Friends of Friends

Yash Gupta Soumen Chakrabarti IIT Bombay IIT Bombay

A well-known 'paradox' in (social) networks is informally stated as "your friends are more popular than you are, on average". A first step to make this eye-catching statement more rigorous is to restate it as "the average degree of a randomly selected node in a network is less than the average degree of neighbors of a randomly selected node", but this leaves unspecified the exact mechanism of averaging. There are at least two interpretations, one well-known, the other, apparently not.

Given an undirected graph G = (V, E) with |V| = N and |E| = M and no isolated nodes.

The set of neighbors of node u is nbr(u).

The average degree is $\mu = \frac{1}{N} \sum_{u \in V} |\operatorname{nbr}(u)| = \frac{2M}{N} \ge 1.$

Let the number of "friends of friends" of node u be denoted $FF(u) = \sum_{v \in nbr(u)} |nbr(v)|$.

We have $FF(u) \ge |\operatorname{nbr}(u)| \ge 1$.

Consider the quantities

$$\operatorname{MicroAvg} = \frac{\sum_{u \in V} \operatorname{FF}(u)}{\sum_{u \in V} |\operatorname{nbr}(u)|} \quad \text{and} \quad \operatorname{MacroAvg} = \frac{1}{N} \sum_{u \in V} \frac{\operatorname{FF}(u)}{|\operatorname{nbr}(u)|}$$

Claim 1. MicroAvg $\geq \mu$.

Consider the numerator $\sum_{u \in V} FF(u) = \sum_{u \in V} \sum_{v \in nbr(u)} |nbr(v)|$. This is effectively an enumeration over edges, accumulating on both incident nodes:

- 1: for each node $u \in V$ do
- 2: initialize $FF(u) \leftarrow 0$
- 3: for each edge $\{u, v\} \in E$ do
- 4: $FF(u) \leftarrow FF(u) + |\operatorname{nbr}(v)|$
- 5: $FF(v) \leftarrow FF(v) + |\operatorname{nbr}(u)|$

Note that v contributes the term $|\operatorname{nbr}(v)|$ to each of its $|\operatorname{nbr}(v)|$ neighbors, which then add up in $\sum_{u \in V} \operatorname{FF}(u)$. Thus the total contribution of v to the numerator is $|\operatorname{nbr}(v)|^2$. Thus we get

$$MicroAvg = \frac{\sum_{u \in V} |\operatorname{nbr}(u)|^2}{\sum_{u \in V} |\operatorname{nbr}(u)|} = \frac{\sum_{u \in V} |\operatorname{nbr}(u)|^2}{2M} = \frac{\sum_{u \in V} |\operatorname{nbr}(u)|^2}{N} \frac{N}{2M}$$

The standard deviation of node degree is defined as

$$\sigma^2 = \frac{\sum_{u \in V} |\operatorname{nbr}(u)|^2}{N} - \mu^2 \quad \Longrightarrow \quad \frac{\sum_{u \in V} |\operatorname{nbr}(u)|^2}{N} = \sigma^2 + \mu^2$$

from which we get

MicroAvg =
$$\frac{\sigma^2 + \mu^2}{\mu} = \frac{\sigma^2}{\mu} + \mu \ge \mu.$$

Claim 2. MacroAvg $\geq \mu$.

Here the computation has to be organized slightly differently.

1: for each node $u \in V$ do 2: initialize $Q(u) \leftarrow 0$ 3: for each edge $\{u, v\} \in E$ do 4: $Q(u) \leftarrow Q(u) + \frac{|\operatorname{nbr}(v)|}{|\operatorname{nbr}(u)|}$ 5: $Q(v) \leftarrow Q(v) + \frac{|\operatorname{nbr}(u)|}{|\operatorname{nbr}(v)|}$ return $\frac{1}{N} \sum_{u \in V} Q(u)$

So this time, each edge contributes to MacroAvg the quantity $\frac{|\operatorname{nbr}(v)|}{|\operatorname{nbr}(u)|} + \frac{|\operatorname{nbr}(u)|}{|\operatorname{nbr}(v)|} \ge 2$, because $\min_{a,b>0} \frac{a}{b} + \frac{b}{a} = 2$. We thus get

MacroAvg =
$$\frac{1}{N} \sum_{u \in V} Q(u) \ge \frac{1}{N} \cdot M \cdot 2 = \frac{2M}{N} = \mu.$$

The remaining question is whether some inequality holds between MacroAvg and MicroAvg.

Claim 3. MicroAvg > MacroAvg is possible.

Consider a 4-node clique on nodes 1, 2, 3, 4, followed by a chain 4, 5, 6.

Node u	$\operatorname{nbr}(u)$	$\mathrm{FF}(u)$	$ \operatorname{FF}(u)/ \operatorname{nbr}(u) $
1	$2,\!3,\!4$	3 + 3 + 4 = 10	10/3 = 3.3
2	$1,\!3,\!4$	3 + 3 + 4 = 10	$10/3 = 3.\dot{3}$
3	$1,\!2,\!4$	3 + 3 + 4 = 10	$10/3 = 3.\dot{3}$
4	1,2,3,5	3 + 3 + 3 + 2 = 11	11/4 = 2.75
5	4,6	4 + 1 = 5	5/2 = 2.5
6	5	2	2/1 = 2
	$\mu = 16/6 = 2.\dot{6}$	$\sum_{u} \operatorname{FF}(u) = 48$	$\sum_{u \frac{\text{FF}(u)}{ \operatorname{nbr}(u) }} = 17.25$

MacroAvg = $\frac{1}{N} \sum_{u} \frac{FF(u)}{|nbr(u)|} = \frac{17.25}{6} = 2.875 < MicroAvg = \frac{48}{16} = 3$

Claim 4. MicroAvg < MacroAvg is possible.

Consider the square on nodes 1, 2, 3, 4 with diagonal 2, 4 connected.

Node u	$\operatorname{nbr}(u)$	$\mathrm{FF}(u)$	$\operatorname{FF}(u)/ \operatorname{nbr}(u) $
1	2,4	3+3=6	6/2=3
2	$1,\!3,\!4$	2+2+3=7	$7/3 = 2.\dot{3}$
3	2,4	3+3=6	6/2=3
4	1,2,3	2+3+2=7	$7/3 = 2.\dot{3}$
	$\mu = 10/4 = 2.5$	$\sum_{u} \operatorname{FF}(u) = 26$	$\sum_{u} \frac{\mathrm{FF}(u)}{ \operatorname{nbr}(u) } = 10.\dot{6}$

 $MacroAvg = \frac{1}{N} \sum_{u} \frac{FF(u)}{|\operatorname{nbr}(u)|} = \frac{10.\dot{6}}{4} = 2.\dot{6} > \operatorname{MicroAvg} = \frac{26}{10} = 2.6$