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Polynomials in 2 variables

Let Pm,n[u, v] denote the vector space of all polynomials of degree atmost
m in u andn in v. Thus, for example,

3u2v − v3 ∈ P 2,3[u, v] ⊂ P 3,3[u, v]

The dimension ofPm,n[u, v] is obviously(m + 1)(n + 1) and theTaylor
basisfor it is the set:

{uivj|0 ≤ i ≤ m, 0 ≤ j ≤ n}

Just as polynomials in one variable served us to parametrize curves, these
will serve us to parametrize surfaces.
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Tensor-Product Bases

Actually, if B = {b0(u), . . . , bm(u)} is a basis forPm[u] and C =
{c0(v), . . . , cn(v)} is a basis forP n[v] then:

B ⊗ C = {bi(u)cj(v)|0 ≤ i ≤ m, 0 ≤ j ≤ n}

is a basis forPm,n[u, v].
Question:Show that elements ofB ⊗ C are linearly independent.
Suppose that (as polynomials):

m∑
i=0

n∑
j=0

αijbi(u)cj(v) = 0

Whence, for everyu0, we construct the polynomial:

p(u0, v) =

n∑
j=0

(

m∑
i=0

αijbi(u0))cj(v)

http://sharat-lap/~sharat
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We see thatp(u0, v) = 0 for all v, whenceevery coefficient ofp(u0, v)
must be zero. In other words, for allj andu0,

m∑
i=0

αijbi(u0) = 0

Since,bi’s are linearly independent, we are forced to conclude thatαij = 0
for all i andj.
2

In particular we have the:Bernstein Basis:

{
(
m

i

)
ui(1− u)m−i

(
n

j

)
vj(1− v)n−j|0 ≤ i ≤ m, 0 ≤ j ≤ n}

We denote the typical basis element byBm
i (u)Bn

j (v).

http://sharat-lap/~sharat
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Functions and the Approximation Problem

I with denote the interval[0, 1] andI2 the unit square[0, 1] × [0, 1]. Let
f : I2 → R be a function on the unit square.

X

Y

I2
(x,y)

f(x,y)

Is there a polynomial approximation tof?

http://sharat-lap/~sharat
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The Bernstein-Weierstrass Approximation
Theorem

Fix m andn, and form the data

S = {fij = f (
i

m
,
j

n
)|0 ≤ i ≤ m, 0 ≤ j ≤ n}

We define theBernstein Approximation

Bm,n(f )(u, v) =
∑
i

∑
j

fijB
m
i (u)Bn

j (v)

Theorem: Let f be a function onI2, and letε > 0. Then there arem,n
such that|f (u, v)−Bm,n(f )(u, v)| < ε for all (u, v) ∈ I2.
Thus the 1-d situation has a complete 2-d analogue.
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The Picture

X

Y

I2

f(x,y)
The data f 

ij

http://sharat-lap/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 8 of 29

Go Back

Full Screen

Close

Quit

The Finer Picture

X

Y

I2

f(x,y)
f
ij
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The Unit Step

As before it si convenient to associateBm
i (u)Bn

j (v) with the2-dimensional
unit step function below. The ‘greville abscissa’ is obviously ( i

m
, j
n
) which

occurs within the support of the step.

m+1
i

m+1
i+1

n+1
j

n+1
j+1

As expected
∫ 1

0

∫ 1
0 B

m
i (u)Bn

j (v)dudv = 1
(m+1)(n+1).

http://sharat-lap/~sharat
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The Control Polygon
We will now discard the functionf .
Let S be anm × n matrix (in C++ notation, i.e., [0. . . m][0. . . n])with
entries inR (orR3).
S is called theControl Polygon.
We defineS(u, v) as:

S(u, v) =
∑
i

∑
j

S[i, j]Bm
i (u)Bn

j (v)

S will be called thetensor-productsurface for the given control poly-
gon.
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An example

S[0,2]

S[1,2]

S[2,2]

S[2,0]
S[0,0]

S[0,1]

S[1,1]

S[1,0]
S[2,1]

Control Polygon

I 2

Surface map S

S(u,v)

(u,v)
Parameter
Space

Model
Space

(0,0)

(0,1) (1,1)

(1,0)
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Some Observations

S(u, v) =
∑

i

∑
j S[i, j]Bm

i (u)Bn
j (v)

Lets evaluateS(0, 0). SinceBm
i (0) = 0 unlessi = 0 andBm

j (0) = 0

unlessj = 0, we haveS(0, 0) = S[0, 0]. Similarly, we have the other
‘corner points’. Thus:

S(0, 0) = S[0, 0]

S(1, 0) = S[m, 0]

S(0, 1) = S[0, n]

S(1, 1) = S[m,n]

http://sharat-lap/~sharat
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Boundary Curves
Next, lets look atS(u, 0), which is the image of a boundary line ofI2. Again,
since on this curvev = 0, we haveBn

j (0) = 0 for j 6= 0. Thus the sum
reduces to:

S(u, 0) =

m∑
i=0

S[i, 0]Bm
i (u)

This is clearly thebezier curvecorresponding to thefirst columnof S as its
control points.
In general, we have:

S(u, 0) =
∑m

i=0 S[i, 0]Bm
i (u)

S(u, 1) =
∑m

i=0 S[i, n]Bm
i (u)

S(0, v) =
∑n

j=0 S[0, j]Bn
j (v)

S(1, v) =
∑n

j=0 S[m, j]Bn
j (v)

http://sharat-lap/~sharat
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Pictorially

S[0,2]

S[1,2]

S[2,2]

S[2,0]
S[0,0]

S[0,1]

S[1,1]

S[1,0]
S[2,1]

I 2

Surface map S

(0,0)

(0,1) (1,1)

(1,0)

http://sharat-lap/~sharat
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And Schematically
In terms of the control matrix, perhaps it is usefule to use thefrench
notationand number rows and columns from the bottom left corner.
Then, we have:

S[0,0] ...... S[m,0]

S[0,n] S[m,n]......

S(u,1)

S(u,0)

S(0,v) S(1,v)

The Control Matrix S

http://sharat-lap/~sharat
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Iso-parametric Lines
But what about generalS(u0, v) for a fixedu0 andv ∈ [0, 1]? OrS[u, v0]
for a fixedv0 butu ranging over[0, 1]?
These curves (in the model space) are callediso-parametriclines. Thus
S[u0, v] is the iso-parametric line foru = u0.

I 2

Surface map S

Parameter
Space

Model
Space

(0,0)

(0,1) (1,1)

(1,0)

S(u0,v0)

(u0,v0)

S(u0,v) S(u,v0)

http://sharat-lap/~sharat
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Iso-parametric Lines contd.
Lets evaluateS(u0, v). Re-arranging the sumS(u, v), we see that:

S(u0, v) =

n∑
j=0

[

m∑
i=0

S[i, j]Bm
i (u0)]Bn

j (v)

We call
∑m

i=0 S[i, j]Bm
i (u0) asS[u0, j] and observe thatS(u0, v) is a

bezier curve with control points[S[u0, 0], S[u0, 1], . . . S[u0, n]].

Also, note thateachof these control pointsS[u0, j] is itself moving on
a bezier curve parametrized byu.

http://sharat-lap/~sharat
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Perhaps, the matrix notation is more convenient to observe this. We see that:

S(u, v) = [Bn
n(v), . . . , Bn

0 (v)]

 S[0, n] . . . S[m,n]
... ...

S[0, 0] . . . S[m, 0]

 Bm
0 (u)
...

Bm
m(u)


This may be consicely written asS(u, v) = B(v)SB(u)T . Consequently,
forming the product asS(u, v) = B(v)(SB(u)T ), we see that:

S(u0, v) == [Bn
n(v), . . . , Bn

0 (v)]

 S[u0, n]
...

S[u0, 0]


Also note that

∑
i

∑
j B

m
i (u)Bn

j (v) = 1 and thusS(u, v) is aconvex com-
binationof the entries ofS.

http://sharat-lap/~sharat
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End Tangents and Normals

Given a mapS : I2 → R
3 as we have already determined the boundary

S(0, v), S(u, 0), and so on. Other important data is the first-order data,
viz., the tangents.
For convenience, let us consider the boundary pointS(u0, 0). At any
boundary point, we havetwo tangents to compute.

Su(u0, 0) = limu→u0
S(u,0)−S(u0,0)

u−u0

Sv(u0, 0) = limv→u0
S(u0,v)−S(u0,0)

v

These two tangents are shown in the next picture.

http://sharat-lap/~sharat
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An Example

u

v

(0,0) (1,0)

(1,1)(0,1)

S(0,0)

S(0,1)

S(1,1)

S(1,0)

v

u0

0
S(u ,v )

v=v0

S

0 0

u=u0

S  (u  ,0)

S  (u  ,0)

0

0

u

v

The quantitySu(u0, 0) is easily computed as the derivative of the boundary
S(u, 0) =

∑m
i=0 S[i, 0]Bm

i (u). We may thus use the curve-tangent law
explained earlier to get:

Su(u0, 0) = m[

m−1∑
i=0

(S[i + 1, 0]− S[i, 0])Bm−1
i (u)]

http://sharat-lap/~sharat
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Sv(u0, v)

This quantity is a bit more delicate, since it is the tangent to the iso-
parametric curveS(u0, v) atv = 0.
We have seen that:

S(u0, v) =

n∑
j=0

S[u0, j]B
n
j (v)

whereS[u0, j] =
∑n

i=0 S[i, j]Bm
i (u0).

ThusSv(u0, 0), the end-tangent to this curve, ism(S[u0, 1] − S[u0, 0]).
Back-substituting, we get:

Sv(u0, 0) = m[
∑n

i=0 S[i, 1]Bm
i (u0)−

∑n
i=0 S[i, 0]Bm

i (u0)]
= m[

∑n
i=0(S[i, 1]− S[i, 0])Bm

i (u0)]

ThusSv(u0, 0) is also a bezier with control points[S[1, 0]−S[0, 0], S[1, 1]−
S[1, 0], . . . , S[m, 1]− S[m, 0]].

http://sharat-lap/~sharat
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Pictorially

S[0,2]

S[1,2]

S[2,2]

S[2,0]
S[0,0]

S[0,1]

S[1,1]

S[1,0]
S[2,1]

Control Points

S  (u  ,0)v 0
S  (u  ,0)0unormal

Thenormalat that point is given by thecross-productSv × Su.

http://sharat-lap/~sharat
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Splicing
Consider Two surfaces given by control pointsS andT . We would like to
have them meet at a common boundary, andsmoothly. Thus for example,
we requireS(u, 0) = T (u, 1) for all u ∈ [0, 1]. Furthermore, we require
that the normals match too.

S  =T  

S

T
T

S

u u

v

v

http://sharat-lap/~sharat
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The conditions
The conditionS(u, 0) = T (u, 1) is easily satisfied by having thebottom
row of S match thetop row of T .
This will also ensure thatSu = Tu since both are tangents to the same
curve.
Lets examine the normal condition next.Su×Sv ≡ Tu×Tv, is achieved
if we forceSv to be a multiple ofTv. This is forced by fixing a multiple,
sayα and requiring that:

S[i, 1]− S[i, 0] = α(T [i, n]− T [i, n− 1])

http://sharat-lap/~sharat
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Schematically

S[0,0] ...... S[m,0]

S[0,n] S[m,n]......

T[0,0] ...... T[m,0]

T[0,n] T[m,n]......

S[0,1] ...... S[m,1]

T[0,n−1] ...... T[m,n−1]

row n

row n−1

row 0

row 1
row 0 row n

row 0 row 1

row n−1

=

=

row n

http://sharat-lap/~sharat
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The Normal System

A surface, if part of a solid, has ateverypoint, anoutward normal.
Thus, given a(u0, v0) we are now faced with specifyinguniformly an out-
ward normal atS(u0, v0)!.

u

v

(0,0) (1,0)

(1,1)(0,1)

v

u0

0
S(u ,v )

v=v0

S

0 0

u=u0

S

S u

v

N

Consider the figure above. At the pointS(u0, v0), we have the two tangents
Su andSv. LetN = Su×Sv. Clearly the outward normal atS(u0, v0) must
beeitherN or−N .

http://sharat-lap/~sharat
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The Sign of the Normal

We claim that if the outward normal atS(u0, v0) is, say,−N = −(Su×
Sv), then it is so ateveryu, v a.
Thusall that needs to be stored is asign ∈ {+1,−1}. The normal at
any pointS(u, v) is given by

sign · (Su × Sv)

Proof: Let U(u, v) be the unit outward normal which exists! Clearly,
U(u, v) is a smooth function on the surface.
Let M(u, v) = sign · Su×Sv

|Su×Sv|. We see that(i) M(u, v) is a smooth
function onu, v, and(ii) M(u, v) is normal atS(u, v).

aprovidedSu × Sv is never zero

http://sharat-lap/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 28 of 29

Go Back

Full Screen

Close

Quit

Continued

Thus at all points(u, v), the vectorsM(u, v) andU(u, v) arecollinear.
Now the proof goes in the following 3 steps:

• Since both are unit, we haveM(u, v)/U(u, v) ∈ ±1.

• Since bothU andM are smooth and unit,M(u, v)/U(u, v) must
beuniformlyeither+1 or−1.

• But we know that at(u0, v0) it is +1 and thusM(u, v) = U(u, v).

2
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Things NOT covered

1. Surface Re-construction

2. Subdivision, Evaluation, Degree Elevation

3. Special Surfaces such as Coons-Patch

4. Tangent Planes, Gauss Map and Curvature
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