CS 435, Linear Optimization Tutorial 2, 2016

- 1. Let $x_1, \ldots, x_m \in \mathbb{R}^n$ with m > n. Show that there are $\alpha_i \in \mathbb{R}$, not all zero, such that $\sum_{i=1}^m \alpha_i x_i = 0$. In other words, *m* vectors in \mathbb{R}^n where m > n are linearly dependent. Use induction.
- 2. Use the above to show that if $x_1, \ldots, x_m \in \mathbb{R}^n$ with m > n + 1 then there are $\lambda_i \in \mathbb{R}$ such that $\sum_{i=1}^m \lambda_i = 0$ and $\sum_{i=1}^m \lambda_i x_i = 0$.
- 3. Use this to show that if $x \in conv(S)$, where $S \subseteq \mathbb{R}^n$ then there are points $s_1, \ldots s_{n+1}$ such that x is a convex combination of these points.
- 4. Let $p, x, y \in \mathbb{R}^n$ and let d be the distance function. Let $(p-x) \cdot (y-x) > 0$. Then show that there is a point $y' \in [x, y]$ such that d(p, y') < d(p, x). Also, show that this y' is constructible.
- 5. If P is a finite set of points in \mathbb{R}^n and $x \in conv(P)$ and $p \in \mathbb{R}^n$, then show that either x is the closest point to p in conv(P) or there is a $q \in P$ such that $(p-x) \cdot x^T < (p-x) \cdot q^T$.
- 6. Examine closest.sci. Prove that the sequence so generated converges to the closest point.
- 7. Let P be the octahedron in 3-dimension and let x = (0.1, 0.2, 0.3) and p = (0.4, 0.4, 0.4). Find the next two iterations.
- 8. Experiment with closest.sci with various P and p. Try the octahedon with p = (0.6, 0.6, 0).
- 9. Modify the algorithm so that it maintains a convex combination for the points x_n . Is there a way to guess the limit point?

10. Let D be given by the following system:

$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{bmatrix} x \\ y \end{bmatrix} <$	$\begin{bmatrix} 3\\0\\3\\0\\3\\0\\0 \end{bmatrix}$
-1 0 0	$1 \\ -1$	0 0 0	$\left[\begin{array}{c} x\\ y\\ z \end{array}\right] \le$	$\begin{array}{c} 0\\ 3\\ 0 \end{array}$

Consider the points $x_1 = (0, 0, 0), x_2 = (3, 2, 1), x_3 = (2.5, 2.5, 1)$ and $x_4 = (2, 2, 2)$ and directions $v_1 = (1, 0, 0), v_2 = (1, 1, 1), v_3 = (1, -1, 0), v_4 = (-1, 1, 0)$. For each tuple (x_i, v_j) examine if v_j is a valid direction for x_i and if so, the maximal λ so that $x_i + \lambda v_j$ remains feasible.

- 11. Recall the octahedron given by the convex hull of the points $\{(0, 0, \pm 1), (0, \pm 1, 0), (\pm 1, 0, 0)\}$. Let $x_1 = (1, 0, 0)$ and $x_2 = (0.5, 0.5, 0)$. Compute $Dir(x_i)$, i.e., give an outline of how you would determine if $v \in Dir(x_i)$. Similarly compute $Normal(x_i)$.
- 12. Let $S \subseteq \mathbb{R}^n$. Let cone(S) be the collection of all conical combinations of the elements of S. Show cone(S) is a cone. Show that it is the smallest cone containing S.
- 13. Let C_1, C_2 be cones and let $C = cone(C_1, C_2)$. If C'_1, C'_2 are the polars of C_1, C_2 resp., express the polar of C in terms of the polars of C_1, C_2 .
- 14. For the polytope D above and the points x_i , determine the objective directions c which will be optimal at the given points. In other words, determine $Normal(x_i)$. For the objective vector c = (1, 2, 3) determine if $c \in Normal(x_i)$ and if not, find a favourable direction of motion $v \in Dir(x_i)$.