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Polynomials in 2 variables

Let P™"[u, v] denote the vector space of all polynomials of degree atmos
m in w andn in v. Thus, for example,

3u*v — v® € P*[u,v] C P*[u, v

The dimension ofP™"[u, v] is obviously(m + 1)(n + 1) and theTaylor
basisfor it is the set:

{0 <i<m, 0<j <n}

Just as polynomials in one variable served us to parametrize curves, the
will serve us to parametrize surfaces.
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Tensor-Product Bases

Actually, if B = {by(u),...,b,(u)} is a basis forP™[u] and C
{co(v), ..., c,(v)} is abasis forP"|v] then:

B® C = {bu)c;(v)|0<i<m, 0<j<n}

is a basis forP™"|u, v].
QuestionShow that elements a8 ® C are linearly independent.
Suppose that (as polynomials):

ZZ@Z] =0

=0 7=0

Whence, for every.,, we construct the polynomial:

an E E azg UO C]

7=0 =0
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We see thap(uy,v) = 0 for all v, whenceevery coefficient ofp(uy, v)
must be zero. In other words, for allandu,

1=0

Since,b;’s are linearly independent, we are forced to concludedhat= 0
for all 2 andy.
O

In particular we have thé3ernstein Basis:

{(m) u'(1—u)" (?) V(1 —v)"70<i<m, 0<j5<n}

(4

We denote the typical basis elementBff (u) B} (v).
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Functions and the Approximation Problem

I with denote the intervald, 1] and I? the unit squar€0, 1] x [0,1]. Let
f : I — R be a function on the unit square.

f(xy) Y

/] y

(xy) 2

Is there a polynomial approximation ¥
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The Bernstein-Weierstrass Approximation
Theorem

Fix m andn, and form the data

We define théBernstein Approximation

B™"(f)(u,v) = Z Z fijB?(u)B?(v)

Theorem Let f be a function onf?, and lete > 0. Then there are:, n
such that f(u, v) — B™"(f)(u,v)| < e for all (u,v) € I
Thus the 1-d situation has a complete 2-d analogue.
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f(xy)

The Picture

Y

The data f I
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f(xy)

The Finer Picture
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The Unit Step

As before it si convenient to associd®'(u) B} (v) with the 2-dimensional

unit step function below. Thegteville absusSas obwously(E,

occurs within the support of the step.

N

i+1
w1 mel
As expected]; [, By"(u) B! (v)dudv = e

2} which
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The Control Polygon

We will now discard the functiorf.

Let S be anm x n matrix (in C++ notation, i.e., [0... m][0...nN\vith
entries inR (or R?).

S is called theControl Polygon

We defineS(u, v) as:

S(u,v) = 32 3 Slis J1B () B} (v)

S will be called thetensor-producsurface for the given control poly-
gon.
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An example

J1.2]

\

§0.1]

g0,

S[O Control Polygon °
J2,0]

Surfacemap S

| 2 Parameter
(uv) o Space

(0,0) (10)
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Some Observations

S(u,v) =35 2., 54, 51 Bi"(u) B (v)

Lets evaluateS(0, 0). SinceB"(0) = 0 unlessi = 0 and B}*(0) = 0
unlessj = 0, we haveS(0,0) = S[0,0]. Similarly, we have the other
‘corner points’. Thus:
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Boundary Curves

Next, lets look atS(u, 0), which is the image of a boundary line bf. Again,
since on this curve = 0, we haveB}(0) = 0 for j # 0. Thus the sum
reduces to:

S(u,0) = Z S[i, 0] B™ (u)

This is clearly thebezier curvecorresponding to thérst columnof S as its
control points.
In general, we have:

STa,0) = X7 S 0BT (W
S(uv 1) Z%:O S[Zv n]BZrL<u)
S0,v) = Z%:O S[OJ]B;L@)
S(l,v) = ijo Sm, j|Bj(v)
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Pictorially
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And Schematically

In terms of the control matrix, perhaps it is usefule to usefthech
notationand number rows and columns from the bottom left corner.
Then, we have:

The Control Matrix S
Su,1)

:S[O,n] ...... I mn]

SO0V) — 1= —+S1v)

(500 .y MO
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|so-parametric Lines

But what about genera (u,, v) for a fixedu, andv € [0, 1]? OrS|u, v
for a fixedv, butu ranging overl0, 1|?

These curves (in the model space) are calkedparametridines. Thus
Slug, v] is the iso-parametric line far = .

@0 10
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|so-parametric Lines contd.

Lets evaluates(uy, v). Re-arranging the suisi(u, v), we see that:

an ZZS 7]Bm Bn( )
7=0 =0
We call >~ Si, j| B (ug) asS[ug, j] and observe thaf(ug, v) is a

bezier curve with control points|uy, 0], S{ug, 1], . . . S[ug, n]].

Also, note thatachof these control points'|uy, j] is itself moving on
a bezier curve parametrized by
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Perhaps, the matrix notation is more convenient to observe this. We see th:

S[0,n] ... S[m,n] Bi"(u)
S(u,v) = |B(v),...,Byv)] : : :
S[0,0] ... S[m,0] B (u)

This may be consicely written ﬁ(u v) = B(’U)SB( )T. Consequently,

forming the product a$'(u, v) = B(u)"), we see that:
an
S(up,v) == |B;(v),
an
Also note thay _, > .. B;"(u) B} (v) = 1 and thusS(u, v) is aconvex com-

binationof the entrles ofS.
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End Tangents and Normals

Given a mapS : I? — R? as we have already determined the boundary
S(0,v),S(u,0), and so on. Other important data is the first-order data,
viz., the tangents.

For convenience, let us consider the boundary pSint), 0). At any
boundary point, we havievo tangents to compute.

S(u,0)—S(ug,0)
S(ug,0)— 8 (10,0)

(%

These two tangents are shown in the next picture.

SU<U(),O) = hmu_mo

SU(U(),O) — limv_mo
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An Example
by /———S\ S0,1)— u=u,
©.1 11 1,1)
\PVO/\
%
T SCRY;
©0) Y% (o “ S00)

SACEY)

/
SHCNY)!

The quantityS,,(ug, 0) is easily computed as the derivative of the boundary
S(u,0) = >, S[,0]B"(u). We may thus use the curve-tangent law
explained earlier to get:

m—1

(0, 0) = m[>_(S[i + 1,0] — S[i, 0]) B u)

1=0
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Sy(ug, v)

This quantity is a bit more delicate, since it is the tangent to the iso-

parametric curveS (ug, v) atv = 0.
We have seen that:

S(ug, v ZSuO, B”

whereS|ug, j] = >, S[i, 7] B (uy)-
Thus S,(ug, 0), the end-tangent to this curve, i8(S[ug, 1] — S[ug, 0]).
Back-substituting, we get:

Sy(ug, 0) = [Zz o S[i, 11B™(uo) — > iy Si, 0] B (uo)]
= m[>__o(S[i, 1] — S[i, 0)) B{" (uo)]

ThusS, (ug, 0) is also a bezier with control points|1, 0]—S[0, 0], S[1, 1]—
S[L,0],...,Sm,1] — S|m,0]].
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Pictorially

0.0

S[ 2,0]

Thenormalat that point is given by theross-product, x S,,.
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Splicing

Consider Two surfaces given by control poigsand?’. We would like to
have them meet at a common boundary, anwbothly Thus for example,
we requireS(u,0) = T'(u, 1) for all w € [0, 1]. Furthermore, we require
that the normals match too.
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The conditions

The conditionS(u, 0) = T'(u, 1) is easily satisfied by having tlttom
row of S match thetop row of T'.

This will also ensure that, = T, since both are tangents to the same
curve.

Lets examine the normal condition nest, x S, = T, x 1, is achieved

if we force S, to be a multiple off},. Thisis forced by fixing a multiple,
saya and requiring that:

Sli, 1] — S[i, 0] = (i, n] — TJi,n — 1])
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Schematically

S[o,n] - S[m,n]

(s[01] - S[m,1] )| row 1

(S[0,0] S[m,0] }| row 0 Lol o G |
= | row0 — rowl —
. — rown -rown—1
fr[O,n] ------ T[m,n]] row n

fI'[O,n—l] """ T[m,n—} row n—1

T[0,0] ... T[m,0]
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The Normal System

A surface, if part of a solid, has atrerypoint, anoutward normal
Thus, given duy, vy) we are now faced with specifyingniformly an out-
ward normal atS (ug, vg)!.

v S

01 1,0

Y%

(0,0) Y @o Y

Consider the figure above. At the poifitu,, v,), we have the two tangents
S, andS,. Let N = S, x S,. Clearly the outward normal &(u,, vy) must
beeither NV or — .


http://sharat-lap/~sharat

The Sign of the Normal

We claim that if the outward normal &, vy) IS, say,— N = —(S, X
Sy), then it is so akveryu, v @.

Thusall that needs to be stored iss&yn € {+1,—1}. The normal at
any pointS(u, v) is given by

sign - (Sy X Sy)

Proof Let U(u,v) be the unit outward normal which exists! Clearly,
U(u,v) is a smooth function on the surface.

Let M(u,v) = sign - 2. We see thaf)) M(u,v) is a smooth
function onu, v, and(ii) M (u, v) is normal atS(u, v).

aprovidedsS,, x S, is never zero
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Continued

Thus at all pointgu, v), the vectorsV/ (u, v) andU (u, v) arecollinear
Now the proof goes in the following 3 steps:

e Since both are unit, we have (u, v)/U(u,v) € +1.

e Since bothU and M are smooth and unit}/ (u,v)/U(u,v) must
beuniformlyeither+1 or —1.

e But we know that atu, v) itis +1 and thusM (u, v) = U(u,v).
0
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Things NOT covered

1. Surface Re-construction
2. Subdivision, Evaluation, Degree Elevation
3. Special Surfaces such as Coons-Patch

4. Tangent Planes, Gauss Map and Curvature
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