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Recall

Lets recall a few things:

1. f:]0,1] — Ris a function.

2. fo,..., fi,..., [, are observations of with f; = f(%).
3.B"(f)=>_, fiB!'(t) is a polynomial of degree.

4. The plot of B"( f)I looks like this:

— original function
— bernstein approximator for n=4
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A Computation
° > ioBI(t) =1

This follows from binomial expansion of

R S (I

1=0
Thus for allt, B"(f)(t) is aconvexcombination of the observatiorfs.
*> ", %Bln(t) = 7,

This is more delicate. Suppose we chogée) ast itself, thenf (L) = L.
Thus what is being computed is the Bernstein approximatigitp= ¢.
And what this says is that the approximatib¥i( f) is f itself!

WARNING This is not true even fof (t) = ¢*
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Computation Continued...
We begin with the expression:
t = | 1dt
= Y [ BrY (bt

Now we solve this, and also eliminate the constant of integration. For this
note that

[ B = B0+ [ Briwa

This easily telescopes into the desired result.
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An Alternate Expression

Treating bothy = f(¢) andy = B"(f)(t) as curves iflR?, we can give
aparametrization

0 1 n B(Z(t)
[Bn(;)(t)] - [Jéo Jél Jﬁn] Bli(t)
| BL(t) |

— original function
— bernstein approximator for n=4

B ()
4 2/4 4
} } } i

|
0 1
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The Bezier Curve

In general, just as thg-coordinates were general, we may put general
coordinates, instead dfto get:

| Bi(t)
x(t) _ | %o T ... Ty B (t)
y(t) Yo Y1 - Yn i
| B(¢) |
pl=(x1,y1) p2=(x2,y2)
(x(0.7),y(0.7))

pO=(x0,y0) p3=(x3,y3)
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The Bezier Curve:Control Polygon

In general, if we have a sequenée = |p,...,p,| of points p;
[z;, ;] € R?, we may define

z(t) = i mBi(t)
y(t) = D isoyi B (¢)
or in general

p(t) = > i_opiBi(?)

p(t) has nice properties such a®) = py, p(1) = p, and more.

The sequenc® = [py, ..., p,] is called thecontrol polygon
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A New Scheme

This gives us a new paradignidraw curves in space via the control

polygon

03 pl p2

po
o2 pz\ po p3

Control
7~ Polygons o 03

S

pl pz

p0 p3

Bezier Curve Using the Bernstein Basis and Control Polygons
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The Construction of Given Curves

But what about approximation of already given curves?

e Given a curveC' in R?, sample points”" = [py, . . ., p,| equi-distant
alongcurve-length

e FormP"(t) = >_. p; B(t).

Theorem: For every > 0, there is am such thatP"(t) is within thee-
envelop ofC'.

% CurveC

t=]p3

P{0)

Pic)
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Bezier Curve Properties

We begin with the expression:
P(t) = poBy(t) + p1 By (t) + ... + pa B (t)

e Puttingt = 0, we see thatB!" vanish fori > 0. and out pops

po- ThusP(0) = py. Similarly P(1) = p,,. Thus the curve behaves

quite predictably at the end-points.

e Next, foranyt € [0, 1], we haveB!'(t) > 0 and) _ B!'(t) = 1. Thus
the curveP(t) lies in the convex hull of the control polygon
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Tangents

So givenP = [py, ..., pu), andP(t) = > . p: Bl (t).

What is the meaning of’(¢) = <2

P(t) = (x(t),y(t)) and thusP’( ) = (2/(t),y'(t)) is the tangent to the
curve.

pl p2

P(t)

P'(t)

PO p3
Also recall that™:” = n (B! (t) — Br (1)
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End Tangents

Back-substituting, we get that:

n—1 n—1
Pi(t) = Z ¢ B (t) = Zn(le —pi) B 7(t)
i=0 i=0

Thus, the derivative/tangent #8(¢) is a degreer — 1 bezier curvewhose
control points are easily computed.
Whence evaluating” (¢) at0, we see thaP’(0) = gy = n(p1 — po), i.€.,

2'(0) = n(x; — )
y'(0) = n(y1 — wo)

Thus P'(0), the tangent to the curve @tand is given by the line joining,
andp,. The slope is clearlgij—fg‘(’).
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pl=(x1yl) p2=(x2,y2

p0=(x0,y0) tangents p3=(x3,y3)

/\

Thus the behaviour oP(t) at the end-points is easily determined from the
control polygon:P(0) = p, and the tangen®t”’(0) = (p; — po)/n.
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p0=(x0,y0) tangents p3=(x3,y3)

/\

Thus the behaviour oP(t) at the end-points is easily determined from the
control polygon:P(0) = p, and the tangent’(0) = (p; — po)/n.

Caution If we just know the image of(¢), thenp, is certainly determined
as one of the end-points. From the tangent, we can just guegs tireg on
it.
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Splicing

Question SupposeP is a control polygon andP(t) its associated curve. We
would like to splice another curv@(t) whichextendsP(t) atp,. Then how
is the control polygon of) to be chosen?

Smooth extension resullhe curveQ)(t) smoothly extend$ (%) if (i) py =
q,, and(ii) p; — py andg,, — ¢,,—1 areco-linear.

pL b2
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Evaluation: The deCasteljeu Algorithm

Question How is one to evaluaté’(t), given P = [py, ..., p,] and the
parameter valué.
p\ / \ / \ /[3
p[0,1] p[1.2] p[2,3]
1—t\ / 1x
p[0.2] p[1.3]
\ /
=it /
p[0.3] =P(t)

ThedeCasteljeischeme i€)(n?), and quite efficient and stable.

Compare with evaluating’(t) = >, p;(")¢'(1 — ¢)"* directly.
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The Geometric De-Casteljeu

P[1,2] Pl12,2]
/

\

P[0,3]
P[0,1] « \ lies on the curve
P[0,2]
P[0,0] t=1/4

P[3,3]

Thus every succesive iteration of the algorithm is a sequenceektx com-
binationsof the points generated in the previous phase.

The final pointP[0n] thus is also (as expected) a convex combination of the
elements ofP = [py, . . ., p,| and therefore lies in theonvex hullof P.
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Subdivision

Next consider the curv€' = P|[t]. Suppose that there is a surfatéa plane

in this case) which intersects the cuWe Suppose that we have determined
the intersection point and that it takes the parameter valad).7.

The ‘useful’ part of the curve i€” which isC restricted tat € [0, 0.7].

pl

t=0.7=
s ¢

useful

Rl plane p3

pO

Question How is one to obtain the control points féf' having those of'?
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In terms of polynomials...

Suppose thaf : [0,1] — R is a polynomial. For a givem = 0.7, we
require another polynomigl such thaty(t) = f(ct).

Thusg(0) = f(0) andg(1) = f(c), andg : [0, 1] — R defines theiseful
partof f.

If f=ag+aitt+ ...+ a,t", then

gt) = flct) = ag + (cla)t' + ... + ("a,)t"

In other wordsg = by+bit' +. .. +b,t", whereb;, = c'a; for all i. Thus the
expression ofy in terms of theTaylor basids clear whenf is also similarly
expressed.

So what happens whef(ct) = > p;B!(ct), is expressed in the bern-
stein basis?
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Subdivision in the Bernstein basis

In other words, expresB!'(ct) in terms of{ B{(¢), ..., B!'(t)}.
Trying our hand, we see that:

B(ct) (") (ct)™(1 — ct)"™
c"t" = c"B(t)
By (c)B(t)
B (ct) = n(ct)" 1 —ct)

nc" (1 —t) + t(1 — )]
"B" 4+ nc" (1 —e)t"
B, 1()B, () + Br(t)By_y(c)

In general, we have:

Biilet) =3 Bi,(0)B5()
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Back-Substituting...

Back-substituting that expression infd(ct) =
get:

Zk o Pn—i By

Plct) = Yo Pt 2jmo Brj(t) Bazi(c)

= Y- Bilc )]B”(t)

But we know this quantity before...

- Z oq@( c)Bj'(t)

L(ct), we
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And Geometrically speaking..

P[1,2] P[2,2]

P[3,3]

Thus, the control points for the sub-division arging therdan the evaluation
process.

Guesawhat are the control points for the second part of the curve, i.e., from
lc, 1]?
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Degree Elevation

SupposeC = PJt] is given as a degre@ parametrization. Thus
(x(t),y(t), z(t)) are degre8 polynomials. Then certainly, they are express-
ible in terms of B}(¢)! What is that expression?

In other words, giverP = [py, . . ., p,] compute) = [qo, - - -, Gns Gni1] SO

that:
n+1

> pBi(t) =) ¢;B™(1)
1=0

j=0
To begin with, we see:

Bpt) = ()t -t
(M@ =)t + (1 — 1)

B (E) + LB ()

n+1
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Back-substituting, we see that:

_n—z'+1 n 1
qi = nt 1 Di S

Pi—1

The coefficients have the following pleasing interpretation:

NL*
0 2 &
q N\ p2
N\ ql
po\
N\
pl
p3 /q4
| s | 2 4 3
14 4 /4 /3
0r3 13 23


http://sharat-lap/~sharat

Back-substituting, we see that:

_n—z'+1 n 1
qi = nt 1 Di S

Pi—1

The coefficients have the following pleasing interpretation:

g3
o ® <
N\ ql
po\
P3Y g4

| va | 24 | wa 33
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And Geometrically speaking..

pl 02 p2

~

ql gc

g0 po 03 G4

Thus, the control polygo® may be obtained as an appropriate interpolation
of the control-polygorP.
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Wrap-Up
Recall that the edge geometry is stored as the tuple:
e an intervalla, b], in this caseo, 1].
e amapf : [a,b] — R3, in this case, as a sequenée= [p, . . ., p.l.
Further:

1. The evaluation of is given by the deCasteljeu algorithm. Also note that
f is a polynomial and is thus defined beydfd1].

2. The subdivisionandelevationare basic kernel operations of modifying
the functionf to suit requirements.

3. The construction of a particular curve from points on it is enabled via the
Bezier-Bernsteirtheorem.
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