

Bezier Curves

Milind Sohoni http://www.cse.iitb.ac.in/~sohoni

Recall

Lets recall a few things:

- 1. $f : [0, 1] \rightarrow \mathbb{R}$ is a function.
- 2. $f_0, \ldots, f_i, \ldots, f_n$ are observations of f with $f_i = f(\frac{i}{n})$.
- 3. $B^n(f) = \sum_i f_i B_i^n(t)$ is a polynomial of degree n.
- 4. The plot of $B^n(f)l$ looks like this:

A Computation

•
$$\sum_{i=0}^{n} B_i^n(t) = 1.$$

This follows from binomial expansion of

$$1 = ((1-t)+t)^n = \sum_{i=0}^n \binom{n}{i} t^i (1-t)^{n-i}$$

Thus for all t, $B^n(f)(t)$ is a convex combination of the observations f_i . • $\sum_{i=0}^{n} \frac{i}{n} B_i^n(t) = t$.

This is more delicate. Suppose we choose f(t) as t itself, then $f(\frac{i}{n}) = \frac{i}{n}$. Thus what is being computed is the Bernstein approximation to f(t) = t. And what this says is that the approximation $B^n(f)$ is f itself! WARNING This is not true even for $f(t) = t^2$

Computation Continued...

We begin with the expression:

$$= \int 1.dt$$

= $\sum_{i=0}^{n-1} \int B_i^{n-1}(t)dt$

Now we solve this, and also eliminate the constant of integration. For this note that

$$\int B_i^{n-1}(t)dt = \frac{1}{n}B_{i+1}^n(t) + \int B_{i+1}^{n-1}(t)dt$$

This easily telescopes into the desired result.

1

An Alternate Expression

Treating both y = f(t) and $y = B^n(f)(t)$ as curves in \mathbb{R}^2 , we can give a parametrization:

$$\begin{bmatrix} t \\ B^{n}(f)(t) \end{bmatrix} = \begin{bmatrix} \frac{0}{n} & \frac{1}{n} & \dots & \frac{n}{n} \\ f_{0} & f_{1} & \dots & f_{n} \end{bmatrix} \begin{bmatrix} B^{n}_{0}(t) \\ B^{n}_{1}(t) \\ \vdots \\ B^{n}_{n}(t) \end{bmatrix}$$

The Bezier Curve

In general, just as the *y*-coordinates were general, we may put general *x*-coordinates, instead of $\frac{i}{n}$ to get:

The Bezier Curve:Control Polygon

In general, if we have a sequence $P = [p_0, \ldots, p_n]$ of points $p_i = [x_i, y_i] \in \mathbb{R}^2$, we may define

$$\begin{aligned} x(t) &= \sum_{i=0}^{n} x_i B_i^n(t) \\ y(t) &= \sum_{i=0}^{n} y_i B_i^n(t) \\ \text{or in general} \\ p(t) &= \sum_{i=0}^{n} p_i B_i^n(t) \end{aligned}$$

p(t) has nice properties such as $p(0) = p_0$, $p(1) = p_n$ and more.

The sequence $P = [p_0, \ldots, p_n]$ is called the control polygon.

A New Scheme

This gives us a new paradigm: Draw curves in space via the control polygon.

Bezier Curve: Using the Bernstein Basis and Control Polygons

Home Page		
Title Page		
Contents		
•• >>		
• •		
Page 9 of 27		
Go Back		
Full Screen		
Close		

The Construction of Given Curves

But what about approximation of already given curves?

- Given a curve C in \mathbb{R}^3 , sample points $P^n = [p_0, \ldots, p_n]$ equi-distant along curve-length.
- Form $P^n(t) = \sum_i p_i B_i^n(t)$.

Theorem: For every $\epsilon > 0$, there is an n such that $P^n(t)$ is within the ϵ -envelop of C.

Home Page Title Page Contents Page 10 of 27 Go Back Full Screen Close Quit

Bezier Curve Properties

We begin with the expression:

$$P(t) = p_0 B_0^n(t) + p_1 B_1^n(t) + \ldots + p_n B_n^n(t)$$

- Putting t = 0, we see that B_i^n vanish for i > 0. and out pops p_0 . Thus $P(0) = p_0$. Similarly $P(1) = p_n$. Thus the curve behaves quite predictably at the end-points.
- Next, for any $t \in [0, 1]$, we have $B_i^n(t) \ge 0$ and $\sum B_i^n(t) = 1$. Thus the curve P(t) lies in the convex hull of the control polygon.

Tangents

So given $P = [p_0, \ldots, p_n]$, and $P(t) = \sum_i p_i B_i^n(t)$. What is the meaning of $P'(t) = \frac{dP}{dt}$? P(t) = (x(t), y(t)) and thus P'(t) = (x'(t), y'(t)) is the tangent to the curve.

End Tangents

Back-substituting, we get that:

$$P'(t) = \sum_{i=0}^{n-1} q_i B_i^{n-1}(t) = \sum_{i=0}^{n-1} n(p_{i+1} - p_i) B_i^{n-1}(t)$$

Thus, the derivative/tangent to P(t) is a degree n - 1 bezier curve, whose control points are easily computed.

Whence evaluating P'(t) at 0, we see that $P'(0) = q_0 = n(p_1 - p_0)$, i.e.,

$$\begin{array}{rcl} x'(0) &=& n(x_1-x_0) \\ y'(0) &=& n(y_1-y_0) \end{array}$$

Thus P'(0), the tangent to the curve at 0 and is given by the line joining p_1 and p_0 . The slope is clearly $\frac{y_1-y_0}{x_1-x_0}$.

Quit

Thus the behaviour of P(t) at the end-points is easily determined from the control polygon: $P(0) = p_0$ and the tangent $P'(0) = (p_1 - p_0)/n$.

Caution: If we just know the image of P(t), then p_0 is certainly determined as one of the end-points. From the tangent, we can just guess that p_1 lies on it.

Quit

Thus the behaviour of P(t) at the end-points is easily determined from the control polygon: $P(0) = p_0$ and the tangent $P'(0) = (p_1 - p_0)/n$.

Caution: If we just know the image of P(t), then p_0 is certainly determined as one of the end-points. From the tangent, we can just guess that p_1 lies on it.

Splicing

Question: Suppose P is a control polygon and P(t) its associated curve. We would like to splice another curve Q(t) which extends P(t) at p_0 . Then how is the control polygon of Q to be chosen? Smooth extension result: The curve Q(t) smoothly extends P(t) if (i) $p_0 = q_m$ and (ii) $p_1 - p_0$ and $q_m - q_{m-1}$ are co-linear.

Evaluation: The deCasteljeu Algorithm

Question: How is one to evaluate P(t), given $P = [p_0, \ldots, p_n]$ and the parameter value t.

The deCasteljeu scheme is $O(n^2)$, and quite efficient and stable.

Compare with evaluating $P(t) = \sum_{i=0}^{n} p_i {n \choose i} t^i (1-t)^{n-i}$ directly.

The Geometric De-Casteljeu

Thus every succesive iteration of the algorithm is a sequence of convex combinations of the points generated in the previous phase.

The final point P[0n] thus is also (as expected) a convex combination of the elements of $P = [p_0, \ldots, p_n]$ and therefore lies in the convex hull of P.

Subdivision

Next consider the curve C = P[t]. Suppose that there is a surface S (a plane in this case) which intersects the curve C. Suppose that we have determined the intersection point and that it takes the parameter value c = 0.7. The 'useful' part of the curve is C' which is C restricted to $t \in [0, 0.7]$.

Question: How is one to obtain the control points for C' having those of C?

In terms of polynomials...

Suppose that $f : [0,1] \to \mathbb{R}$ is a polynomial. For a given c = 0.7, we require another polynomial g such that g(t) = f(ct). Thus g(0) = f(0) and g(1) = f(c), and $g : [0,1] \to \mathbb{R}$ defines the useful part of f. If $f = a_0 + a_1t^1 + \ldots + a_nt^n$, then

$$g(t) = f(ct) = a_0 + (c^1 a_1)t^1 + \ldots + (c^n a_n)t^n$$

In other words, $g = b_0 + b_1 t^1 + \ldots + b_n t^n$, where $b_i = c^i a_i$ for all *i*. Thus the expression of *g* in terms of the Taylor basis is clear when *f* is also similarly expressed.

So what happens when $f(ct) = \sum_{i=0}^{n} p_i B_i^n(ct)$, is expressed in the bernstein basis?

Subdivision in the Bernstein basis

In other words, express $B_i^n(ct)$ in terms of $\{B_0^n(t), \ldots, B_n^n(t)\}$. Trying our hand, we see that:

$$B_n^n(ct) = \binom{n}{n}(ct)^n (1-ct)^{n-n}$$

= $c^n t^n = c^n B_n^n(t)$
= $B_n^n(c) B_n^n(t)$
$$B_{n-1}^n(ct) = n(ct)^{n-1} (1-ct)$$

= $nc^{n-1} t^{n-1} [(1-t) + t(1-c)]$
= $c^n B_{n-1}^n + nc^{n-1} (1-c) t^n$
= $B_{n-1}^n(t) B_{n-1}^{n-1}(c) + B_n^n(t) B_{n-1}^n(c)$

т	1		1
In	general	, we	nave:

$$B_{n-k}^{n}(ct) = \sum_{j=0}^{k} B_{n-j}^{n}(t) B_{n-k}^{n-j}(c)$$

Back-Substituting...

Back-substituting that expression into $P(ct) = \sum_{k=0}^{n} p_{n-k} B_{n-k}^{n}(ct)$, we get:

$$P(ct) = \sum_{k=0}^{n} p_{n-k} \sum_{j=0}^{k} B_{n-j}^{n}(t) B_{n-k}^{n-j}(c)$$

=
$$\sum_{i=0}^{n} [\sum_{r=0}^{i} p_{r} B_{r}^{i}(c)] B_{i}^{n}(t) = \sum_{i=0}^{n} q_{i}(c) B_{i}^{n}(t)$$

But we know this quantity before...:

Title Page		
Conter	nts	
••	••	
Page 21 of 27		
Go Back		
Full Scre	een	
Close	•	
Quit		

Home Page

And Geometrically speaking..

Thus, the control points for the sub-division are sitting there in the evaluation process.

Guess what are the control points for the second part of the curve, i.e., from [c, 1]?

Degree Elevation

Suppose C = P[t] is given as a degree 3 parametrization. Thus (x(t), y(t), z(t)) are degree 3 polynomials. Then certainly, they are expressible in terms of $B_i^4(t)$! What is that expression? In other words, given $P = [p_0, \ldots, p_n]$ compute $Q = [q_0, \ldots, q_n, q_{n+1}]$ so that:

$$\sum_{i=0}^{n} p_i B_i^n(t) = \sum_{j=0}^{n+1} q_j B_j^{n+1}(t)$$

To begin with, we see:

E

$$\begin{aligned} B_i^n(t) &= \binom{n}{i} t^i (1-t)^{n-i} \\ &= \binom{\binom{n}{i}}{i} t^i (1-t)^{n-i} [t+(1-t)] \\ &= \frac{i+1}{n+1} B_{i+1}^{n+1}(t) + \frac{n-i+1}{n+1} B_i^{n+1}(t) \end{aligned}$$

Back-substituting, we see that:

$$q_i = \frac{n-i+1}{n+1}p_i + \frac{i}{n+1}p_{i-1}$$

The coefficients have the following pleasing interpretation:

Back-substituting, we see that:

$$q_i = \frac{n-i+1}{n+1}p_i + \frac{i}{n+1}p_{i-1}$$

The coefficients have the following pleasing interpretation:

And Geometrically speaking..

Thus, the control polygon Q may be obtained as an appropriate interpolation of the control-polygon P.

Wrap-Up

Recall that the edge geometry is stored as the tuple:

- an interval [a, b], in this case [0, 1].
- a map $f : [a, b] \to \mathbb{R}^3$, in this case, as a sequence $P = [p_0, \dots, p_n]$. Further:
 - 1. The evaluation of f is given by the deCasteljeu algorithm. Also note that f is a polynomial and is thus defined beyond [0, 1].
 - 2. The subdivision and elevation are basic kernel operations of modifying the function f to suit requirements.
 - 3. The construction of a particular curve from points on it is enabled via the Bezier-Bernstein theorem.