
Data Structures to Represent Public
Transport Systems for Small Towns

Case Study Of Dharwad

Charu Agarwal

Abstract

Commuter bus systems plays a crucial role in the working of a
city, especially for the non-metropolitan towns, where it is the primary
mode of transport. For efficient planning, management and utilization
of a citys transport system, a well-organized and structured database
is necessary. While different cities follow different conventions to store
and manage data, it is not clear if this representation allows for data
analysis and optimization. This study outlines one possible methodol-
ogy to formalize this data into structures which can be used for query
and analysis purposes. The methodology is made simple enough to
be implemented by the novice programmer. One unique feature is the
unification of the tabular data of the schedules with geospatial data of
routes, which produces a rich and powerful database. It is followed by
some applications and algorithms briefly describing the arenas where
this data can be utilized by researchers, depot managers, and everyday
passengers.

Introduction

Imagine you are a student who wants to travel from Ganesh Temple to Cen-
tral School, starting at 7:15 AM, in the minimum possible time. Or you are
in a planning committee and would like to know which are the more prof-
itable areas to add a new bus route. Or perhaps, you are a researcher who
wants to study how much percentage of the rural population has access to
a bus within 500m. Such fairly complex questions can be easily answered
using graph theory and other tools. Now, some of us may be familiar with

1

the graph notations and algorithms and would be able to churn out a pro-
gram in five minutes (or less) that would perform such computations for us.
But to implement such nice algorithms, we require data in a form that is
ready to use and understood by the computer. For the sake of specificity of
purpose, the study has been sub-divided into four sections. Sections 1 and
2 describe the process of collection of data and the cleanup process. The
utilization and applications are emphasized in sections 3 and 4, including
a brief outline of the development of a mobile navigation application and
a modified, optimized version of the shortest path algorithm suitable to be
run on a mobile phone. Much of the algorithms described in this study are
supported by pseudo code to provide easy implementation for future use.

1 Background And Collection Of Data

The Dharwad bus depot is one of the eight depots under NWKRTC (North
Western Karnataka Road Transportation Corporation). It caters to local
buses as well as nearby and long distance buses. For the purpose of this
study, we restricted ourselves to local buses. There are around 65 local
routes (considering to and fro as the same route), 250 bus stops and 2050
bus trips per day.

1.1 Acquisition 1: Form IV(The city bus schedule)

The most basic requirement to analyze a bus network is to begin with the
operational representation used by the City Bus System. We began with the
so-called Form IV, the city schedule, a format used by NWKRTC. This is
organized in an unstructured 8000 line excel workbook, a snapshot of which
is given below (see Fig. 1). Form IV is organized as a sequence of schedules,
with each schedule consists of 10-20 trips. Each trip has a start destination,
start time and an end-destination and end-time. Each schedule is typically
a shift done by a crew consisting of a conductor and a driver. Thus, the
schedule is a collection of 10-20 rows in Form IV. As mentioned, this was
an 8000 line excel workbook where many non-functional schedules were also
present. After verification from the Depot, we compressed it to a 2000 line
excel sheet.

2

Figure 1: A snapshot of Form IV

The information provided by the depot was not sufficient on several
counts.

1. It did not contain any information about the route followed in a trip
or the stops within the trip.

2. The names of the terminal destinations were not standard.

3. It did not enable other analysis, such as crew or vehicle utilization.

Dharwad Bus Depot did have the conductor carrying a ticket-vending ma-
chine for all routes but the stop-data was non-standard and did not have
route/geo-tags. Whence it was decided that (a) route and stop data would
be obtained, and (b) suitable schemas would be developed to represent Form
IV and to perform other analysis.

1.2 Acquisition 2: KML Files of Routes

The second important task was to get the geospatial information of the
routes. Now while the Dharwad depot has some newly launched buses which
are equipped with GPS, most of the buses do not have this functionality. So
it was decided to undertake field work and generate the data. Using the data
from Form IV, we extracted the different routes and allotted them to the class
of 39 students of the course CS213 (Jan. 2017-May. 2017), at IIT Dharwad,

3

to track the routes in pairs. The application used is called GeoTracker[1],
available for free to download on the Google Play Store which generates a
KML file (a text format) using the GPS position of the mobile phone. Each
student team was required to hop on three bus routes, use the app to mark
the stops and submit the KML files of the routes. The kml file produced for
a route may be viewed on standard platforms, and consisted of two segments:
(i) Part I. The stops as place-points (about 20) and its data, and (ii) Part
II. A sequence of 1000-odd lat-longs which tracked the route. This will be
called as the track of the route. See Fig. 2 for a snapshot of two of kml files.
Note the irregular route due to tracking error and bus movements and also
the two different names and locations given by the two teams travelling on
the routes.

Figure 2: Two Routes.

4

2 The Representation

Now came the rather tedious task of formalizing the data we had in hand,
so that it can be utilized.

2.1 Developing a data structure as a graph

It was decided to use the graph data structure as the basis for representing
key concepts. A network graph G(V,E) consists of a set of vertices V , and
E, a set of edges. An edge is an ordered/unordered tuple (v, v), where v, v
are vertices. A graph is eminently suitable to represent locations (as vertices)
and paths between locations (as edges). Thus graphs were chosen as the basic
structure which would cater to our requirements. We will now describe (i)
the definition and construction of vertices, (ii) the definition and construction
of edges, and finally, (iii) the use of paths, i.e., a connected sequence of edges,
to represent routes. Here is a formal description of the data structure:
There are 4 key structs, viz. place, edge, route and schedule. The place
represents an actual location and contains location data (latitude-longitude
(lat-long)), name and other attributes specific to the place and the route on
which it lies. An edge consists of two places (p1, p2) and a track between
them. A route consists of a sequence of places, connected by the edges. A
service consists of a route followed by a bus along with the start time and
the trip duration. Finally, a schedule is a set of services carried out by a
single bus. A standard schedule is 8 hour long and typically consists of 20
services, which usually are to and fro trips along a single route.

struct place

{

double latitude,longitude;

String name;

int id;

int eindex[]; //stores the index of edges starting from the place

};

struct edge{

int from, to, duration, route_no, id;

String polyline;

};

struct Route{

int id;

5

int from, to; //stores the id of the terminal stops

};

struct Service{

int route_id, duration; //duration of each trip

String start_time; //stores the start times of the service in

HH:MM format

int scheduleID; //stores the id of the schedule it

belongs to

};

struct Schedule{

String sch_name;

double actual_dur; //stores total schedule duration in hours

double running_time; //stores the duration the bus operates on

road (excluding breaks)

String startTime; //stores starting time of schedule in HH:MM

format

String endTime;

int nTrips; //stores number of trips in a schedule

Service services[]; // array which stores the services catered

to by the schedule

};

The remaining part of this section contains more technical details of the
process for actual implementation and may be skipped without any loss of
context.

2.2 Standardization of Names in Form IV

There is no standard algorithm for this part. We tried to compare the stop
names based on difference in characters in name but it was not very reliable.
(For eg, Bendre Bhavan and Bendre Bus Stop are completely different stops
while Vidyagiri and JSS refer to same stop.) So we had to manually modify
the ambiguous names using discretion. To verify we had corrected all the
names, we then wrote a program which generated all the unique stop names
and inspected them.

6

2.3 Extraction of Substops from the KML Files

KML files have a feature called Placemark, which stores attributes like name,
timestamp, elevation and coordinates. To extract these placemarks, we used
a web utility [2] which converted KML files into CSV files containing list of
attributes.

2.4 Clustering of the Stops

The coordinates and names of the stops (extracted from the KML files) did
not match exactly as the routes had been tracked by different students at dif-
ferent times. We used a clustering algorithm using connected components to
synchronize stop names and coordinates. An auxiliary graph was constructed
which used the stops as vertices. An edge was put between two stops if the
distance between them was within xx meters. Each connected component
of this auxiliary graph was converted into a place with its coordinate as the
mean lat-long of its member stops. These lat-longs were temporary and were
corrected later, see below. Standardized names obtained from 2.1 and oth-
ers from Google Maps were used to name the places. This completes the
preparation of the vertices of our final network graph.

2.5 Fitting the GPS generated tracks with the Google
Map Roads

Now it is time to look at the generation of edges and paths in the network
graph G. It was decided that the edges between places (whose preliminary
lat-longs and names are now available) will follow existing roads, i.e., poly-
lines as shown by Google Maps. For this, we began with Part II of the kml
files, i.e., the tracks, which consist of a sequence of lat-longs followed by the
bus. As the tracks were generated from real time tracking, they were quite
disorderly and deviated from the roads a lot. To align the tracks with the
official road polylines, we used a Google API[3]. From documentation: This
service takes up to 100 GPS points collected along a route, and returns a
similar set of data with the points snapped to the most likely roads the ve-
hicle was traveling along. Thus, what could have been done in one go, had
to be done by feeding a selection of 100 points from the track.

7

Algorithm 1 Clustering Algorithm

procedure cluster(G) . G is a graph with vertices as stops and there
exists edge between vertices u and v iff dist(u, v) < ε

for all v in G do
label as undiscovered

end for
for all v in G do

if v is undiscovered then
sumCoordinates← 0
numberOfStops← 0
Q← queue initialized with v
while Q is not empty do

current← Q.dequeue()
sumCoordinates← sumCoordinates+currentCoordinates
increase numberOfStops by 1
for each node n that is adjacent to current do

if n is not labeled as discovered then
label n as discovered
Q.enqueue(n)

end if
end for

end while
meanCoordinates← sumCoordinates/numberOfStops
update all stops in the current connected component with

meanCoordinates
end if

end for
end procedure

We first converted the KML files into GeoJSON format using a web utility
[4], wrote a program which extracted the track Ti from the file and made a
selection of 100 points from the track at regular intervals. This selection Ii
was fed as input to the Google API to obtain Oi, the output, which consisted
of a set of 100 points, defining a track aligned with the road. We then
compared the track Oi returned by the API with the original track Ti. Care
was taken in the selection of input Ii to ensure that Oi closely followed Ti.

8

Finally, Oi was replaced by Ti.

Figure 3: Here is a before v/s after for comparison after steps 3.2, 3.3 and
3.4. All stops have been clustered and the tracks have been aligned to the
roads.

2.6 Inserting stops into polylines

To generate edges between vertices, we needed polylines. As the data was
generated from one trip only, many buses did not stop at all the stops which
lie on the route depending on the ridership that day. So, we then wrote
a program which took all the stops, computed its minimum distance from
the track and inserted it into the track Oi if the distance was less than
some chosen epsilon. Thus, at the end of this phase, all the data from the
various original kml files has been processed. For each original track Ti,
we have a new track Oi which follows Google Map roads. All stops which
were marked on this or any other track, have been inserted into the new
tracks Oi . Note that now Oi conceptually consisted of a sequence of places
(p(i, 1), p(i, 2), ..., p(i, k)) and for each consecutive places (p(i, j), p(i, j + 1)),
there was a track which had been validated by the Google API. This was
used to generate the edges of the graph G. For two places p and q, we put
an edge e = (p, q) if there was a track O, in which these were consecutive.
Moreover, the attribute polyline of the edge was what was obtained from the
Google’s polyline encoding algorithm [5] to encode the polylines into strings,
which is easy to store and can be decoded later as needed. Please note that
if there were two tracks Oi and Oj on which p and q were consecutive, the
polylines obtained would be identical.

9

Figure 4: Final bus network after cleanup.

The Route data-structure was now constituted from edges constructed
as above. The duration field was computed from the original track. Fi-
nally, Services were formed and Form IV was re-configured into a database
as a collection of Schedules, where each Schedule was a collection of services
and start-times. Further, there was a database for all stops which acted as
vertices in the graph representation, and a database which stored the route
information.

Figure 5: Sample service database. Here the service is shown for the route
CBT-UAB (Route no. 44). Also, reverse routes have been marked by adding
a minus sign to the route number (eg. UAB-CBT will be route no. -44 in
the service database).

10

Figure 6: Sample database to identify stops (vertices).

Figure 7: Sample database to store route data (edges). Duration is stored in
minutes. The ids in the stops database are used to mark the start and end
stops. The polyline has been encoded.

Figure 8: Sample database for route ids.

Figure 9: Sample database for schedules.

Results of sample queries on the database appear at the end.

11

3 Development of the mobile navigation app

Our next goal was to develop a mobile application that would display the
schedule to the passengers, show the route on map and furthermore, suggest
routes to go from Place X to Place Y(not necessarily on the same route) in
minimum time, given a starting time. Now, we could have simply imple-
mented the shortest path algorithm in its original form, but as this app was
to be developed with more rural users in mind, it was desirable that the app
worked offline. This posed a significant challenge as we were very restricted
in terms of memory resources as the entire computation has to be done on
an average mobile phone instead of a server. So, we modified the algorithm
as follows:
In the standard shortest path algorithm, at every step, we select the minimum
cost vertex (here stop) and update the distance, if more, to every unvisited
vertex that is directly connected to it, with the cost being the time taken to
reach the current stop plus the time taken to reach the adjacent stop using a
particular route. Suppose there are k routes having n stops each. The total
number of edges in this case would be (n-1) *k. If we identify each unique
event of arrival/departure as a distinct edge, and suppose 1 route has m trips
to and fro per day, the number of edges would increase to (n-1) *m*k.
We note that we are only interested in the next bus. So instead of explicitly
storing the edges for all buses, we simply compute the next bus from the
current time and then compare our options.
The present cost of an edge depends on the current time also, along with the
edge duration. For example, suppose there are two buses which go from stop
A to stop B: bus X starts at 7:30 AM while bus Y starts at 8:00 AM. For the
sake of simplicity, assume that bus X takes 50 minutes to complete its jour-
ney, while bus Y takes 25 minutes to complete its journey. Which bus should
you take to reach earliest? The shorter duration one? Well, the feasibility
and preference would depend on what time you start your journey. If you
arrive at 7:10AM, your expenditure would be 20 minutes (waiting time) +
50 minutes (travel time) if you take bus X, and 50 minutes (waiting time) +
25 minutes (travel time) to reach from stop A to stop B, by bus Y. Clearly,
bus X is preferred in this situation and the expenditure would be 70 minutes.
However, if you arrive at stop A at 7:35 AM, you would take bus Y and your
expenditure would be 50 minutes only.
Hence, the cost of an edge at the present event depends on the cost of all the
previous edges used to reach the current stop and the starting time (as they

12

determine the present time). So, instead of creating all the time dependent
edges in the beginning, we created only route edges and recomputed the cost
of each edge at runtime as Current Cost= waiting time + edge duration;
where waiting time is defined as the minimum non-negative difference be-
tween the starting time of the bus and the current time; infinity if no such
time exists. Now that our algorithm appears to be correct intuitively, we
give the pseudo code. (See next page)

13

Algorithm 2 Algorithm for finding bus route

procedure RoutePlanner(Graph, source, destination, start time)
create vertex set Q
for each vertex v in Graph do . Initialization

dist[v]←∞ . Unknown distance from source to v
prev[v]← UNDEFINED . Previous edge in optimal path from

source
arrival time[v]←∞ . Stores the best arrival time at each vertex

end for
add v to Q . All nodes initially in Q (unvisited nodes)
dist[source]← 0 . Distance from source to source
arrival time[source]← start time
while Q is not empty do

u← vertex in Q with min dist[u] . Node with the least distance
will be selected first

remove u from Q
if u is destination then

break . no need of further computation
end if
for each edge starting from u do . where v is still in Q

length(u, v)← waitingtime(arrival time[u]) + length(u, v) .
re compute edge cost

alt← dist[u] + length(u, v)
if alt < dist[v] then . A shorter path to v has been found

dist[v]← alt
prev[v]← e(u, v)
arrival time[v]← arrival time[u] + length(u, v)

end if
end for

end while
return dist[], prev[]

end procedure

14

Figure 10: Working sample of the app: Query from High Court to Sringar
starting at 13:55.

15

3.1 Adding Walking Edges

We noticed that in certain situations, it may be more advantageous to walk
a few hundred meters than to take a bus as it covered a larger loop to come
to the same point. So we added a feature to enable walking where a user
can give as input the maximum distance he/she is willing to walk between
two stops and then our program adds additional walking edges between the
stops so that an even more optimized route is generated.

Figure 11: Sample query for Dharwad High Court to German Hospital
with(left) and without(right) walking feature enabled. (All walking routes
are dashed)

3.2 Current Location Feature

Quite often the user will not be at a bus stop and would like to know how to
reach the nearest bus stop by walking and then catch a bus. We have added
a feature which uses the current location of the user to compute the nearest
bus stop and gives directions accordingly.

16

4 Further Analysis and Limitations

The shape files of the routes generated were loaded up into a GIS application
QGIS, along with the ward data from the municipal corporation to estimate
how many wards had access to a bus.

Figure 12: The bus route network has been superimposed over the wards,
classified by population density.

Using the database, several queries were made to generate plots to analyze
crew and resource utilization.
We plotted the number of trips made by the buses as a function of time.
(See Fig. 14) As expected, a standard bell curve with slight dip between
13:00-15:00hrs. It seems they have planned the frequency of buses to meet
the demand reasonably well. A plot of distribution of the schedule duration
(see Fig. 13) shows that for 29 out of 101 schedules, the schedule duration is
more than 8 hours. The depot is paying overtime charges for over 82 hours
every day. For the 72 schedules whose duration is less than or equal to 8h,
a total of 35 working hours are wasted every day. Comparing the time bus
is stationary v/s the time bus is moving during the schedule (see Fig. 15),
over 39% buses are lying idle for more than 40% of their running duration,
especially for shorter routes for which the idle time is comparable to running
time. This is as the depot has allotted standard breaks in multiples of 5

17

minutes between the trips. But when the bus trip is only 10 minutes long, it
is quite wasteful to make it wait for 10 or more minutes. However, the break
time cannot be reduced too much also, as some time is needed to allow new
passengers to climb the bus, before the bus begins the next trip.

Figure 13: Plot of Number of Schedules v/s the schedule duration. (This
duration is the cumulative duration of the schedule, including breaks.)

Figure 14: Distribution of the number of bus trips throughout the day.

18

Figure 15: Plot showing the percentage of time bus is staying idle. This time
can be utilized for accommodating other trips.

Although we were able to generate a self-sufficient database, there were
some drawbacks. We did not have access to the fare data, which is an im-
portant factor for analysis purposes. Also, not all routes were tracked as
some ran only in very early morning. This model works on static data of the
schedule. While this might be useful in rough planning of a trip, it will not
account for unexpected delays, which is a more prevalent problem in larger
cities, where traffic and congestion is more. In such scenarios, using real time
data would be much more useful. But for that, we need GPS to be installed
in all buses, or create an app which tracks the positions of passengers all over
the city to estimate the position of the bus.

Acknowledgements

The author would like to thank Prof. Milind Sohoni (CSE Department, IIT
Bombay) under whose guidance this project was done, Prof. Seshu (Direc-
tor, IIT Dharwad) for his support and encouragement, Mr. Deepak Jadhav
(Depot Manager, Dharwad) for providing the datasets and the students of
CSE Department, IIT Dharwad for collecting the data.

19

References

[1] I. Bogdanovich, Geo Tracker - GPS tracker. Available at:
https://play.google.com/store/apps/details?id=com.ilyabogdanovich.

[2] Unknown, ConvertCSV. Available at: https://www.convertcsv.com.

[3] Google, Google Maps Roads API. Available
at://developers.google.com/maps/documentation/roads/snap.

[4] Unknown, MyGeodata Cloud-GIS data warehouse, converter, maps.
Available at: https://mygeodata.cloud/converter/kml-to-geojson.

[5] Google, Google’s polyline encoding algorithm. Available at:
https://developers.google.com/maps/documentation/utilities/polylinealgorithm.

20

