OR Problems in BPO
K. V. Subrahmanyam
Talk Outline

- Traffic Estimation
- Resourcing
- Transport Scheduling
A BPO Outfit

- **What do they do?**
 - Technical support for foreign products.
 - Typical customers: Sun Microsystems, Norton Antivirus (Symantec).
 - Paid for calls answered. **Big Issue: Calls missed.**

- **Staffing**
 - 4000 employees all over Chennai.
 - 27 overlapping shifts of 8 hours each.
 - At one time, easily 2000 people can man the desks.
 - Different employees have different and possibly more than one skill-sets.
 - All employees must be picked up and dropped from home.
Traffic

- Loss of a call is revenue missed.
- Loss of an employee is $110 of revenue missed.
- Monthly salary about Rs. 5000 to Rs. 20000 (i.e., $120 to $500)

Question 1: Estimate the traffic (calls/slot\(^1\)) per client, given past data.

This helps in planning the staffing requirement for the slot.

\(^1\)A slot is 30 minutes
Approach and Issues

- **Past Data**
 - data for 6 months, 24/7.
 - grouped client-wise and slot-wise.
 - later, client-side holidays.

- **Observations**
 - Two lean periods in a day and a bell-shaped peak period in the middle.
 - 10am to 4pm is peak. Peak is flat-top bell and has call-rate 20 times lean period.
 - Mondays and Fridays are different.
 - Pre- and Post-holiday is very different.
Solution

- Tackle Ordinary days
 - Peak-period observations taken as samples.
 - 3-piece polynomial curve fit for the peak period.

- Procedure
 - Compute the slot-mean and slot-variance.
 - *throw away the variance* and use the mean as sample.
 - fit a piece-wise polynomial.
Delicate matters

- Error estimation
 - this revealed a fewer piece approximation did not work.
 - fore-casting against observed data.

- Results
 - Ramping-up and Ramping-down accurate to 5 %.
 - Peak period variance too much.
 - For peak period, conservative estimates best, i.e., throw away points well below the mean.
Question 2: Resourcing

- **Input**
 - Slot-wise client requirement data.
 - Employee skill (client-handling) data.

- **Constraints**
 - 8 hour slots per employee with 16 hour off-time.
 - For every slot, a multi-skilled person MUST be committed to a particular skill.
 - Staffing must match or exceed requirements.

- **Costs:** number of employees.
Single client

- When-ever need felt, call an employee.
- This **greedy strategy** is optimal.
- **Proof**: Postpone optimal strategy to get greedy.

Question: How to tackle multiple clients?
The Transport Problem

- Employees must be dropped and picked up at home.
- Women employees may need special care.
- Housing all over Chennai.
- Four office location, *alas offices nearby*.
- Cars, Vans, Sumos and Innovas to be deployed.
- Cost per employee about Rs. 2000 per month.
- About 270 employees per shift.
- Time taken during peak and non peak hours available.
- No employee to travel for much longer than if she were to come by herself.
- Employee to be at the desk at least 15 minutes before slot time.
A first approach

- Handle one office and only pick-ups. Note that this is a severe restriction.
- Divide the city into 7 sectors and each sector into 5 segments at increasing distance from the office.
- Proceed from outermost segment inwards.
- Minimize pickups across two segments.
- Possibly easier to model the drop and pick-up problem in this model.

This is being implemented and tested against their past policy.
Issues with current solution

- How to better segment the city?
- Pick-up involves travelling to the door. This takes time. Routing within a segment is an issue.
- Any use for GPS data?
- Sensitivity of plan to sector marking. Is there a more global approach?
- One piece of data: 70% within 12km.
- Couple drop and pick-up.
- Couple different offices.
Thank you.