

Contents

Page 1 of 25

Go Back

Full Screen

Close

Quit

Polynomials and the Bernstein Base

Milind Sohoni

http://www.cse.iitb.ac.in/~sohoni

Title Page

Contents

Page 2 of 25

Go Back

Full Screen

Close

Quit

The Story So Far...

We have seen

- the 2-tier representation of faces/edges.
- parametrization as the choice of our representation
- within parametrization, the domain of definition and the function itself.

Recall that, for a curve, we had (i) [a,b] an interval, and (ii) a function $x:[a,b]\to\mathbb{R}$, the X-coordinate of the curve parametrization. Similarly, $y,z:[a,b]\to\mathbb{R}$.

We shall now examine how to represent such functions.

Title Page

Contents

Page 3 of 25

Go Back

Full Screen

Close

Quit

Our Choice: Polynomials

The general polynomial is:

$$p(t) = a_0 + a_1 t + \ldots + a_n t^n$$

- 1. Ease of Representation-completely symbolic.
- 2. Ease of Evaluations-elementary operations.
- 3. Powerful theorems such as those of Taylor's, Lagrange interpolation and Bernstein Approximation.

Title Page

Contents

Page 4 of 25

Go Back

Full Screen

Close

Quit

The Polynomial Space

The general polynomial is

$$p(t) = a_0 + a_1 t + \ldots + a_n t^n$$

 $P_n[t]$ will denote the space of polynomials of degree n or less. Note that $P_n[t]$ is a vector space, i.e.,

- It is closed under addition.
- It is closed under scalar multiplication

Title Page

Contents

→

Page **5** of **25**

Go Back

Full Screen

Close

Quit

more ...

The dimension of $P_n[t]$ is n+1 and a basis for $P_n[t]$ is the Taylor basis

$$T_n = \{1, t, t^2, \dots, t^n\}$$

In fact, $P_n[t]$ is isomorphic to \mathbb{R}^{n+1} via this basis.

$$(a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1} \Leftrightarrow a_0 + a_1 t^1 + \dots + a_n t^n \in P_n[t]$$

Evaluation:

$$p(t) = a_0 + t[a_1 + t[a_2 + \dots [a_{n-1} + ta_n]] \dots]$$

Important: Different bases of $P_n[t]$ give different isomorphisms AND cater to different needs.

Title Page

Contents

Page 6 of 25

Go Back

Full Screen

Close

Quit

A Subtle Point

Supose we had chosen the class of *rational functions* as representation functions:

$$f_{a,b,c,d}(t) = \frac{at+b}{ct+d}$$

Thus we have 4 parameters and we may set up the map:

$$(a, b, c, d) \in \mathbb{R}^4 \Leftrightarrow f_{a,b,c,d}(t)$$

Then as functions is:

$$f_{a,b,c,d}(t) + f_{a',b',c',d'}(t) = f_{a+a',b+b',c+c',d+d'}(t)$$

The answer is NO.

Thus in the case of polynomials, the parameters (a_0, \ldots, a_n) are indeed special!

Polynomials as functions

Polynomials as coefficients under addition under addition

Title Page

Contents

Page 7 of 25

Go Back

Full Screen

Close

Quit

Getting polynomials for functions

Let $f : [a, b] \to \mathbb{R}$ be a (coordinate) function.

Note that we may assume that [a, b] = [0, 1] since polynomials are closed under translation.

We wish to represent this function as a polynomial with a tolerance of ϵ as specified by the user.

Title Page

Contents

Page 8 of 25

Go Back

Full Screen

Close

Quit

Getting polynomials for functions

Let $f : [a, b] \to \mathbb{R}$ be a (coordinate) function.

Note that we may assume that [a, b] = [0, 1] since polynomials are closed under translation.

We wish to represent this function as a polynomial with a tolerance of ϵ as specified by the user.

The Taylor Approximation

Title Page

Contents

Let $f_0 = f(0), f_1 = f'(0), \dots, f_n = f^n(0)$ be the n+1 derivatives at the point 0 and let $T_n(f)$ be the taylor approximation:

↔

 $T_n(f) = f_0 t^0 + \frac{f_1}{1!} t^1 + \ldots + \frac{f_n}{n!} t^n$

Page 9 of 25

Go Back

Full Screen

Close

Quit

So how good is it?

The function $T_n(f)(t)$ matches f at the point t = 0 and also the first n derivatives of f.

Title Page

Contents

Page 10 of 25

Go Back

Full Screen

Close

Quit

Not too good...

.... in spite of $T_n(f)$ matching all derivatives at 0 with f.

Title Page

Contents

Page 11 of 25

Go Back

Full Screen

Close

Quit

Another Taylor

Lets try

$$T_n^a = \{1, (t-a), (t-a)^2, \dots, (t-a)^n\}$$

the taylor basis for the point t = a.

$$T_n^a(f) = f(a)t^0 + \frac{f^1(a)}{1!}t^1 + \dots + \frac{f^n(a)}{n!}t^n$$

Title Page

Contents

Page 12 of 25

Go Back

Full Screen

Close

Quit

What about Interpolation at many points?

The Lagrange Basis.: Let t_0, \ldots, t_n be n+1 distinct points of observation. Let

$$L_i(t) = \frac{\prod_{j \neq i} (t - t_j)}{\prod_{j \neq i} (t_i - t_j)}$$

Note that $L_i(t_i) = 0$ is $i \neq j$ and 1 otherwise.

Use: Let $f(t_i) = f_i$ and let

$$L^n(f) = \sum_{i=0}^n f_i L_i(t)$$

Note that

$$L^n(t_i) = f(t_i) = f_i$$
 for all i

Title Page

Contents

Page 13 of 25

Go Back

Full Screen

Close

Quit

So lets plot $L^n(f)$

We get

Thats bad. Again, inspite of $L^n(f)$ matching f at $t = 0, 1/4, \ldots, 4/4$.

Perhaps more interpolation points will help....

Title Page

Contents

44 >>>

→

Page 14 of 25

Go Back

Full Screen

Close

Quit

And we get....

In fact, in general the interpolator is usually never an approximator. The closer the interpolation points, the wider the swings.

Title Page

Contents

Page 15 of 25

Go Back

Full Screen

Close

Quit

The Bernstein Basis^a

$$B_i^n = \binom{n}{i} t^i (1-t)^{n-i}$$

Define for i = 0, 1, ..., n, the observation at n+1 equally spaced points:

$$f_i = f(\frac{i}{n})$$

Form the n-th bernstein approximant:

$$B^n(f) = \sum_{i=0}^n f_i B_i^n(t)$$

^aVerify that this indeed a basis of $P_n[t]$

Title Page

Contents

Page 16 of 25

Go Back

Full Screen

Close

Quit

Thus for n=4 we have the observations f(0), f(1/4), f(2/4), f(3/4) and f(4/4). We get the degree 4 polynomial:

$$B^4(f) = \sum_{i=0}^4 f_i B_i^4(t)$$

On plotting it, we see:

- original function
- bernstein approximator for n=4

Title Page

Contents

Page 17 of 25

Go Back

Full Screen

Close

Quit

Things get better...

With n=9 and 10 equally spaced observations, we have:

- original function
- bernstein for n=9

Title Page

Contents

Page 18 of 25

Go Back

Full Screen

Close

Quit

The Bernstein-Weierstrass Theorem

If $f:[0,1]\to\mathbb{R}$ is a continuous function, and $\epsilon>0$, then there is an n such that $B^n(f)$ approximates f on [0,1] within ϵ .

Thus there is a systematic way of getting better and better approximations.

Title Page

Contents

Page 19 of 25

Go Back

Full Screen

Close

Quit

Bernstein Polynomials

$$B_i^n = \binom{n}{i} t^i (1-t)^{n-i}$$

- $B_i^n(0) = 0$ unless i = 0, in which case $B_0^n(0) = 1$.
- $B_i^n(1) = 0$ unless i = n, in which case $B_n^n(1) = 1$.
- $B_i^n(t) \ge 0$ for $t \in [0, 1]$.

Title Page

Contents

◆

Page 20 of 25

Go Back

Full Screen

Close

Quit

More properties

$$B_i^n = \binom{n}{i} t^i (1-t)^{n-i}$$

- $\bullet \int_0^1 B_i^n(t)dt = \frac{1}{n+1}.$
- $\bullet \frac{dB_i^n(t)}{dt} = n(B_{i-1}^{n-1}(t) B_i^{n-1}(t))$
- The maximum value of $B_i^n(t)$ occurs at the point $\frac{i}{n}$.

We just prove one of them:

$$\frac{dB_i^n(t)}{dt} = i\binom{n}{i}t^{i-1}(1-t)^{n-i} - (n-i)\binom{n}{i}t^i(1-t)^{n-i-1}$$
$$= n(B_{i-1}^{n-1}(t) - B_i^{n-1}(t))$$

Title Page

Contents

Page 21 of 25

Go Back

Full Screen

Close

Quit

Properties of $B^n(f)$

$$B_{i}^{n}(f) = \sum_{i=0}^{n} f_{i} B_{i}^{n}(t) \qquad B_{i}^{n} = \binom{n}{i} t^{i} (1-t)^{n-i}$$

$$B_i^n = \binom{n}{i} t^i (1-t)^{n-i}$$

• $B^n(f)(0) = f(0)$ and $B^n(f)(1) = f(1)$. After all $B_i^n(0) = 0$ unless i = 0. Thus the only term is $f_0 = f(0)$.

Caution: $B^n(f)(i/n) \neq f(i/n)$.

- original function
- bernstein approximator for n=4

Title Page

Contents

←

Page 22 of 25

Go Back

Full Screen

Close

Quit

- $\frac{dB^n(f)}{dt}(0) = \frac{f(1/n) f(0)}{1/n}$.
- $\int_0^1 B^n(f)(t)dt = \sum_{i=0}^n \frac{1}{n+1} \cdot f(i/n)$.
 - original function
 - bernstein approximator for n=4

Title Page

Contents

Page 23 of 25

Go Back

Full Screen

Close

Quit

• $\frac{dB^n(f)}{dt}(0) = \frac{f(1/n) - f(0)}{1/n}$.

•
$$\int_0^1 B^n(f)(t)dt = \sum_{i=0}^n \frac{1}{n+1} \cdot f(i/n)$$
.

— original function

Title Page

Contents

Page 24 of 25

Go Back

Full Screen

Close

Quit

Thus, In A Way..

The function $B_i^n(t)$ behaves like the unit-step function for the interval $[\frac{i}{n+1},\frac{i+1}{n+1}]$.

Also note that the *observation point* $\frac{i}{n}$ belongs to the above interval.

Title Page

Contents

Page 25 of 25

Go Back

Full Screen

Close

Quit

A pause

In general, we have had n + 1 linearly independent observations, and a basis to match them.

Taylor	f(0), f'(0), f''(0), f'''(0)
Lagrange	f(0), f(1/4), f(2/4), f(1)
Bernstein	approximate everywhere!
	based on Lagrange data
Hermite	f(0), f'(0), f(1), f'(1)