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Overview

In this sequence of two talks we will outline algorithms for implementing
typical kernel operations. We will discuss:

• Curve-Plane intersection.

• Curve-Curve intersection in 2d.

• Curve-Surface intersection.

• Point projection on Surface.

• Extrude surface creation.

• Blend constructions.

http://sharat-lap/~sharat
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Curve-Plane Intersection

SupposeC is given asC(t) = (x(t), y(t), z(t)), and say that the plane is
given byax + by + cz + d = 0.

Curve

Plane

t0
parameter

http://sharat-lap/~sharat
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Nice Fact

If we have a linear transformation on the space which transformsC(t)

to C ′(t), and we have the control pointsP of C(t) then those ofC ′(t)
are obtained byperforming the linear operation on P.

transformedoriginal

Plane

control
polygon

curve
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Thus...

We may assume that the plane is given byX = 0. In other words, we
need to solvex(t) = 0 and get the parametert.

x(t)

t
t0

http://sharat-lap/~sharat
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Bisection Method

Input: Interval[a, b] knownto contain a zeroa.
Output: Either[a, (a + b)/2] or [(a + b)/2, b] with the same guarantee.

x(t)

t
L(i)

R(i)

t0

L(i+1)

Stop: When interval is small enough.
Speed: linear in precsion.

aHow is one to check this?

http://sharat-lap/~sharat
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Newton-Raphson Method

Input: Current Pointwi.
Method: Draw a tangent at(wi, f(wi)) and compute zero. Thus next point
is:

wi+1 = wi −
f (wi)

f ′(wi)

x(t)

t

t0

w(i)

w(i+1)

Stop: Whenf (wi) is small.
Speed: Very fast,O(n2), but very sensitive.

http://sharat-lap/~sharat
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A Bad Case

x(t)

t0

w(i)w(i+1)t

Thus, NR is fast in (i) the neighborhood of a zeroAND
(ii) when the zero is simple.

http://sharat-lap/~sharat
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General Procedure

1. Refine the Control polygon to locate a zero.

2. If zero is not simple, use special procedure.

3. For simple zero, use the Newton-Raphson method.

This shows the importance of:

• Differentiability of the curve.

• The Use ofControl Polygon.

• Procedures (Subdivision, Knot-Insertion) to refine a control polygon of
a curve.

Also note that one does NOT need the form of the functionf , but just an
evaluator.

http://sharat-lap/~sharat
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Curve-Curve Intersection in 2D

SupposeC = (x1(t), y1(t)) andD = (x2(u), y2(u)) are two curves. The
intersection is given by:

x1(t)− x2(u) = 0
y1(t)− y2(u) = 0

Or in other wordssimultaneous solution of two equations in two variables:

f (t, u) = 0 g(t, u) = 0

Again, there is therobust-but-slowpolygon-subdivision based scheme, and
thefast-but-sensitivemulti-dimensional Newton-Raphson scheme.
Also note that the robust schemes usually work inmodel-spacewhile the fast
schemes work inparameter space.

http://sharat-lap/~sharat
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A Sample Polygon-Based Intersection

actual intersection

approx.
intersection

Notice that the by the Bezier-Bernstein theorem, approximate intersection
point gets closer to the actual intersection point.
Although not shown, many solvers will loaclize the intersection to smaller
segments using sub-division.

http://sharat-lap/~sharat
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The Multi-dimesional Newton-Raphson

Recall, we need to solve:

f (t, u) = 0 g(t, u) = 0

If we have an initial guess(t0, u0), then we use:

f (t, u) ≈ f (t0, u0) + ∂f
∂t

(t0, u0)[t− t0] + ∂f
∂u

(t0, u0)[u− u0]
g(t, u) ≈ g(t0, u0) + ∂g

∂t
(t0, u0)[t− t0] + ∂g

∂u
(t0, u0)[u− u0]

Now these taylor approximations are linear and may be solved:[
∂f
∂t (t0, u0) ∂f

∂u(t0, u0)
∂g
∂t (t0, u0) ∂g

∂u(t0, u0)

] [
t
u

]
=

[
f(t0, u0)− t0 ∂f∂t (t0, u0)− u0

∂f
∂u(t0, u0)

g(t0, u0)− t0 ∂g∂t (t0, u0)− u0
∂g
∂u(t0, u0)

]

This give us the next iterant(t1, u1).

http://sharat-lap/~sharat
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A Picture of the 2D Newton-Raphson

Tangent

f(t0,u0)
g(t0,u0)

Tangent

t

u

to  f to  g

(t0,u0)
(t1,u1)

The tangent planes are shown, while the functions are not.

The convergence depends on order-2 constants which arecurvatures.

http://sharat-lap/~sharat
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A Numerical

Let
f (t, u) = tu + t + u
g(t, u) = t2 + u

Let (t0, u0) = (1, 1). We evaluate various quantities:[
∂f
∂t

∂f
∂u

∂g
∂t

∂g
∂u

]
=

[
u + 1 t + 1

2t 1

]
=

[
2 2
2 1

]
Sincef (1, 1) = 3 andg(1, 1) = 2, we get the the equations:

3 + 2(t− 1) + 2(u− 1) = 0
2 + 2(t− 1) + (u− 1) = 0

Solving this, we get(t1, u1) = (0.5, 0). Note that

f (0.5, 0) = 0.5 g(0.5, 0) = 0.25

This is better than the point(1, 1) closer to the actual zero of(0, 0).

http://sharat-lap/~sharat
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Mixed Mode

There are also some mixed mode methods, which are of Newton-Raphson
type but which act in the model space. These are even more sensitive, and of
course, faster.

p0

q0
q0

q1

q1 almost
there

tangents

Outlined above is such a method. It constructs a sequence(pi) on the first
curve and(qi) on the second, alternately, using tangents. This makes the
methodO(n2).

http://sharat-lap/~sharat
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Curve-Surface Intersection

We easily set up the equations. LetS = (x1(u, v), y1(u, v), z1(u, v)) and
C = (x2(t), y2(t), z2(t)). We get:

x1(u, v)− x2(t) = 0
y1(u, v)− y2(t) = 0
z1(u, v)− z2(t) = 0

Thus we have a similar situation, viz.,m equations inm unknowns. Again
there are sub-division robust techniques which are used to localize the prob-
lem, and finally Newton-Raphson to finish off the job.
This theme repeats: one tries to cast a geometric problem into this formula-
tion.

http://sharat-lap/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 17 of 25

Go Back

Full Screen

Close

Quit

Point Projection

Let p be a point andS a surface. we wish to find the closest pointq ∈ S to
p.

p

q

partial u
partial v

normal

This is formulated by the condition thatq−p is perpendicular to the tangents
∂
∂u

and ∂
∂v

atq.

http://sharat-lap/~sharat
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Details

Let p = (x0, y0, z0) andS be given byx(u, v), y(u, v), z(u, v)). The
partials are given by:

∂
∂u = (∂x∂u,

∂y
∂u,

∂z
∂u)

∂
∂v = (∂x∂v ,

∂y
∂v ,

∂z
∂v)

We thus get the equation:[
∂x(u,v)
∂u

∂y(u,v)
∂u

∂z(u,v)
∂u

∂x(u,v)
∂v

∂y(u,v)
∂v

∂z(u,v)
∂v

] x(u, v)− x0

y(u, v)− y0

z(u, v)− z0

 =

[
0

0

]

http://sharat-lap/~sharat
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How is this to be solved?

Thus, we get two equations in two unknowns. Note that even theeval-
uationof the defining equations requirespartial derivatives.
Let us callf (u, v) as:

(x(u, v)−x0)
∂x(u, v)

∂u
+(y(u, v)−y0)

∂y(u, v)

∂u
+(z(u, v)−z0)

∂z(u, v)

∂u

g(u, v) is similarly defined. We note that in applying the Newton-
Raphson, we need not onlyf (u0, v0) but ∂f∂u and∂f

∂v as well.
Thus, in applying theN -R technique, we will needf to be differen-
tiable, i.e.,x(u, v) to bedoubly differentiable.

Consequently, the surface must bedoubly-differentiable.

http://sharat-lap/~sharat
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Surrounding Logic

There are many more things to this than just thecore solver. A simple ex-
ample is say, the curve-surface intersection.
Note that the solver disregards the trim-curves and the domain of definition,
but just considers theparametrization function(x1(u, v), y1(u, v), z1(u, v))
of the surface, while solving.

underlying surface

inside outsideCurve C1
Curve C2

patch

We see above, for the two curves, the solver will return(u0, v0) which is
inside, and another(u1, v1) which is outside.

http://sharat-lap/~sharat
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The Jordan Curve Theorem

Thus, once the(u0, v0) parameters of the intersection point have been deter-
mined, we must ascertain that(u0, v0) belongs to the domain. This is done
by theJordon Curve Theorem.
If C is a closed curve, andp is a point insideC. If P is a path fromp to q
which meetsC transversally, thenq is insideC iff the number of intersection
points ofC andP are even.

p q

Curve C

Path P

http://sharat-lap/~sharat
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How does it apply

2 int.
points

domain

Parameter Space

known
inside
point

point
1 int.

For each patch,record initially a (u∗, v∗) as aknown point inside the
domain. For any other point(u0, v0), its membership can be determined
by counting the intersection points of the line joining these points and
the bounding curves of the domain.

http://sharat-lap/~sharat
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In Summary

Requirements:

• Continuous and highly differentiable function definitions.

• Definitions should extend beyond the domains of curves and sur-
faces.

• Evaluators:explicit definitions not required.

The basic paradigm:

• A solver form equations inm unknowns. This isnumerically sta-
ble.

• A formulation of the problem as an instance of above.

• An iterator whosefixed pointis the solution.

http://sharat-lap/~sharat
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Wait: What about Surface-Surface Intersections

Notice that our basic paradigm ism-equations andm-unknowns. Thus
the solution set is necessarily afinitecollection of points.

Surface-Surface intersection will createcurves, i.e., acontinuumof
points. Clearly, a representation of this can only be done through
finitely many points.

This brings in the need of aConstructorwhich will bring these higher
dimensional entities into existence through a clever choice of points on
it.

http://sharat-lap/~sharat
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Things Not Covered– MANY

• Bounding Box methods and Polygon approximators.

• Polygon Calculus and solvers.

• Gradient Methods.

• Degeneracy solvers.

Exercises: Convert typical queries into solver problems.

• Is pointp on the surfaceS?

• Locate onS the point of maximumz-coordinate.

• Do two curves in space intersect?

http://sharat-lap/~sharat

