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Recall
Lets recall a few things:

1. f : [0, 1]→ R is a function.

2. f0, . . . , fi, . . . , fn are observations off with fi = f ( in).

3.Bn(f ) =
∑

i fiB
n
i (t) is a polynomial of degreen.

4. The plot ofBn(f )l looks like this:

0 1

1/4 2/4 3/4

original function

bernstein approximator for n=4
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A Computation

•
∑n

i=0B
n
i (t) = 1.

This follows from binomial expansion of

1 = ((1− t) + t)n =

n∑
i=0

(
n

i

)
ti(1− t)n−i

Thus for allt,Bn(f )(t) is aconvexcombination of the observationsfi.

•
∑n

i=0
i
nB

n
i (t) = t.

This is more delicate. Suppose we choosef (t) ast itself, thenf ( i
n
) = i

n
.

Thus what is being computed is the Bernstein approximation tof (t) = t.
And what this says is that the approximationBn(f ) is f itself!

WARNING This is not true even forf (t) = t2

http://sharat-lap/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 4 of 27

Go Back

Full Screen

Close

Quit

Computation Continued...

We begin with the expression:

t =
∫

1.dt
=
∑n−1

i=0

∫
Bn−1
i (t)dt

Now we solve this, and also eliminate the constant of integration. For this
note that ∫

Bn−1
i (t)dt =

1

n
Bn
i+1(t) +

∫
Bn−1
i+1 (t)dt

This easily telescopes into the desired result.

http://sharat-lap/~sharat
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An Alternate Expression
Treating bothy = f (t) andy = Bn(f )(t) as curves inR2, we can give
aparametrization:

[
t

Bn(f )(t)

]
=

[
0
n

1
n . . . n

n

f0 f1 . . . fn

]
Bn

0 (t)

Bn
1 (t)
...

Bn
n(t)



0 1

1/4 2/4 3/4

original function

bernstein approximator for n=4
n

(t,B  (f)(t))
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The Bezier Curve
In general, just as they-coordinates were general, we may put generalx-
coordinates, instead ofi

n
to get:[

x(t)
y(t)

]
=

[
x0 x1 . . . xn
y0 y1 . . . yn

]
Bn

0 (t)
Bn

1 (t)
...

Bn
n(t)



p0=(x0,y0) p3=(x3,y3)

p2=(x2,y2)p1=(x1,y1)

(x(0.7),y(0.7))

http://sharat-lap/~sharat
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The Bezier Curve:Control Polygon
In general, if we have a sequenceP = [p0, . . . , pn] of points pi =

[xi, yi] ∈ R2, we may define

x(t) =
∑n

i=0 xiB
n
i (t)

y(t) =
∑n

i=0 yiB
n
i (t)

or in general
p(t) =

∑n
i=0 piB

n
i (t)

p(t) has nice properties such asp(0) = p0, p(1) = pn and more.

The sequenceP = [p0, . . . , pn] is called thecontrol polygon.

http://sharat-lap/~sharat
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A New Scheme
This gives us a new paradigm:Draw curves in space via the control
polygon.

p0

p1

p0 p3

p0

p0
p1

p1

p2

p2
p3

p3

p2

p3
p1 p2

Control
Polygons

Bezier Curve: Using the Bernstein Basis and Control Polygons
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The Construction of Given Curves
But what about approximation of already given curves?

• Given a curveC in R3, sample pointsP n = [p0, . . . , pn] equi-distant
alongcurve-length.

• FormP n(t) =
∑

i piB
n
i (t).

Theorem: For everyε > 0, there is ann such thatP n(t) is within theε-
envelop ofC.

X

Y

start
vertex

end
vertex

t=0

t=1

Curve C

P (C)

3

6

P (C)

p0

p1

p2

p3
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Bezier Curve Properties

We begin with the expression:

P (t) = p0B
n
0 (t) + p1B

n
1 (t) + . . . + pnB

n
n(t)

• Putting t = 0, we see thatBn
i vanish for i > 0. and out pops

p0. ThusP (0) = p0. Similarly P (1) = pn. Thus the curve behaves
quite predictably at the end-points.

• Next, foranyt ∈ [0, 1], we haveBn
i (t) ≥ 0 and

∑
Bn
i (t) = 1. Thus

the curveP (t) lies in the convex hull of the control polygon.

http://sharat-lap/~sharat
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Tangents
So givenP = [p0, . . . , pn], andP (t) =

∑
i piB

n
i (t).

What is the meaning ofP ′(t) = dP
dt

?
P (t) = (x(t), y(t)) and thusP ′(t) = (x′(t), y′(t)) is the tangent to the
curve.

p0 p3

p2p1

P’(t)

P(t)

Also recall thatdB
n
i (t)
dt

= n(Bn−1
i−1 (t)−Bn−1

i (t)).

http://sharat-lap/~sharat
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End Tangents

Back-substituting, we get that:

P ′(t) =

n−1∑
i=0

qiB
n−1
i (t) =

n−1∑
i=0

n(pi+1 − pi)Bn−1
i (t)

Thus, the derivative/tangent toP (t) is a degreen − 1 bezier curve, whose
control points are easily computed.
Whence evaluatingP ′(t) at 0, we see thatP ′(0) = q0 = n(p1 − p0), i.e.,

x′(0) = n(x1 − x0)
y′(0) = n(y1 − y0)

ThusP ′(0), the tangent to the curve at0 and is given by the line joiningp1
andp0. The slope is clearlyy1−y0

x1−x0
.

http://sharat-lap/~sharat
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p2=(x2,y2)p1=(x1,y1)

p3=(x3,y3)p0=(x0,y0) tangents

Thus the behaviour ofP (t) at the end-points is easily determined from the
control polygon:P (0) = p0 and the tangentP ′(0) = (p1 − p0)/n.

Caution: If we just know the image ofP (t), thenp0 is certainly determined
as one of the end-points. From the tangent, we can just guess thatp1 lies on
it.

http://sharat-lap/~sharat
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p2=(x2,y2)p1=(x1,y1)

p3=(x3,y3)p0=(x0,y0) tangents

Thus the behaviour ofP (t) at the end-points is easily determined from the
control polygon:P (0) = p0 and the tangentP ′(0) = (p1 − p0)/n.

Caution: If we just know the image ofP (t), thenp0 is certainly determined
as one of the end-points. From the tangent, we can just guess thatp1 lies on
it.
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Splicing
Question: SupposeP is a control polygon andP (t) its associated curve. We
would like to splice another curveQ(t) whichextendsP (t) atp0. Then how
is the control polygon ofQ to be chosen?
Smooth extension result:The curveQ(t) smoothly extendsP (t) if (i) p0 =
qm and(ii) p1 − p0 andqm − qm−1 areco-linear.

p3

p1
p2

p0
q0

q1q2

q3=

http://sharat-lap/~sharat
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Evaluation: The deCasteljeu Algorithm
Question: How is one to evaluateP (t), givenP = [p0, . . . , pn] and the
parameter valuet.

p[0] p[1] p[3]

p[0,1] p[1,2] p[2,3]

p[0,2] p[1,3]

p[0,3]

1−t

1−t

1−t

1−t

1−t

1−t
t t t

t t

t

p[2]

=P(t)

ThedeCasteljeuscheme isO(n2), and quite efficient and stable.

Compare with evaluatingP (t) =
∑n

i=0 pi
(
n
i

)
ti(1− t)n−i directly.

http://sharat-lap/~sharat
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The Geometric De-Casteljeu
P[2,2]

P[3,3]

P[0,1]

P[1,2]

P[2,3]

P[0,2]

P[1,3]

P[0,3]

t=1/4P[0,0]

P[1,1]

lies on the curve

Thus every succesive iteration of the algorithm is a sequence ofconvex com-
binationsof the points generated in the previous phase.
The final pointP [0n] thus is also (as expected) a convex combination of the
elements ofP = [p0, . . . , pn] and therefore lies in theconvex hullof P .

http://sharat-lap/~sharat
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Subdivision
Next consider the curveC = P [t]. Suppose that there is a surfaceS (a plane
in this case) which intersects the curveC. Suppose that we have determined
the intersection point and that it takes the parameter valuec = 0.7.
The ‘useful’ part of the curve isC ′ which isC restricted tot ∈ [0, 0.7].

p0
p3

p2p1

t=0.7=c

plane

useful
part

Question: How is one to obtain the control points forC ′ having those ofC?

http://sharat-lap/~sharat
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In terms of polynomials...
Suppose thatf : [0, 1] → R is a polynomial. For a givenc = 0.7, we
require another polynomialg such thatg(t) = f (ct).
Thusg(0) = f (0) andg(1) = f (c), andg : [0, 1] → R defines theuseful
partof f .
If f = a0 + a1t

1 + . . . + ant
n, then

g(t) = f (ct) = a0 + (c1a1)t
1 + . . . + (cnan)t

n

In other words,g = b0 +b1t
1 + . . .+bnt

n, wherebi = ciai for all i. Thus the
expression ofg in terms of theTaylor basisis clear whenf is also similarly
expressed.
So what happens whenf (ct) =

∑n
i=0 piB

n
i (ct), is expressed in the bern-

stein basis?

http://sharat-lap/~sharat
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Subdivision in the Bernstein basis
In other words, expressBn

i (ct) in terms of{Bn
0 (t), . . . , Bn

n(t)}.
Trying our hand, we see that:

Bn
n(ct) =

(
n
n

)
(ct)n(1− ct)n−n

= cntn = cnBn
n(t)

= Bn
n(c)Bn

n(t)
Bn
n−1(ct) = n(ct)n−1(1− ct)

= ncn−1tn−1[(1− t) + t(1− c)]
= cnBn

n−1 + ncn−1(1− c)tn
= Bn

n−1(t)B
n−1
n−1(c) + Bn

n(t)Bn
n−1(c)

In general, we have:

Bn
n−k(ct) =

k∑
j=0

Bn
n−j(t)B

n−j
n−k(c)

http://sharat-lap/~sharat
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Back-Substituting...
Back-substituting that expression intoP (ct) =

∑n
k=0 pn−kB

n
n−k(ct), we

get:

P (ct) =
∑n

k=0 pn−k
∑k

j=0B
n
n−j(t)B

n−j
n−k(c)

=
∑n

i=0[
∑i

r=0 prB
i
r(c)]B

n
i (t) =

∑n
i=0 qi(c)B

n
i (t)

But we know this quantity before...:

p[0] p[1] p[3]

p[0,1] p[1,2] p[2,3]

p[0,2] p[1,3]

p[0,3]

1−c

p[2]

1−c

1−c 1−c 1−c

1−c

c

c

c

c

c

c

q0

q1

q2

q3

http://sharat-lap/~sharat
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And Geometrically speaking..
P[2,2]

P[3,3]

P[0,1]

P[1,2]

P[2,3]

P[0,2]

P[1,3]

P[0,3]

P[0,0]

P[1,1]

q0

q1
q2

q3

Thus, the control points for the sub-division aresitting therein the evaluation
process.
Guesswhat are the control points for the second part of the curve, i.e., from
[c, 1]?

http://sharat-lap/~sharat
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Degree Elevation
SupposeC = P [t] is given as a degree3 parametrization. Thus
(x(t), y(t), z(t)) are degree3 polynomials. Then certainly, they are express-
ible in terms ofB4

i (t)! What is that expression?
In other words, givenP = [p0, . . . , pn] computeQ = [q0, . . . , qn, qn+1] so
that:

n∑
i=0

piB
n
i (t) =

n+1∑
j=0

qjB
n+1
j (t)

To begin with, we see:

Bn
i (t) =

(
n
i

)
ti(1− t)n−i

= (
(
n
i

)
ti(1− t)n−i)[t + (1− t)]

= i+1
n+1B

n+1
i+1 (t) + n−i+1

n+1 B
n+1
i (t)

http://sharat-lap/~sharat
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Back-substituting, we see that:

qi =
n− i + 1

n + 1
pi +

i

n + 1
pi−1

The coefficients have the following pleasing interpretation:

��

��

��

��

�	


�

�


1/4 2/4 3/4
0/3 1/3 2/3

3/3

q1

p1

q2
p2

q3

q0

q4

p0

p3
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Back-substituting, we see that:

qi =
n− i + 1

n + 1
pi +

i

n + 1
pi−1

The coefficients have the following pleasing interpretation:

��

��

��

��

�	


�

�


1/4 2/4 3/4
0/3 1/3 2/3

3/3

q1

p1

q2
p2

q3

q0

q4

p0

p3
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And Geometrically speaking..

p0 p3

p2p1

q0

q1

q2

q3

q4

Thus, the control polygonQmay be obtained as an appropriate interpolation
of the control-polygonP .
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Wrap-Up
Recall that the edge geometry is stored as the tuple:

• an interval[a, b], in this case[0, 1].

• a mapf : [a, b]→ R
3, in this case, as a sequenceP = [p0, . . . , pn].

Further:

1. The evaluation off is given by the deCasteljeu algorithm. Also note that
f is a polynomial and is thus defined beyond[0, 1].

2. Thesubdivisionandelevationare basic kernel operations of modifying
the functionf to suit requirements.

3. The construction of a particular curve from points on it is enabled via the
Bezier-Bernsteintheorem.
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