

Polynomials and the Bernstein Base

Milind Sohoni

http://www.cse.iitb.ac.in/~sohoni

The Story So Far...

We have seen

- the 2-tier representation of faces/edges.
- parametrization as the choice of our representation
- within parametrization, the domain of definition and the function itself.

Recall that, for a curve, we had (i) [a, b] an interval, and (ii) a function $x : [a, b] \to \mathbb{R}$, the X-coordinate of the curve parametrization. Similarly, $y, z : [a, b] \to \mathbb{R}$.

We shall now examine how to represent such functions.

Home Page	
Title Page	
-	
Con	tents
••	••
••	
•	
Page	3 of 25
Go	Back
Full S	Screen
	000
Close	
Q	uit

Our Choice: Polynomials The general polynomial is:

$$p(t) = a_0 + a_1 t + \ldots + a_n t^n$$

- 1. Ease of Representation-completely symbolic.
- 2. Ease of Evaluations-elementary operations.
- 3. Powerful theorems such as those of Taylor's, Lagrange interpolation and Bernstein Approximation.

The Polynomial Space

The general polynomial is

$$p(t) = a_0 + a_1 t + \ldots + a_n t^n$$

 $P_n[t]$ will denote the space of polynomials of degree *n* or less. Note that $P_n[t]$ is a vector space, i.e.,

- It is closed under addition.
- It is closed under scalar multiplication

more ...

The dimension of $P_n[t]$ is n + 1 and a basis for $P_n[t]$ is the Taylor basis $T_n = \{1, t, t^2, \dots, t^n\}$

In fact, $P_n[t]$ is isomorphic to \mathbb{R}^{n+1} via this basis.

$$(a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1} \Leftrightarrow a_0 + a_1 t^1 + \dots + a_n t^n \in P_n[t]$$

Evaluation:

$$p(t) = a_0 + t[a_1 + t[a_2 + \dots [a_{n-1} + ta_n]]\dots]$$

Important: Different bases of $P_n[t]$ give different isomorphisms AND cater to different needs.

A Subtle Point

Suppose we had chosen the class of *rational functions* as representation functions: at + b

$$f_{a,b,c,d}(t) = \frac{at+b}{ct+d}$$

Thus we have 4 parameters and we may set up the map:

$$(a, b, c, d) \in \mathbb{R}^4 \Leftrightarrow f_{a, b, c, d}(t)$$

Then as functions is:

$$f_{a,b,c,d}(t) + f_{a',b',c',d'}(t) = f_{a+a',b+b',c+c',d+d'}(t)$$

The answer is NO. Thus in the case of polynomials, the parameters (a_0, \ldots, a_n) are indeed special!

Polynomials as functions \equiv Polynomials as coefficientsunder additionunder addition

Getting polynomials for functions

Let $f : [a, b] \to \mathbb{R}$ be a (coordinate) function. Note that we may assume that [a, b] = [0, 1] since polynomials are closed under translation.

We wish to represent this function as a polynomial with a tolerance of ϵ as specified by the user.

Getting polynomials for functions

Let $f : [a, b] \to \mathbb{R}$ be a (coordinate) function. Note that we may assume that [a, b] = [0, 1] since polynomials are closed under translation.

We wish to represent this function as a polynomial with a tolerance of ϵ as specified by the user.

The Taylor Approximation

Let $f_0 = f(0), f_1 = f'(0), \dots, f_n = f^n(0)$ be the n + 1 derivatives at the point 0 and let $T_n(f)$ be the taylor approximation:

$$T_n(f) = f_0 t^0 + \frac{f_1}{1!} t^1 + \ldots + \frac{f_n}{n!} t^n$$

The function $T_n(f)(t)$ matches f at the point t = 0 and also the first n derivatives of f.

Another Taylor

Lets try

$$T_n^a = \{1, (t-a), (t-a)^2, \dots, (t-a)^n\}$$

the taylor basis for the point t = a.

$$T_n^a(f) = f(a)t^0 + \frac{f^{1}(a)}{1!}t^1 + \dots + \frac{f^n(a)}{n!}t^n$$

What about Interpolation at many points?

The Lagrange Basis.: Let t_0, \ldots, t_n be n + 1 distinct points of observation. Let

$$L_i(t) = \frac{\prod_{j \neq i} (t - t_j)}{\prod_{j \neq i} (t_i - t_j)}$$

Note that $L_i(t_j) = 0$ is $i \neq j$ and 1 otherwise. Use: Let $f(t_i) = f_i$ and let

$$L^{n}(f) = \sum_{i=0}^{n} f_{i}L_{i}(t)$$

Note	that

$$L^n(t_i) = f(t_i) = f_i \text{ for all } i$$

Home Page	
Title Page	
Contents	
44	••
	•
Page 15 of 25	
Go E	Back
Full S	creen
Close	

Quit

The Bernstein Basis^a

$$B_i^n = \binom{n}{i} t^i (1-t)^{n-i}$$

Define for i = 0, 1, ..., n, the observation at n+1 equally spaced points:

$$f_i = f(\frac{i}{n})$$

Form the n-th bernstein approximant:

$$B^n(f) = \sum_{i=0}^n f_i B^n_i(t)$$

^{*a*}Verify that this indeed a basis of $P_n[t]$

Thus for n = 4 we have the observations f(0), f(1/4), f(2/4), f(3/4)and f(4/4). We get the degree 4 polynomial:

 $B^4(f) = \sum_{i=0}^4 f_i B_i^4(t)$

```
On plotting it, we see:
```

— original function

— bernstein approximator for n=4

Things get better...

With n = 9 and 10 equally spaced observations, we have:

— original function

 $^{-}$ bernstein for n=9

The Bernstein-Weierstrass Theorem

If $f : [0,1] \to \mathbb{R}$ is a continuous function, and $\epsilon > 0$, then there is an n such that $B^n(f)$ approximates f on [0,1] within ϵ .

Thus there is a systematic way of getting better and better approximations.

Bernstein Polynomials

$$B_i^n = \binom{n}{i} t^i (1-t)^{n-i}$$

- $B_i^n(0) = 0$ unless i = 0, in which case $B_0^n(0) = 1$.
- $B_i^n(1) = 0$ unless i = n, in which case $B_n^n(1) = 1$.
- $B_i^n(t) \ge 0$ for $t \in [0, 1]$.

Quit

More properties

$$B_i^n = \binom{n}{i} t^i (1-t)^{n-i}$$

•
$$\int_0^1 B_i^n(t) dt = \frac{1}{n+1}$$
.
• $\frac{dB_i^n(t)}{dt} = n(B_{i-1}^{n-1}(t) - B_i^{n-1}(t))$

• The maximum value of $B_i^n(t)$ occurs at the point $\frac{i}{n}$.

We just prove one of them:

$$\begin{array}{rcl} \frac{dB_{i}^{n}(t)}{dt} &=& i\binom{n}{i}t^{i-1}(1-t)^{n-i}-(n-i)\binom{n}{i}t^{i}(1-t)^{n-i-1}\\ &=& n(B_{i-1}^{n-1}(t)-B_{i}^{n-1}(t)) \end{array}$$

Home Page
Title Page
Contents
•• >>
• •
Page 21 of 25
Go Back
Full Screen
Close
Quit

Thus, In A Way..

Home Page

Title Page

Contents

Page 24 of 25

Go Back

Full Screen

Close

Quit

The function $B_i^n(t)$ behaves like the unit-step function for the interval $[\frac{i}{n+1}, \frac{i+1}{n+1}]$.

Also note that the *observation point* $\frac{i}{n}$ belongs to the above interval.

A pause

In general, we have had n + 1 linearly independent observations, and a basis to match them.

Taylor	f(0), f'(0), f''(0), f'''(0)
Lagrange	f(0), f(1/4), f(2/4), f(1)
Bernstein	approximate everywhere!
	based on Lagrange data
Hermite	f(0), f'(0), f(1), f'(1)