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ABSTRACT 

This paper describes a systematic algorithm for reconstructing the 
feature volume from a set of faces in a solid model. This 
algorithm serves a dual purpose. Firstly, the algorithm generates 
the feature volume by extending or contracting the neighboring 
faces of the set of faces. Secondly, the algorithm may also be used 
to remove (or suppress) the face-set from the model. The 
algorithm uses a divide-and-conquer strategy and geometric cues 
to identify the correct topology.  It robustly handles a wide class 
of feature volumes with complex topology and geometry. A 
simplified version of the algorithm has also been presented to 
handle volumes resulting from 2.5D features.  
Keywords 
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1. INTRODUCTION 
Feature recognition is an important step in many CAD/CAM 
applications. In the area of manufacturing, feature recognition 
provides an important bridge between CAD and CAM by 
automatically or interactively extracting manufacturing features 
from a part. These features represent negative volumes associated 
with a particular machining operation. In the area of design, 
feature recognition is used to extract specific set of form features 
from parts that do not have design information. The original 
design tree may be lost in translation of data from one CAD 
system to another. Feature recognition is then used to recreate the 
design intent. For a comprehensive review of feature recognition, 
the reader is referred to Refs [1,2,3]. 
An important step during feature recognition is the creation of 
feature volume corresponding to the feature face-set. Feature 
volumes are used in many applications such as tool accessibility 
analysis [4] and process planning [5]. Feature volumes also aids 
in resolving feature interactions during feature recognition [6,7,8]. 
For example in [6], the same authors had presented a graph-based 
framework for feature recognition. Simple or non-interacting 
features are first recognized as a set of faces, and the 
corresponding feature volume is constructed. The recognized 

feature is then suppressed by removing/filling the feature volume, 
and thereby updating the part. The part updation simplifies the 
part, and facilitates further recognition of interacting features.  
Apart from feature recognition, the delete face operator can also 
be used for local editing and modification of features. For 
example, deleting certain kinds of features is frequently used to 
simplify parts to aid several downstream applications such as 
finite element analysis (FEA). This operator is also very useful in 
modification of features in parts that do not have the complete 
design tree available. 
Several researchers have attempted to construct feature volumes 
from feature face-sets. One common technique adopted to create 
feature volumes is by sweeping 2D-profiles [9, 10]. However, this 
technique can be adopted only for swept features. Attempts have 
also been made to create feature volume by extending adjacent 
faces of the feature faces [8,11,12,13]. These approaches begin by 
intersecting all the neighboring faces, and then finding the feature 
volume from the intersection graph using some heuristics and 
constraints. However, selecting the right edges and vertices is a 
difficult problem, and no systematic approach has been presented 
to resolve them. Overall, the approaches presented so far are 
mainly heuristic in nature and usually work for simple and 
specific kinds of feature volumes. No rigorous algorithm has yet 
been presented that handles general feature volumes that could be 
concave and of arbitrary topology. 
In this paper, we present a general algorithm to remove a set of 
faces from a part and reconstruct the corresponding feature 
volume by extending/contracting the neighboring faces of the 
feature. This is referred to as the delete face operation. Our 
algorithm is unique from other face-extension algorithms in many 
aspects. We use a divide-and-conquer approach in which a 
complex feature volume is divided into simpler sub-problems. 
Unlike other face-extension approaches, our algorithm does not 
perform all possible intersections initially; but resolves edges and 
vertices incrementally. Heuristics are used in clearly defined steps, 
and are independent of the basic framework of the algorithm. Our 
algorithm handles many complex configurations including 
concave feature volumes, and can be applied to faces of any 
surface type that extends smoothly. Unlike some other 
approaches, our algorithm allows extension as well as shrinking of 
neighbor faces. Furthermore, the suppression of the feature from 
the part and the creation of feature volume take place in a single 
step without needing an extra boolean operation. 
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The delete face operator is offered by many geometry kernels such 
as Parasolid [15] and ACIS [16]. However, the functionality and 
robustness varies across kernels and several do not offer it at all.  
Our algorithm deals with many cases that are not handled by the 
existing geometry kernels. These examples are discussed later in 
the paper. Moreover, none of the existing kernels gives the feature 
volume as an output of the delete face operator. Furthermore, the 
presented algorithm is implemented in a kernel-independent 
platform [17], and can be easily ported to any geometry kernel. 
The paper is organized as follows. Section 2 presents the 
overview of the delete face operator. Section 3 discusses the main 
algorithm of delete faces. Section 4 describes finer details of the 
algorithm and explains the working of the algorithm in specific 
situations. Section 5 describes issues relating to implementation 
of the delete face operation. Section 6 presents several examples 
that are handled by our algorithm. Section 7 discusses a special 
case of the operation applied to 2.5D manufacturing features. A 
conclusion to the paper is presented in the final section. 

2. OVERVIEW  
The input of the delete face operator is a boundary representation 
model (brep) and a set of connected faces that is to be removed 
from the model. The input set of faces is assumed to correspond to 
a feature that either adds or removes volume from a solid. The 
output of the operator is a modified model obtained by removing 
the set of faces, and patching up the deleted region. We assume 
that extension/contraction of neighbor faces suffice to construct 
the feature volume without requiring additional faces. Figure 1(a) 
shows an example of a pocket feature interacting with two slots. 
The bottom faces of the two slots are at different levels. The 
pocket feature can be recognized using common feature 
recognition techniques. The feature volume is then created using 
the delete face operation and is used to suppress the feature as 
shown in Figure 1(b).  

 
Figure 1   (a) Feature interaction between a pocket and slots. (b) 
Model obtained after suppressing the pocket feature. 

2.1 Terminology 
The input to the delete face procedure is a set of faces. These 
faces are referred to as the feature faces and is denoted by f0, f1, f2, 
… fm. The output is an updated model formed after removing the 
set of faces and patching the region by extending/shrinking the 
neighbor faces. These neighboring faces are referred to as the 
external faces and are denoted by F0, F1, F2, … Fn. The edges that 
are along the boundary of the feature faces are termed as 
boundary edges, and the vertices along the boundary are termed 
as the boundary vertices. The edges that are not along the 

boundary but touch the boundary vertices are termed as external 
edges. The set of boundary edges forms one or more boundary 
loops. Figure 2 shows the boundary loop and external edges of a 
corner slot. The boundary edges of the slot form one boundary 
loop that has three external edges.  

 
Figure 2   Boundary and external edges for a corner slot. 

 
Figure 3   Boundary and external edges for a through poc
through slot. 

Figure 3 shows the boundary loops and external edg
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Figure 4   Schematic representation of the external edg
corner slot. 
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2.2 Nature of Solutions 
The solution to the delete face operation is better understood in 
terms of the feature volume. As discussed before, we assume that 
the face-set to be deleted arose from a boolean subtract (or unite) 
of the feature volume from the part. Figure 6 shows a volumetric 
feature created by an extrude cut and the corresponding feature 
volume. 
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There is, however, another ingredient required to construct the 
geometry from a candidate solution graph, namely, the 
construction of the local geometry at a vertex. In the purely 
convex or concave vertex case, the face geometry suffices to 
create the local geometry at the vertex. This is not the case, when 
the vertex has negative gaussian curvature. In all, the choice of the 
vertex geometry has a total of eight possibilities and is termed as 
the sense of the vertex. These have been shown in Figure 7 and 
Figure 8 where X, Y, and Z denote faces with fixed face outward 
normal along the x, y and z axis. It is important to note that the 
vertex sense is directly related to the convexity and direction of 
the adjoining edges. 
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In certain situations, instead of an opposite face, an opposite co-
defined external edge is found for the selected external edge. In 
this case, the extended external edge merges with the other 
external edge, and no new edges are created. The loop problem 
again splits into two sub-problems corresponding to the external 
edges on either side of the selected external edge. Figure 11 
shows the external edges of a closed pocket feature over a rib 
feature. The figure shows the working of the delete face algorithm 
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Figure 11   Pocket on a rib. External edge e1 is picked as the 
starting external edge. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12   Sub-problems created while deleting the pocket. 
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3.1 Algorithm Steps 
The delete face algorithm is a systematic recursive procedure that 
breaks a loop problem into two sub-problems with lesser number 
of external edges. The individual steps of the algorithm are 
described below.  

Algorithm : Loop problem of delete face operator. 
Input : A set of circularly ordered external edges.  
Output : Inner solution graph corresponding to the loop. 

Procedure DeleteFace (e0, e1, …. en : circular list )  
(1) Pick an external edge ei from the loop with boundary                                                  

vertex vi, left face Fl and right face Fr. 
(2) Find opposite face Fc or co-defined edge ec using   

heuristics. 
    If opposite face found do 

(3) Create vertex vc on Fc and an edge ei’ between vc and vi.  
(4) Create edge ei between Fl and Fc and edge er between Fr 

and Fc.  
(5) Assign vertex sense for vc using angle heuristics.  
(6) DeleteFace(el, ei+1,  …. ec-1).   
(7) DeleteFace(er, ec+1,  …. ei-1).  

    End do 
    If codefined edge found do 

(8) Create edge between ei and ec.  
(9) DeleteFace(ei+1, ei+2,  …. ec-1).   
(10) DeleteFace(ec+1, ec+2,  …. ei-1).  

    End do 
End DeleteFaces 

The above recursion continues till the sub-problems are reduced 
to the terminating step of the recursion that is a problem 
containing no external edges which is trivially solved since it does 
not affect the final solution graph. In the sections below we 
describe the important steps of the above algorithm in detail. 
Specifically, we describe the heuristics used in step 2 and 5 of the 
algorithm that determine the opposite face and the vertex sense 
respectively.  

3.2 Opposite face heuristic 
An important step in the delete face algorithm is the finding the 
opposite face Fc to ei. A simple heuristic is to pick the face whose 
underlying surface is closest to the external vertex vi along ei. This 
is found by intersecting the extended curve of ei and the geometry 
of all the external faces, and finding the face that first intersects 
the extended external edge starting from the boundary vertex. In 
Figure 11, the opposite face of e2 is found as F0 using this 
heuristic. While this heuristic works fine for convex feature 
volumes, it may fail when the feature volume has concavities. In 
the example in Figure 11, if e0 is chosen as the starting external 
edge, the opposite face is found as F2 using this heuristic. This is 
shown in the Figure 13 below. The next step of recursion would 
continue by finding the opposite face to el and er. The opposite 
face of er is wrongly calculated as F5 instead of F3 using the above 
heuristic since vc1 comes before vc2.  

In order to tackle such problems the heuristic is enhanced to give 
preference to vertices that are within the convex hull of the face 
excluding the boundary edges. In the above example, vc1 is not 
within the convex hull of face F5, while vc2 is within the convex 
hull of face F3 excluding the boundary edges. Hence, vc2 is chosen 
in preference to vc1 using the modified heuristic. 
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The total of the absolute value of the angle turn for each face 
depends on the solution graph, and is equal to or more than the 
external angle. This is referred to as the absolute angle. The 
heuristic to assign the direction of edges aims to minimize the 
sum of the absolute angles of the neighbor faces. This roughly 
corresponds to the “minimum variation” feature volume. Using 
this heuristic, the angle variation for the edge directions shown in 
Figure 14 result in more variation than those shown in Figure 13. 
This is because in Figure 14, the variation for face F2 becomes 
large due to the wrong direction set for edge er (since er will have 
to turn a full 3*Pi/2 to depart along F2 as e2). 
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4. ALGORITHM DETAIL
The examples considered so far demons
the delete face algorithm. In this sectio
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through pocket with two boundary 

neighbor faces of the boundary loops do not interact with each 
other during the deletion operation.  
Figure 16(a) shows an example of a groove around the corner that 
can be visualized as an open pocket with an island. The groove 
has two boundary loops and four external edges. In this case, the 
neighbor faces of the two boundary loops interact with each other 
during the deletion operation. The model obtained after the delete 
face operation in shown in Figure 16(b).  
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Figure 16   Delete face of a feature with two boundary loops. 

The interaction between boundary loops is taken as an input by 
the delete face algorithm. This can be set by the caller based on 
the type of feature that is passed for deletion. For example, for 
through pockets and holes the loops do not interact with other; 
while for blind extruded pockets and bosses, the loops would 
interact with each other.  
In case when the loops do not interact with each other, the delete 
face algorithm makes a separate loop problem for each boundary 
loop. However, if the loops interact, then a single loop problem is 
created for all the boundary loops and external edges. The 
algorithm is suitably modified to consider such loop problems. 
1
  
 
 

4.2 Shrinking of faces 
In all the examples presented so far, the delete face operation is 
achieved by only extending neighboring faces. However, the 
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The choice of the face-set to be sent to the delete face algorithm is 
crucial as indicated in Figure 17. In this example, F2 is not passed 
in the face set for deletion and is treated as a neighbor face. In 
general, the determination of the faces passed for deletion must be 
done in the recognition stage itself. Faces of the feature that merge 
with other faces of the model are termed as virtual faces (refer 
[6]), and are not passed for deletion. Figure 18 shows an example 
of pocket with a single virtual face. During suppression, only the 
non-virtual faces of the pocket are passed to the delete face 
operation. The virtual face acts as a neighbor face and contracts 
during the delete face operation. 

 
Figure 18   Deletion of a pocket with a virtual face. The virtual 
face is not passed for deletion.  

4.3 Degeneracy handling 
The discussion so far dealt with manifold bodies that have only 
three faces adjacent to each vertex. Degenerate vertices arise when 
more than three faces are adjacent to a vertex. In this section, we 
show how the algorithm is enhanced to handle bodies with 
degenerate vertices. 
Degenerate vertices can either arise in the final solution face-set 
or in the input boundary loop itself. Figure 19 shows an example 
in which face-deletion results in a degenerate vertex. Such cases 
are handled by enhancing step 2 of the algorithm. While finding 
the opposite face, we allow faces that are at zero distance from the 
start external edge. This creates zero length edges in the solution 
graph that are finally deleted to create the degenerate vertices. 
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Figure 20   Example in which a degenerate vertex is present along 
the boundary loop 

 

 
 
 
 
 
 
Figure 21   Breaking of degeneracy prior to delete face operation. 

4.4 Validity of solutions 
There are two main steps in each recursion of the delete face 
algorithm; namely; determining the opposite face and fixing the 
vertex sense of the newly created vertex. Theoretically speaking, 
there is always a right opposite face and vertex sense that will 
work towards the correct solution graph. In our implementation, 
these are determined using geometric heuristics as described in 
the previous section.  
If the feature volume is fully convex, then the opposite face and 
vertex sense is always predicted rightly by our heuristics, and the 
correct solution is found. However, if the feature volume is 
concave such as in Figure 1, then the algorithm obtains the right 
solution as long as the heuristics work correctly at each step of the 
algorithm. If the heuristics fail at any step, then a wrong solution 
or no solution is obtained. A wrong solution is determined by 
performing a check on the topological and geometry structure of 
the final feature volume. If the check on the feature volume fails, 
then the model is restored back to the original state.  
In order to avoid overall failure due to the failure of a particular 
heuristic, back-tracking can be introduced in the delete face 
algorithm to control and refine the search of the correct opposite ) ) 
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Figure 22   Example showing multiple solutions that may arise 
from the delete face operation. 

It is of course possible for the delete face problem to have no 
possible solution. These are usually cases that need new faces to 
be inserted in the solution, and are not within the scope of the 
current algorithm.   

5. IMPLEMENTATION 
The delete face algorithm has been implemented as part of the 
Feature Recognition system library at Geometric Software 
Solutions Ltd [17]. The implementation uses local operations in 
the form of Euler Operators [14] to modify topology locally. 
Euler Operations are low-level functions that modify a small 
region of topology. Using these operators, topological elements 
such as faces, loops, edges and vertices may be added, removed, 
or modified in a model. Together with functions to attach and 
detach geometry, these functions enable applications to implement 
their own modeling operations, such as local operations and 
feature creation.  
Euler Operation functions always return a body with valid 
topological data-structures. However, the functions do not alter 
geometry - new topology has no geometry attached, and any 
topology that is deleted has its geometry deleted first. This means 
that the resulting body is normally invalid. Geometry is later 
associated with the model to make the model geometrically valid.  
The Euler operators can be divided into two groups; the make 
group and the kill group. The make group consists of operators 
for adding some elements into the existing model, while the kill 
group does exactly the inverse of the make group. For example, 
MEV is an operator that makes an edge and a vertex, while KEV 
is an operator that kills (or deletes) an edge and vertex. Similarly, 
MEF is an Euler operator that makes an edge and face and KEF is 
the corresponding inverse operator. These operators are shown 
pictorially in Figure 23 below.  
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Stage 1: Create rubber face(s) 
In this stage, the faces to be deleted are removed from the model, 
and the boundary loops are capped using new faces without any 
associated geometry. Such faces are termed as rubber faces. 
Figure 24(b) shows the rubber face created during the suppression 
of the slot. At this stage, though the model is topologically valid, 
no geometry is yet associated with the rubber face. If there is a 
single boundary loop such as in Figure 24, a single rubber face is 
capped. However, if there are 2 or more boundary loops, it is 
possible to cap each of the boundary loops with a separate face or 
cap all boundary loops with a single face with multiple loops 
(refer section 4.1). Figure 25 shows the capping of two boundary 
loops with a single rubber face.  
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neighboring face. If the point is in the exterior, then we conclude 
that the neighbor face has expanded, and the orientation of the 
newly created face is same as the corresponding neighbor face. If 
the point is in the interior, then the neighbor face has contracted 
and the face normal is set to opposite orientation.  

Stage 3: Remove redundant edges and create feature solid 
The above face deletion algorithm creates an intermediate solid 
that contains new faces that cap the boundary loops. These faces 
along with the original deleted faces are stitched together to create 
the feature volume. This has been shown pictorially in Figure 5. 
During stitching, the faces belonging the visible face-set need to 
reversed in orientation before stitching with the newly created 
faces of the solution graph. The model can then be simplified by 
merging the newly created faces with the neighbor faces. This is 
also done using Euler operators that remove the edges and 
vertices along the boundary loop, and merge the newly created 
faces with the corresponding neighbor face. Figure 24(d) shows 
the final updated model after merging the newly created faces 
with the corresponding neighbor faces. 
Figure 26 shows the individual stages during deletion of an 
uneven slot. During step 2 of the implementation as discussed in 
the previous section, new faces are created for each of the 
neighboring faces as shown in Figure 26(b). The new face G2 fully 
overlaps with face F2 and hence is set opposite orientation, while 

Rubber face with two loops 

)  
(a
on of rubber face with two boundar

solution graph 
e, the rubber face(s) are recursivel
 using the recursive algorithm des
The topology change is accomp

he steps 3 and 4 of the algorithm u
ile step 8 uses the MEF operator. 
after the delete face recursion has 
the rubber face.  
created in the algorithm corresp
d portion of a neighbor face, and

 face geometry. The inner edges an
 are assigned geometry immediat

ler operation via which they got g
 ei’ is assigned the extended geomet
vertex vc is found as the point of
ded curve of edge ei and the surfac
iple points of intersection, the inter
oint closest to vertex vi. In step 4, 
r are computed by intersecting th
the surfaces of Fl and Fr respective
 intersection, the curve that is clos
 respective geometry.  
pect during geometry computat
newly created faces. As mentioned
e is adjacent to one neighboring
rresponding face geometry. Ho
d on whether the new face corres
ntraction of the corresponding ne
 choosing a point on the create
 the point lies within the inte
(b)
                

 
y loops. 

y subdivided 
cribed in the 
lished using 
se the MEV 
Figure 24(c) 
imposed the 

onds to an 
 is assigned 
d vertices of 
ely after the 
enerated. In 

ry of edge ei. 
 intersection 
e underlying 
section point 
the geometry 
e underlying 
ly. In case of 
est to vertex 

ions is the 
 before, each 
 face and is 
wever, the 
ponds to an 
ighbor face. 
d face, and 
rior of the 

the other new faces G0 and G1 have the same orientation as the 
corresponding neighbor face. In stage 3, when these faces get 
merged with the neighboring faces, face G2 contracts face F2, 
while other faces expand their neighbors. Figure 26(c) shows the 
model obtained after merging the newly created faces with the 
adjacent neighbor faces. 
 

 
Figure 26   Shrinking of neighbor faces during delete face.  
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7. SUPPRESSION OF 2.5D FEATURES 
So far we have discussed a general algorithm for suppressing any 
volumetric feature from a model. However, the problem can be 
greatly simplified when the nature of the feature and its 
neighborhood is well understood. In this section, we show how 
the delete face operation is simplified for parts that are purely 
made up of 2.5D features. These features arise due to extrusions 
of profiles between two levels, and are probably the most 
commonly used kind of features in manufacturing parts.  
Figure 28 shows an example of a pocket that has been made at an 
intersection of crossing ribs. The boundary of the pocket is fairly 
complex, and the delete face algorithm would need powerful 
heuristics to suppress the pocket, and reconstruct the right feature 
volume. However, the problem can be viewed much more easily 
when the part is seen in the “top view” as shown in Figure 29. In 
this projected view, the part is represented as a tiling of faces 
connected in a two dimensional plane. Each face has a level 
associated with it that corresponds to the height at which the 
bottom face of the pocket feature is located. The vertical faces of 
the pocket reduce to edges in the projected view. The problem of 
delete face of a pocket feature reduces to deleting a face in the 
plane by extending the neighboring faces (and levels) in the same 
plane. The set of newly created faces caused by the 
extensions/contractions of the neighborhood can then be pulled 
back in 3D to create the feature volume. 
 

 
Figure 28   Delete face operation of a 2.5D part.  

 
 
 
 
 
 
 
 
Figure 29   Projected view of the part from top. The various 
levels L0, L1, L2, L3 shown are in ascending order. 

The algorithm of delete face in two dimensions also begins 
similarly at an external edge of the face. Instead of an opposite 
face that was found for the 3D delete face problem, an opposite 
edge is found in the 2D delete face problem. Unlike in the 3D 
case, the opposite edge can be found predictably without the need 
of clever heuristics. This is because of the limited number of 

configurations possible when two external edges meet at a vertex. 
The three cases that are permissible are shown in Figure 30. 
Figure 30(a) shows the case when two external edges terminate at 
a vertex. In this case, the faces on either side of the edges are at 
the same level. Figure 30(b) and 30(c) shows the case when two 
external edges meet at a vertex and one of the edges extends 
beyond the vertex. In this case, the external edges have a common 
adjacent level as shown. Due to these limited configurations and 
due to the fact that edges cannot cross each other in the projected 
view, the opposite edge is predictably found as the closest 
external edge that matches these constraints.  
 
 
 
 
 

 
 

Figure 30   The possible configurations when external edges 
intersect after extension.  

The computation of the vertex sense is also greatly simplified in 
most situations. When the external edges terminate at a vertex, 
there is no ambiguity for the vertex sense. In the other case when 
the two edges intersect and one of the edges extend furthers, there 
are two possible configurations depending on the edge that gets 
extended beyond the vertex. Even in this case, the configuration is 
determined completely if the common level Li is the lowest or the 
highest level among the three levels. In this case, the edge that is 
adjacent to the higher level extends from the intersection vertex. 
The only ambiguous situation arises when two external edges 
intersect and the middle level is in between the two side levels. In 
such a situation, it is possible for either of the edges to extend 
beyond the vertex, and hence there are two possible choices for 
the vertex sense. The configuration is then chosen based on 
similar heuristics as described in the previous section. For the 
example shown in Figure 29, the final configuration is completely 
determined without any heuristics. This is shown in Figure 31 
below. 
 
 
 
 
 
 
 
 
 
 
Figure 31   Solving the delete face problem in two dimensions. 
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edge e2. Since level L3 is higher than level L2, edge e2 extends 
beyond and proceeds downwards. The edge then meets e0 and 
proceeds further downward since L3 is also higher than level L1. 
Finally it then merges with edge e7. The other set of external 
edges is also similarly solved resulting in the final solution graph. 

8. CONCLUSION 
This paper presents an algorithm to delete a set of faces of a 
feature from a model, and create the corresponding feature 
volume. This operation is very useful in feature recognition 
algorithm in suppressing the already recognized features, and 
thereby enabling recognition of interacting features. Apart from 
feature recognition, the delete face operation is also useful for 
local editing and modification of parts. For example, deletion of 
certain types of features such as holes and fillets can be used to 
simplify the part and aid downstream applications.  
In literature, several algorithms have been proposed and 
implemented to solve the delete face problem. However, the 
solutions presented so far are mainly heuristic in nature and work 
for simple and specific kinds of feature volumes. Our paper is 
unique in this regard, and provides a systematic algorithm to 
remove face-set features of arbitrary topology and geometry. 
Heuristics are used at clearly defined steps, and they are directly 
related to important characteristics of the final topology and 
geometry. These heuristics have been implemented as separate 
functions, and are independent of the basic recursive algorithm. 
Moreover, our algorithm uses a divide-and-conquer approach, and 
hence is computationally less expensive than other presented 
algorithms. Furthermore, unlike previous approaches, the face 
deletion and the feature volume construction take place in a single 
step without the need of a separate Boolean operation. 
The delete face algorithm has been tested on a wide variety of 
parts. Both depression and protrusion features are handled by the 
algorithm. The algorithm allows extension, contraction and 
merging of neighbor faces during face deletion. Many situations 
such as multiple boundary loops and degeneracy are handled 
robustly by our algorithm.  
In many situations, prior knowledge of the feature volume and the 
neighborhood can be used to simplify the algorithm to a large 
extent. This has been demonstrated for 2.5D features in this paper.  
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