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An Issue

Suppose we are to model@ng curve with many convolutions. How does
the bezier paradigm do?
Optionl Use as many control points as required to model the curve:

Control Polygon

Problem with this is that as the number of control points increase, the tims
to evaluation, which i€)(n?) increases assjuardn this quantity. This can
be very expensive.
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Option 2

Option 2 Break up the curve into many parts and model separately.

Curve 3

Curvel

Curve 2

Polygon3

Polygonl
Polygon2

This is a good option except that continuity at fhection pointspl, ps, p3
andp, poses some problems.

CY-continuityis easy to impose; just make sure that the last control point of
('} equals the first of’’.
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Higher Continuities?

Curve 3

Curvel

Curve 2

Polygon3

Polygonl
Polygon2

e (''-continuityis a bit more tedious: the last span of the control polygon
P, should becolinearwith the first of /.

e (*-continuityis even more tedious.

So if thisjugglerycan be managed, then Option 2 is acceptable.
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Piece-wise Polynomials
Fix
e a degree D.
e a sequence; < as < ... < « of real numbers.

A function f : [ay, a;] — R is apiece-wise polynomigfor the above data
if there are polynomial®,(t),...,p;_1(t) of degree atmosD such that
f(t) = pz(t) whenever € [CYZ', ai-l—l]-

p2
pl \\p\:’:/

ay 05 O3 0y

Notice thatf appears to b€ -continuous atv, andC*-continuous atvs.
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Defect

Question What is the maximum so thatp; andp, areC*-continuous
atOéQ?

Answer Obviously the degre®, in which case; andp, areidentical
Indeed, theD + 1 relations thap;(as) = po(as) andp|(as) = ph(as)
and so on tillPP (o) = p? () enforce thap, =

Let f = (p1,...,pr_1) be a piece-polynomial. We say thathas a
defect of (atmost) at o, if:

P (o) = ph(az) fori =0,1,..., D — d.
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Free Dimensions

Thus if p; is known and the defect at; is d, then there are exacth more
conditions needed to define completely. Carrying on like this, we see
that, roughly speaking, th&egrees of freedorfor a piece-wise polynomial
function f is

D+1+dy+ds+...+dy

D+1 +d2 +d3 =D+d2+d3+1
p2
f
M \pi/
ay s a3 Oy
d2 d3
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Knot Vector

The dataD, (a4, . . ., a;,) and the prescribed maximum defedss. . . , d;._;
are succintly expressed in the format déreot vector
Knot Vector 5 = [ < (6, < ... < (,,] such that:

e NoO entry occurs more thab times.

i ﬁl — 62 — ... = 6D andﬁm—D—i—l — ﬁm—D—i—Q — ... +ﬁm

D is called the degree of the knot-vectat, its length. For a3 € 3, the
multiplicity of (3 is the number of occurrences gfin (.
Examples

e S =10,0,0,1,1,1]: This is the standarbezierknot vector of degre8.
e O =10,0,0,2,4,4,4], degree3 and lengtH.

e A=10,0,0,2,2,4,4,4], degree3 and lengt8.

e B=10,0,0,1,2,2,4,4, 4], degree3 and lengtp.

e D=10,0,0,1,2,2,3,4,4, 4], degree3 and lengthl 0.
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Interpretation: A Small Example

Lets look at/00122].
V' ([00122]) will denote the space of afliece-wisepolynomial functions of
degree2 on |0, 2] with defect! at 1.

i
00 1 22

7
convention defect”

ThusV consists of two degre2polynomialsp;, p, such that:

() p1(1) = py(1) (i) pi(1) = p5(1)

Sincep; = ag + ait + ast?, andpy, = by + bit + byt?, we haveb variables

and? relations between these variables. The relations are:
G0+a1+a2:b0—|—b1+b2 and 2a2+a1:262+b1

Thus dimension of/ is 4.
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Pictorially, a larger example

dimension
5 i i | convention
000 2 444 defect
. |
\y defect increases by 1
6 i i !
000 22 444
\y 4 variables and 3 equations added
7 ' i i !

I
000 1 22 444

Thus by aninsertionof a knot, the dimension increases by exactlylt is
easy to show now that:

dim(V(A)) = length(V(A)) — D + 1
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Interpretation: More Examples

V(S

V[000111] is space of all cubic polynomial functions @h 1].

)

V(O) = V[0002444] is the space of afiece-wisgpolynomial functions
, 4] with defect! at2.
) =

on 0
V(A 17100022444] is the space of alpiece-wisepolynomial func-
tlons on|0, 4] with defect2 at 2.

e VV(B) = V[000122444] is the space of alpiece-wisepolynomial func-
tions on|0, 4] with (i) defect] at1 and (ii) defect at 2.

Note thatV' (O) — V(A) — V(B).

dim(V(S) | 4
dim(V(0) | 5
dim(V(A) | 6
dim(V(B) | 7
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Greville Abscissa

Question But what about a basis far(A)?
Recall the bezier case. We had:

e Special pointg, = £ andGr,, = {£, &1, ..., &}
e A basis elemenB!(t) associated with each poi&t
e Control polygonP = [py, . .., p,] With p; associated with eacf;.

e An evaluation procedure based on interpolation within this poly-
gon.

A similar process happens for general knot vectors.
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Re-Cap
ol o1 P12
p2 o1 /o p2
p[\] x ngf']
> p3 i p3
03 13 2/3 313 0/3 13 2/3 313
p[12]
o, Pl
The \ < 4/ pl23]
deCasteljeu 00 < p3
procedure
p[O

0/3 1/3 2/3 3/3
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The General Case

We pick the knot vectoy = [0002444]. We define the set/r(A) to be
averages of) consecutive knoti the knot vector.
ThusGr(A) = {0,2/3,2,10/3,4}. Note that

o |Gr(A)| =length(A) — D + 1.

e The first and the last knot are elements(af(A). In fact if a knot has
multiplicity D then it shows up as a greville abscissa.

o Gr([000111]) = {0/3,1/3,2/3,3/3} .

Formally, 3 = f,...,8, is the knot vector thenGr(3) =
{517 o0 c 7£m—D+1}; where

_ Bi+ Biv1+ ...+ Biypa
D

&
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The Control Polygon

Assign to each elemergt of Gr(/3), a control point. Locate the set
Gr(/) on the real line and form th&ontrol Polygon

p 2 j A -[0002444]
! R
5 degree=3
&

|
A A A A A
=2 £7103 &4
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The Knot Insertion

The basic process isnot insertion Suppose that we are given a polygon
P = P(O) onGr(O). And suppose thad is obtained fromO by inserting

a knotinO. We construct a polygom@ = P(A) onGr(A) from P(O) as
follows:

e ComputeGGr(A). This set has one more element ti@n(O). In fact,
each element ofrr( A) lies betweertwo elements oz (O) or is equal
to one of them.

e Foreach) € Gr(A), express) as aconvex combinatioof two adjacent
elements; andé; ., of Gr(O).

e Use these coefficients to obtaif(n) as a convex combination df(¢;)
andP(&;,1).

This is shown in the next slide.
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Pictorially

0-[0002444]
degree=3

A=[00022444]
8/3 10/3 4 << pewgreville abs.

— 1/2-2/3+1/2-2
— 1/2-2+1/2-10/3

thus

— 1/2-po+1/2-ps

1/2-ps+1/2- py
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Evaluation

Inputs
1. The knot vectorA.
2. The control points (polygon) o&r(A).
3. The parametet.
Output f(t).
1. ComputeGr(A) and store it.
2. Insertt into A D times or till the multiplicity oft becomedD.

e Add ¢ and re-compute greville abscissa.
e Intrpolate to get the new control polygon.

3. Nowt is a greville abscissa. Read off the valué as f ().
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[000111]

[000t111]

[000tt111]

[000ttt111]

The Bezier Case

P, P, P, Py

0/3 3/3

03 (1+1)/3 @+9)/3 33
\K/\/l

03 ¥3 ()3 1+20/3  (2+1)/3 33
AVAN

0/3 ¥3 @3 ot (1+20/3 (2+1)/3 33

This Is just the de-Casteljeu algorithm
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A Simple general Case

pO pl p3

0 1/2 3/2 2 [00122]
0 12 (1+1)/2 (2+1)/2 [001t22]
0 172 (1+1)2 t (2+9)2 2 [001tt22]

Thus we see that far € [1, 2] we have:

(2 —2 )2 +102[(2 —2 t)t . (2 — t)2(t - 1)] 4t — 1Y

Thusf(t) is indeed a polynomial of degr@e

f(t> = D1
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Properties

From the evaluation procedure, certain properties are obvious:

e The point f(¢) is avonvexcombination of the control points. This is
clear since in the modified de-Casteljeu/deBoor algorithm in every stage
new points are created which are convex combinations of earlier points
and so on.

e The second observation liscality. Note that if the evaluation is to be
made at and the relevant portion of the knot vector is:

o B LBy L B <t B ... < B

We then see thdt,_p.1,&_pyo, - . ., &1 are the only greville abscissas
which will play a role. Whencg (t) is completely determined by only a
subseof the control points, viz{p; pi1,...,Pit1}-
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Basis Functions

What then are the basis functions?
So, let(3 be a knot vector, saf)0122], which we have seen needontrol
points. The basis functionf(t) fori = 0, ..., 3 correspond to the control
polygons

{[1,0,0,0],10,1,0,0],10,0,1,0],10,0,0,1]}

{®

00 1 22 < knots
A A A A ,
0 1/2 3/2 2 <—— grevilleab.
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Basis Functions

What then are the basis functions?
So, let(3 be a knot vector, saf)0122], which we have seen needontrol
points. The basis functionf(t) fori = 0, ..., 3 correspond to the control
polygons

{[1,0,0,0],10,1,0,0],10,0,1,0],10,0,0,1]}

£,

00 1 22 < knots
A A A A ,
0 1/2 3/2 2 <—— grevilleab.
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Decoupling

-

Question What is the connection between piece-wise Bezier and B-Spline”
For the knot vector3, insert each3; so that the multiplicity becomeb).
Now read offthe control points for each segment!

Polygon
@2p P(A) p o5
Bl 0 -[0002444]
v S degree=3
A A A
§=0 &3 &2 $710/3 &4 A=[00022444]
A A A A A A
0 2/3 4/3 8/3 103 4 ~< new greville abs.
Insert2 on
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Decoupling

Question What is the connection between piece-wise Bezier and B-Spline”
For the knot vectors, insert each3; so that the multiplicity becomeb).
Now read offthe control points for each segment!

Polygon
r2 P(A) r (535
% rs
rl r r7
A=[00022444]

A A A A B8 B
0 28 4B g3 103 4 B=[000222444]
A A A A A A A :
0O 23 43 2 83 103 4 ~<- newgreville abs.

And ao
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Decoupling

Question What is the connection between piece-wise Bezier and B-Spline”
For the knot vectord, insert eachs; so that the multiplicity becomes®.
Now read offthe control points for each segment!

2 original poly 6
r5
r1 r3 (4 rv7
0 Bezerl | 2 peger2! 4
[r1,r2,r3,r4] [r4,r5,r6,r7]

Finally, read off the control points.

Note the relationship betweém,, 3, 74| and|ry, r5, r¢).
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Wrap-Up

This covers our discussion of splines. See my notes for much of the mathe
matics behind it.
Things missing:

e End Conditions.
e Subdivision.
e Use in tensor-product surfaces.

e Plot of the basis functions.
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