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Introduction

1. Introduction to optimization. Domains and functions. Classifica-
tion of domains as discrete and continuous. Examples of optimization
problems:

• The Time-tabling problem. How to assign slots to actual
times. The domain as bijections and the function to save on tran-
sit time. The travelling salesman problem.

• The Electricity Grid Problem. Given villages, how to find the
cheapest electricity grid. Modelling this as the min-cost spanning
tree. The question of redundancy and the 2-connected min-cost
subgraph problem.

• The Powai Lake Aerator Problem. Locating a point to put
the aerator. Largest inscribed circle.

The separation of Optimization into Modelling, Solution and core Math-
ematics. An example of the mean-value theorem in 1-D and 2-D. The
antipode pressure and temperature problem.

2. The construction of rationals Q through integers Z. Downward closed
and upward closed ideals. Principal ideals. The lemma of comple-
ments: Either of (i) both I and Ī are non-principal, or (ii) only one
of them is principal. R as non-principal down-closed ideals and Q as
those whose complement is principal. The centroid of Powai lake as an
approximation of reals by rationals.

Topology

1. Introduction to Bε(x) as basic open sets. Definition of open sets. Fi-
nite intersection and arbitrary union prroperties. Definition of closed
sets. Standard examples. Rationals as neither. A limit point of a set.
Definition of closed sets in terms of closed under taking limits.
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2. Basic open sets in Rn. Definition of the topology of Rn. Examples of
varieties. Powai lake. The euclidean metric and the euclidean basic
open sets. equivalence of the two sets of open sets. More examples of
closed and open sets in Rn. Domain of triangles in Powai Lake.

3. Definition. Let X be a set and Γ be a collection of subsets of X
which we call as open. We say that Γ is a topology iff (i) X,φ ∈ Γ,
(ii) finite intersections of open sets is open, and (iii) arbitrary union of
open subsets is open.

4. Let BOS (also known as basic open sets) be a family of subsets of
X such that (i)X,φ ∈ BOS, (ii) for every U, V ∈ BOS and every
x ∈ U ∩ V , there is a W ∈ BOS so that x ∈ W ⊆ U ∩W . Let Γ be
the collection of all aribitrary unions of elements of BOS. Show that
Γ is a topology.

5. Limit points and closed sets. The definition of limits: (xk) → x iff for
every U containing x, there is an N (depending on x and U) for all
j > N , we have xj ∈ U .

6. Lemma: C is closed iff for all (xi) → x then x ∈ C. Let us prove this
here. In the forward direction, suppose C is closed and (xn)subsetC
and xn → x. If x 6∈ C then x ∈ C which is open. Thus there is an open
set C which separates (xn) from x! In the other direction, we show
that if C enjoys the limit property then C must be closed. We show
that C is open. Suppose not. Then there is an x ∈ C such that for all
U open, with x ∈ U , there is a xU ∈ U ∩ C. Let us consider the BOS
B1/n(x) and let xn ∈ B1/n(x) ∩ C. Then (xn) ⊆ C, (xn) → x and yet
x 6∈ C!

Functions: Continuity and the mean-value theorem

1. The open-open definition of continuity. The limit definition of conti-
nuity at a point. Equivalence of the same. Projections, polynomials,
closest distance. Basic properties of continuous functions.

2. Let us prove here the equivalence of the two definitions. Recall that
f : X → Y is continuous iff for all U open in Y , f−1(U) is open in X.
We claim that this is equivalent to the condition that for all sequence
(xn)→ x in X, we must have that f(xn)→ f(x).
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Let us prove the forward direction. Suppose that (xn)→ x, and let us
denote f(xn) by yn. If (yn) 6→ y then there must be an open set U such
that y ∈ U and there are infinitely many ynj

such that ynj
is not in

U . Let V = f−1(U). Since f is continuous, V is open and V is closed.
Moreover, x 6∈ V while the sequence (xnj

) ⊆ V . However, it is easy to

show that (xnj
)→ x. This contradicts that V is closed.

The reverse direction is easier. Let us take U ⊂ X open and suppose
that Y = f−1(U) is not open. This means that there is a sequence
(xn)→ x where xn 6∈ V while x ∈ V . Applying f to both sides, we see
that (f(xn))→ f(x) and yet U separates f(xn) from f(x).

3. Composition of continuous functions. Cross-product of continuous func-
tions fi : X → Yi. Continuous functions f : Rm → Rn as a tuple of
continuous functions (f1, . . . , fn) : Rm → R.

4. Lemma: Let (yn) be a bounded increasing sequence then (yn) is con-
vergent. Proof: Let I = {q ∈ Q|∃yks.t.q ≤ yk}. Clearly I is an ideal.
If I is principal then I = y ↓ where y ∈ Q, or else I is an irrational real
y. In either case (yn)→ y.

5. Mean value theorem. Let f : R → R be continuous. Let [x0, y0]
be a closed interval such that f(x0) ≥ 0 and f(y0) ≤ 0. Then there
is a x ∈ [x0, y0] so that f(x) = 0. Proof. Put n = 0.Suppose that
f(xn) < 0 and f(y0) > n0. Let zn = (xn + yn)/2. If f(zn) = 0
then we are done. If f(zn) < 0 define xn+1 = zn and yn+1 = yn. If
f(zn) > 0 define xn+1 = xn and yn+1 = zn. We have now constructed
an increasing sequence (xn) and a decreasing (yn). Argue that there is
an x so that (xn)→ x and (yn)→ x. Now apply f .

6. Examples. Stereographic projection. Let D = R3 − {(0, 0, 0)} and
S2 = {(x, y, z)|x2 + y2 + z2 = 1} be the unit sphere. Let s : D → S2

be given by:

s(x, y, z) = ( x√
x2+y2+z2

, y√
x2+y2+z2

, z√
x2+y2+z2

)

= (fX(x, y, z), fY (x, y, z), fZ(x, y, z))

where each fi : D → R is a continuous function.

Next let S1 = {(x, y)|x2 +y2 = 1} and let L = S1× [0, π/2] ⊆ R3. This
is a cylinder sitting on the unit circle of height π/2. Given any point
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(θ, α) ∈ L, let us call θ the longitude and α the latitude. Define the
map p : L→ S2 given by:

p(θ, α) = (cos(α) cos(θ), cos(α) sin(θ), sinα)

The map p imprints the latitude and longitude on the globe S2. Note
that p(θ, α) ∈ S2 and also that p(θ, π/2) = (0, 0, 1). Thus, the whole
upper rim of the cylinder goes to the pole. On the remaining part of
the cylinder, the map p is 1-1. Compute the inverse of the map.

The Separation Theorem

1. Definition. A set D ⊆ Rn is called convex iff for x, y ∈, the line
segment connecting x and y also belongs to D, i.e., {λx+ (1− λ)y|λ ∈
[0, 1]} ⊆ D. Examples of convex and non-convex sets. Convex hull
of set of points. Exercise: convex hulls of points in the convex hull.
Polytopes and polyhedra-by inequalities and by convex hull of points.

2. Hyperplanes and their use as witnesses. Examples. Theorem. Let D
be a closed convex domain in Rn and p ∈ Rn. Then p 6∈ C iff there is
an x ∈ Rn and a ∈ R such that x · p > a and x · y ≤ a for all y ∈ D.

3. Proof: Suppose p 6∈ D. Step I: There exists a unique closest point
q ∈ D and that ‖p− q‖ > 0. Step II. x = p− q does the job.

4. Applications of the separation theorem. The dye-inventory problem.

The closest point algorithm

1. The closest point algorithm when D is given as a convex hull of finite
number of points. Inputs and outputs. The initialization and the iter-
ator. Proofs that the sequence is convergent and within the polytope.

2. Convergence problem of the stopping condition. Plots of log(d(i)) when
point is inside and point is outside. Problem when D is given by AxT ≤
b.

The linear optimization problem on domains of the type D =
{x|AxT ≤ b}
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1. Definitions of I(x), Dir(x) for any x ∈ D.

2. Cones. Representation by rays and AxT ≤ 0. Examples. Cones of
infinitesimal movements in domains given by AxT ≤ b. Proof that
Dir(x) is indeed this.

3. Separation theorem for cones that it allows a = 0. Polar cones and the
double polar theorem. Definitions of Normal(x) and proof that these
are indeed the normals at a point x.

4. The generic b condition that rank([AIbI ]) 6= rank(AI) and its conse-
quence. Classification of points of a polytope D.

5. The linear KKT theorem for closest point in AxT ≤ b. The dichotomy
that either c ∈ Normal(x) or there is a direction d such that d · cT > 0.

6. Implementation of the condition by −(AI)
−1 in the full rank case. The

Simplex algorithm. Implementation in the non-full rank. Example of
closet point problem.

7. The structure of polyhedra of the type AxT ≤ b. Removal of redundant
inequalities for the proof. Structure of faces. Degrees of freedom. The
conical decomposition of polytopes of the form AxT ≤ b. The bounded-
ness condition that cone(A) = Rn.

8. The statement without proof that convex hull of finite set can be put
in the form of AxT ≤ b. Combinatorial outline of the proof.

9. Standard form of the LP. Complimentary slackness and the dual LP.
The primal-dual form. Examples of LPs and their duals.

Derivative and the Gradient

1. Optimization. The three parts of a typical optimization program
are as follows: (i) Modelling, i.e., setting up the domain D and the
objective function f , (ii) Iteration, i.e., getting to a better xn+1 ∈ D
from a given xn ∈ D, and finally (iii) the stopping condition, i.e.,
mathematical conditions to prove that you are at the maxima, or at
least, a local maxima. The first (i) is to do about the clever use of
functions to model and design D and f . Parts (ii) and (iii) depend
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more on differential properties of f and of the boundary of D, i.e., the
functions, say g1, . . . , gk used to define D.

2. Beer and Water. Consider the case when you go to the market with
1 unit of money. There is beer and water in the market on which you
want to spend this money. Each of beer and water has a utility function
ub(y) and uw(y), where ua(y) is the amount of happiness obtained by
consuming y units of quantity a. Suppose, e.g., ub(y) = y while uw(y) =√
y. If you decided to devote x units to beer and the remaining to water.

Thus D = [0, 1] and f = ub(x) + uw(1− x).

Let x0 be the optimal purchase. We see that, either (i) the x0 ∈ (0, 1)
in which case ∂u/∂x = 0 or (ii) x0 = 0 or x0 = 1. This explains that the
conditions which define the optimal come from either the domain or the
objective functions (or both). In this case, we have u(0) = u(1) = 1.
On the other hand:

∂u/∂x = 1− 1

2
√

1− x
= 0

This gives us x = 3/4 and u(3/4) = 5/4. This is the optimum.

3. The derivative at a point in 1 dimension. Abstract properties.

Definition. The derivative of a function f : R → R at the point
a is given by the limit limh→0

f(a+h)−f(a)
h

. limh→0 is short form for
every sequence (hn) such that (hn) → 0. We similarly define left-hand
and right-hand derivatives by restricting the sign of h. We say that
f is differentiable on an interval [a, b] iff it is differentiable at every
point of (a, b), is RH-differentiable at a and LH-differentiable at b. The
derivative f ′ : [a, b] → R is the value of this derivative at each point
x ∈ [a, b].

4. Rolle’s Theorem. Let f : R → R be differentiable and so that its
derivative f ′ is continuous. Let f(a) = f(b). Then there is a point
y ∈ [a, b] such that f ′(y) = 0. Proof. Let f achieve its maxima in [a, b]
(why?) at y. Show by a limiting argument that f ′(y) = 0.

Conversely, if f : R → R is differentiable so that its derivative f ′ is
differentiaqble and f ′′ is continuous, and if f ′(x0) = 0 and f ′′(x0) < 0
then there is an ε > 0 so that for all y such that |y − x0| < ε we have
f(y) ≤ f(x0), i.e., x0 is a local maxima.
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5. Lemma. Let f be differentiable so that f ′ is continuous. Suppose that
f ′(a) = C > 0 and 0 < c < C, then there is an ε > 0 such that for all
a < x < a+ ε, we have f(x) > f(a) + c(x− a) for all a− ε < y < a and
f(y) < f(a) + c(y − a).

6. Derivative Da,v in a direction v at a position a. Let f : Rn → R be
a function and let a ∈ Rn be a position and v ∈ Rn be a direction.
Define ga,v(x) = f(a + xv). The directional directive of f at a in the
direction v is given by g′a,v(0), i.e., Da,v(f) = g′a,v(0).

7. Properties of Da,v. Da,v+w = Da,v +Da,w. Proof:

ga,v+w(h)−ga,v+w(0)

h
= 1

h
[f(a+ vh+ wh)− f(a)]

= 1
h
[f(a+ vh+ wh)− f(a+ vh)]

= 1
h
[(f(a+ vh+ wh)− f(a+ wh)) + (f(a+ wh)− f(a+ vh))]

= 1
h
[(f(a+ vh+ wh)− f(a+ wh)− f(a+ vh) + f(a)) + (f(a+ vh)− f(a)) + (f(a+ wh)− f(a+ vh))]

= (f(a+vh+wh)−f(a+wh)−f(a+vh)+f(a)
h

+ f(a+vh)−f(a)
h

+ f(a+wh)−f(a+vh)
h

Taking limits, we get:

Da,v+w(f) =
(f(a+ vh+ wh)− f(a+ wh)− f(a+ vh) + f(a)

h
+Da,v(f)+Da,w(f)

It is easily see that for many classes of functions, e.g., trigonometric,
polynomials and exponentials, the first term vanishes.

8. Let ei = (0, 0, . . . 0, 1, 0, . . . , 0), where the 1 is in the i-th position. If
v = (x1, . . . , xn) then Da,v =

∑
i xiDa,ei(f), i.e.,

Da,v =
∑
i

xi
∂f

∂xi
(a)

The vector

∇f = [
∂f

∂xi
]

is called the gradient. Thus Da,v(f) = v · ∇f(a).
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