in our algorithm.
s the deletion of a pocket interacting with another
 2 shows a through pocket interacting with ribs

nd having two boundary loops. The two boundary
 independently as separate loop problems. In this
oring faces are merged during the delete face
ple 3 shows an example of slot through a

amfer is passed to the delete face algorithm to get
ture. This example involves creation of a concave
uring the delete face opeartion.
5 show examples in which faces contract during
peration. Example 4 is a complex virtual slot in
the slot is shared by other features in the model.
 faces of the slot are passed to the delete face
virtual face is treated as a neighbor face and

 the delete face algorithm. Example 5 shows three

ribs that have virtual faces. The virtual
passed to the delete face operator. Examp
rib. The pocket is deleted to get bac
degenerate vertices are created in this ope
Examples 7 to 12 show the deletion o
features. Example 7 shows the deletion o
is usually done in the beginning of featur
the part. Example 8 shows the deletion
example 9 shows the deletion of a free-
Both these examples involve merging
faces. Example 10 shows the usage of th
unshell a thin-walled solid.
Examples 11 and 12 show the deletion o
face operator. Example 11 shows a comp
a blend chain rolls on another chain. Dur
chain, the other blend chain is partiall
point, we remark that although the algo
paper can be used to handle blend fe
complex blend chains. This is because fin
step 2 of the algorithm involves many tan
are unstable in nature. Blend deletion
separate algorithm that is considered in a

))

))

)()
(3
)

(4
 (5
 (6
)
(7
 (8
face
le 6
k t
rati
f se
f al
e re
 of
for
of

e d

f bl
lex
ing
y r
rit

atur
din
gen
is b
sep

(

(9

)
12
(11
10

s of the ribs are not
 shows a pocket on a

he rib feature. Two
on.
veral other types of

l holes in a part. This
cognition to simplify

 a rib-network while
m protrusion feature.
several neighboring

elete face operator to

ends using the delete
 blend chain in which
 deletion of the blend
econstructed. At this
hm presented in this
es, it could fail for
g the opposite face in
tial intersections that
est handled using a

arate paper.

7. SUPPRESSION OF 2.5D FEATURES
So far we have discussed a general algorithm for suppressing any
volumetric feature from a model. However, the problem can be
greatly simplified when the nature of the feature and its
neighborhood is well understood. In this section, we show how
the delete face operation is simplified for parts that are purely
made up of 2.5D features. These features arise due to extrusions
of profiles between two levels, and are probably the most
commonly used kind of features in manufacturing parts.
Figure 28 shows an example of a pocket that has been made at an
intersection of crossing ribs. The boundary of the pocket is fairly
complex, and the delete face algorithm would need powerful
heuristics to suppress the pocket, and reconstruct the right feature
volume. However, the problem can be viewed much more easily
when the part is seen in the “top view” as shown in Figure 29. In
this projected view, the part is represented as a tiling of faces
connected in a two dimensional plane. Each face has a level
associated with it that corresponds to the height at which the
bottom face of the pocket feature is located. The vertical faces of
the pocket reduce to edges in the projected view. The problem of
delete face of a pocket feature reduces to deleting a face in the
plane by extending the neighboring faces (and levels) in the same
plane. The set of newly created faces caused by the
extensions/contractions of the neighborhood can then be pulled
back in 3D to create the feature volume.

Figure 28 Delete face operation of a 2.5D part.

Figure 29 Projected view of the part from top. The various
levels L0, L1, L2, L3 shown are in ascending order.

The algorithm of delete face in two dimensions also begins
similarly at an external edge of the face. Instead of an opposite
face that was found for the 3D delete face problem, an opposite
edge is found in the 2D delete face problem. Unlike in the 3D
case, the opposite edge can be found predictably without the need
of clever heuristics. This is because of the limited number of

configurations possible when two external edges meet at a vertex.
The three cases that are permissible are shown in Figure 30.
Figure 30(a) shows the case when two external edges terminate at
a vertex. In this case, the faces on either side of the edges are at
the same level. Figure 30(b) and 30(c) shows the case when two
external edges meet at a vertex and one of the edges extends
beyond the vertex. In this case, the external edges have a common
adjacent level as shown. Due to these limited configurations and
due to the fact that edges cannot cross each other in the projected
view, the opposite edge is predictably found as the closest
external edge that matches these constraints.

Figure 30 The possible configurations when external edges
intersect after extension.

The computation of the vertex sense is also greatly simplified in
most situations. When the external edges terminate at a vertex,
there is no ambiguity for the vertex sense. In the other case when
the two edges intersect and one of the edges extend furthers, there
are two possible configurations depending on the edge that gets
extended beyond the vertex. Even in this case, the configuration is
determined completely if the common level Li is the lowest or the
highest level among the three levels. In this case, the edge that is
adjacent to the higher level extends from the intersection vertex.
The only ambiguous situation arises when two external edges
intersect and the middle level is in between the two side levels. In
such a situation, it is possible for either of the edges to extend
beyond the vertex, and hence there are two possible choices for
the vertex sense. The configuration is then chosen based on
similar heuristics as described in the previous section. For the
example shown in Figure 29, the final configuration is completely
determined without any heuristics. This is shown in Figure 31
below.

Figure 31 Solving the delete face problem in two dimensions.

The final configuration is determined starting at external edge e1.
The first edge intersecting this edge meeting the constraints is

L2 L2 L0

L3
L1

L1

L1

L1 L3

Li

Lj

Li Lj

Li

Lj

Li Lj

Li

Lj

Li Lk

(a) (b) (c)

L2 L2

L3
L1

L1

L1

L1 L3

e1

e2 e3

e4

e5

e6 e7

e0

(a) (b)

Ribs at
different heights

edge e2. Since level L3 is higher than level L2, edge e2 extends
beyond and proceeds downwards. The edge then meets e0 and
proceeds further downward since L3 is also higher than level L1.
Finally it then merges with edge e7. The other set of external
edges is also similarly solved resulting in the final solution graph.

8. CONCLUSION
This paper presents an algorithm to delete a set of faces of a
feature from a model, and create the corresponding feature
volume. This operation is very useful in feature recognition
algorithm in suppressing the already recognized features, and
thereby enabling recognition of interacting features. Apart from
feature recognition, the delete face operation is also useful for
local editing and modification of parts. For example, deletion of
certain types of features such as holes and fillets can be used to
simplify the part and aid downstream applications.
In literature, several algorithms have been proposed and
implemented to solve the delete face problem. However, the
solutions presented so far are mainly heuristic in nature and work
for simple and specific kinds of feature volumes. Our paper is
unique in this regard, and provides a systematic algorithm to
remove face-set features of arbitrary topology and geometry.
Heuristics are used at clearly defined steps, and they are directly
related to important characteristics of the final topology and
geometry. These heuristics have been implemented as separate
functions, and are independent of the basic recursive algorithm.
Moreover, our algorithm uses a divide-and-conquer approach, and
hence is computationally less expensive than other presented
algorithms. Furthermore, unlike previous approaches, the face
deletion and the feature volume construction take place in a single
step without the need of a separate Boolean operation.
The delete face algorithm has been tested on a wide variety of
parts. Both depression and protrusion features are handled by the
algorithm. The algorithm allows extension, contraction and
merging of neighbor faces during face deletion. Many situations
such as multiple boundary loops and degeneracy are handled
robustly by our algorithm.
In many situations, prior knowledge of the feature volume and the
neighborhood can be used to simplify the algorithm to a large
extent. This has been demonstrated for 2.5D features in this paper.

9. ACKNOWLEDGMENTS
We would like to thank Geometric Software Solutions Ltd.
(GSSL) for extending co-operation in promoting the research. We
would like to specially thank Dr. Vinay Kulkarni and Anil Risbud
for their encouragement throughout the project.

10. REFERENCES
[1] Shah, J.J., Manyla, M. amd Nau, D., eds. Advances in

Feature Based Manufacturing, Elsevier/North-Holland,
Amsterdam. 1994.

[2] Ji Qiang, Marefat M., Machinable Interpretation of CAD
Data for Manufacturing. ACM Computing surveys, 1997.
24(3), 264-311.

[3] Tseng, Y. J. and Joshi, S. B., Recognizing multiple
interpretations of interacting machining features. Computer
Aided Design, 1994. Vol. 26(9), 667-688.

[4] Dong, X. and M. Wozny, “Feature Volume Creation for
Computer Aided Process Planning,” in book Geometric
Modeling for Product Engineering, Elsevier Science
Publishers, B.V. (North-Holland), Edited by M. Wozny, J.
Turner and K. Preiss, pp. 208-223.

[5] Karinthi, R., and D. Nau, “An Approach to address
Geometric Feature Interactions in Concurrent Design”, Proc.
ASME Computers in Engineening Conference, Boston,
August 5-8, 1990, Vol. 1, pp. 243-250.

[6] Sashikumar V., Sohoni M., Graph based framework for
recognizing user defined features. ACM Symposium on Solid
Modeling and Applications, June 2001, Ann Arbor,
Michigan.

[7] Nalluri Rao SRP, Form feature generation model for feature
technology, PhD thesis, Department of Mechanical
Engineering, Indian Institute of Science, Bangalore, India,
1994.

[8] Sakurai, H. and D. Gossard, “Recognizing Shape Features in
Solid Models,” IEEE Computer Graphics & Applications,
September, 1990, pp. 22-32.

[9] Henderson, M. R., Extraction of Feature Information from
Three dimensional CAD Data, Ph.D. Dissertation, Purdue
University, May 1984.

[10] Vandenbrande, J. and A. A. G. Requicha, “Spatial Reasoning
for Automatic Recognition of Interacting Form Features,”
Proc. ASME Computers in Engineering Conference, 1990,
pp. 251–256.

[11] Dong, X. and M. Wozny, “A method for generating
volumetric features from surface features,” ACM Symposium
on Solid Modeling and Applications, 1991.

[12] Sakurai, H. and D. Gossard, “Shape Feature Recognition
from 3D Solid Models,” Proc. ASME Computers in
Engineening Conference, San Francisco, August 1-4, 1988,
Vol. 1, pp. 515–519.

[13] Sandiford D., Hinduja S., Construction of feature volumes
using intersection of adjacent surfaces. Computer Aided
Design,2001. Vol 33, pp 455-473.

[14] Mäntylä, M. (1988). An Introduction to Solid Modeling.
Principles of Computer Science. Computer Science Press,
Maryland, U.S.A.

[15] Parasolid, Functional Description Manual, Version 11,
Unigraphics Solutions, (www.parasolid.com) May 2000.

[16] ACIS Geometric Modeller, Format Manual, Version 6.0,
Spatial Technologies, (www.spatial.com) June 2000.

[17] Feature Recognition Library, Version 11, Geometric
Software Solutions Limited, (www.geometricsoftware.com)
October 2001.

	INTRODUCTION
	OVERVIEW
	Terminology
	Nature of Solutions

	DELETE FACE ALGORITHM
	Algorithm Steps
	Opposite face heuristic
	Vertex sense heuristic

	ALGORITHM DETAILS
	Multiple boundary loops
	Shrinking of faces
	Degeneracy handling
	Validity of solutions

	IMPLEMENTATION
	EXAMPLES
	SUPPRESSION OF 2.5D FEATURES
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

