Euclidean Geometry

Let \(v = (x, y, z) \) be a typical element of \(\mathbb{R}^3 \). We define \(|v| \) as \(\sqrt{x^2 + y^2 + z^2} \). Given two vector \(v = (x, y, z) \) and \(w = (x', y', z') \), the inner product is defined as \((v, w) = xx' + yy' + zz' \). Vector \(v \) is called **orthogonal** to \(w \) if \((v, w) = 0 \). Vector \(v \) is called a **unit vector** if \(|v| = 1 \).

1. Show that \((v, w) \leq |v||w| \).

2. Recall that the cross product \(v \times w \) is defined as the vector

\[
\begin{vmatrix}
 i & j & k \\
 x & y & z \\
 x' & y' & z'
\end{vmatrix}
\]

Prove that \(v \times w \) is orthogonal to both \(v \) and \(w \).

3. A Line in \(\mathbb{R}^3 \) may be represented as a tuple \((v, w) \) with both \(v, w \in \mathbb{R}^3 \). This denotes the line \(v + tw \) where \(t \in \mathbb{R} \). (i) Given \(L_1 = (v_1, w_1) \) and \(L_2 = (v_2, w_2) \), determine if these lines are identical or parallel. (ii) Outline a test to determine if a point \(p \) lies on \(L \).

4. Show that if two lines are neither parallel nor intersecting, then there are two parallel planes each containing one of the lines. Is such a pair unique?

5. A plane is given by the equation \(ax + by + cz + d = 0 \). Let \(p \) be a point in \(\mathbb{R}^3 \). Give an algorithm to find the closest point \(q \) on the plane to \(p \).

6. Determine if a line \(L = (v, w) \) lies on a plane of the above form.

7. Let \(P \) and \(Q \) be two planes given by the equations \(ax + by + cz + d = 0 \) and \(a'x + b'y + c'z + d' = 0 \). Compute the intersection of \(P \) and \(Q \).

8. Consider the vector \(w = [1, 2, 3] \). Compute a basis for the space \(\{v| (v, w) = 0 \} \), of all vectors orthogonal to \(w \).

9. Let \(P = \{p_1, \ldots, p_r\} \) be a collection of points. Let \(Q = \{q_1, \ldots, q_s\} \) be another collection so that each \(q_i \) is a convex combination of elements of \(P \). Now let \(r \) be a convex combination of elements of \(Q \). Show that \(r \) is also a convex combination on \(P \).

10. Let \(p_1, p_2, p_3 \) be distinct points. Let \(T \) be the collection of all convex combinations of these points. Show that \(T \) is a triangle with vertices \(p_1, p_2, p_3 \). Show that every point in \(T \) has a unique expression as a convex combination of the points \(p_1, p_2 \) and \(p_3 \).

11. Repeat the above problem with 4 points. **Caution:** Some things are different!

12. A \(3 \times 3 \) matrix \(X \) is called a **rotation matrix** if \(XX^T = I \), the identity matrix. We say that \(v_1, v_2, v_3 \) form an **orthonormal** system if all are unit vectors and orthogonal to each other.

Show that if \(X \) is a rotation matrix, then its rows form an orthonormal system. Show the converse. Show that if \(X, Y \) are rotation matrices, then so are \(XYX^T = XYX^{-1} \) and \(X^TYX = X^{-1}YX \).
13. Show that the following matrix $Z(\theta)$ is a rotation matrix.

$$
\begin{bmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

Recall that a matrix defines a linear transformation on \mathbb{R}^3 treated as row-vectors. Show that $[0, 0, 1]Z(\theta) = [0, 0, 1]$, and thus the Z-axis is left invariant by $Z(\theta)$.

14. Construct matrices $X(\theta)$ and $Y(\theta)$ with the appropriate properties. Let R be a rotation matrix with rows v_1, v_2, v_3. Show that $v_3 R^T Z(\theta)R = v_3$. Describe geometrically, this matrix.

15. Let v be a unit vector. Construct a rotation matrix R such that $vR = [1, 0, 0]$.

Polynomials

1. Show that $T_a = \{1, (t-a)^1, \ldots, (t-a)^n\}$ is a basis for $P^n[t]$.

2. Let p be a polynomial. Suppose that $p(a) = 0$, then argue that $(t-a)$ divides p.

3. Evaluate $\int B^n_i(t)dt$ and $\frac{dB^n_i(t)}{dt}$. What is the maximum value of $B^n_i(t)$ on $[0, 1]$?

4. Prove the degree elevation and subdivision formulae given in the class.

5. Construct a cubic polynomial p such that $p(0) = p'(0) = p(1) = 0$ and $p'(1) = 1$. This polynomial is one of the Hermite polynomials.

6. Argue for the linear independence of the Bernstein and the Lagrange Basis. Hint for the lagrange basis: show the invertibility of the van der Waerden matrix:

$$
\begin{bmatrix}
1 & 1 & 1 & 1 \\
a & b & c & d \\
a^2 & b^2 & c^2 & d^2 \\
a^3 & b^3 & c^3 & d^3
\end{bmatrix}
$$

7. Construct $B^3(f)$, the 3-rd degree bernstein approximation to the function $f(t) = t^2$. How close is $B^3(f)$ to f?

8. Do the same for the Lagrange interpolator $L^3(f)$ with $f = t^2$.

Curves and Surfaces

1. Let $f : [-1, 1]$ be defined piece-wise as follows:

$$
f(t) = \begin{cases}
t & t \in [-1, 0] \\
\sin t & t \in [0, 1]
\end{cases}
$$

Compute the order of continuity of f at 0.

2. Consider the map $f : \mathbb{R} \to \mathbb{R}^2$ defined by

$$
t \rightarrow \left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2} \right)
$$

Show that image $f(t)$ of any point t lies on the unit circle. Compute $f(0), f(\pm 1), f(\pm 2)$. Is there any point on the unit circle which is not an image of f?
3. Let S be a given by an equation $f(X,Y,Z) = 0$. The gradient of the function f is given by the sequence of functions

$$\nabla(f) = \left(\frac{\partial f}{\partial X}, \frac{\partial f}{\partial Y}, \frac{\partial f}{\partial Z} \right)$$

Compute $\nabla(f)$ for the function $X^2 + Y^2 + Z^2 - 1$ at the point $[1, 0, 0]$.

4. Let ϵ be so small a quantity such that $\epsilon^2 = 0$. Let a surface S be given by $f(X,Y,Z) = 0$ and let $p = (x_0, y_0, z_0)$ be a point on S. Let $q = (x, y, z)$ be another vector. Let us consider all vectors q so that $f(p + \epsilon q) = 0$. Such q will be called tangent vectors at p.

Compute the space of tangent vectors for the point $[1, 0, 0]$ on the unit sphere. As an example, we see that $[0, 0, 1]$ is a tangent since we have $p + \epsilon q = [1, 0, \epsilon]$. Substituting this in $X^2 + Y^2 + Z^2 - 1 = 0$, we see that $p + \epsilon q$ does indeed satisfy the equation.

Compute the tangent plane on a generic point on the cone $X^2 + Y^2 - Z^2 = 0$. Is there any relationship between the tangent space at a point and the gradient there?

5. Compute the implicit form for the torus (as a polynomial).

6. Let C be a Bezier Curve with control polygon $P = [p_0, \ldots, p_n]$. Show that an affine transformation (i.e., a translation and/or a homogenous linear transformation) of the curve is obtained by applying the same transformation to the control points.

7. A soap tablet has been specified by its cross-sections

Construct bezier surface patches to match these specifications.

8. Let P be the set of control points for a cubic bezier curve C as shown below:

<table>
<thead>
<tr>
<th>p_0</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0, 0, 0]$</td>
<td>$[0, 1, 0]$</td>
<td>$[1, 1, 0]$</td>
<td>$[2, 0, 0]$</td>
</tr>
</tbody>
</table>

(i) Evaluate $C(0.5)$ and subdivide C to 0.5.
(ii) Elevate the degree of C to 4.

9. Consider a quadratic bezier surface given by the following control points:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$[2, 0, 0]$</td>
<td>$[2, 1, 0]$</td>
<td>$[2, 1, 3]$</td>
</tr>
<tr>
<td>$[1, 0, 0]$</td>
<td>$[1, 1, 0]$</td>
<td>$[1, 1, 2]$</td>
</tr>
<tr>
<td>$[0, 0, 0]$</td>
<td>$[0, 1, 0]$</td>
<td>$[0, 1, 1]$</td>
</tr>
</tbody>
</table>
Compute \(S(0.5, 0.5) \). Also elevated the \(u \) degree to 3.

10. We are given the knot vector \([0, 0, 0, 2, 3, 3]\), and control points:

\[
\begin{array}{cccccc}
\hline
p_1 & p_2 & p_3 & p_4 & p_5 \\
[0, 0, 0] & [0, 1, 0] & [1, 1, 0] & [2, 0, 0] & [3, 0, 0] \\
\hline
\end{array}
\]

Evaluate this B-spline at \(t = 1 \).

Constructions and Operations

1. Let \(f(u, v) = u^2 + u + 2v \) and \(g(u, v) = v^2 + 2u + v \). Starting from the initial guess of \((1, 1)\), use the Newton-Raphson technique to compute the next two iterations.

2. Formulate a procedure for creating surfaces of revolution.

3. Consider the situation of a drafted extrude where the profile has sharp corners. Describe the geometry/topology near these sharp corners.

4. Argue why the surface line on the blend surface discussed in the class is indeed so.

5. Given two points on a unit sphere, derive the parametrization of the great circle passing through it.

6. Let \(S \) be the unit cube and let \(e_1, e_2, e_3 \) be the edges incident at a vertex. Suppose \(e_1, e_2 \) are blended first with radius \(r \) and \(e_3 \) subsequently with radius \(R \). Describe the geometry of all the surfaces created. Cover the cases when \(r < R \) and \(r > R \) separately. Describe what happens when this sequence is reversed.