Learning to Rank Networked Entities

Alekh Agarwal Soumen Chakrabarti Sunny Aggarwal

IIT Bombay

www.cse.iitb.ac.in/~soumen/doc/netrank

Learning to rank...

- …feature vectors, studied in detail
 - i^{th} entity represented by feature vector x_i
 - Score of i^{th} entity is dot product $\beta' x_i$
 - Want $\beta' x_i \le \beta' x_i$ if we say "i < j"
 - Max-margin setup $\min_{\beta \in \mathbb{R}^d} \beta' \beta \text{ subject to } \beta' x_i + 1 \le \beta' x_j \text{ for all } i \prec j$
 - Other scores, e.g. 2-layer neural net (RankNet)
 - ...nodes in a graph, less so
 - Strongly motivated by Pagerank and HITS
 - Changing score of one node influences others

Edge conductance and Pagerank

- Conductance of edge $i \rightarrow j$ written as C(j,i)
 - $C(j,i)=\Pr(j @ \text{ this step } | i @ \text{ previous step})$
 - Pagerank vector p satisfies p = C p
- Unweighted (standard) Pagerank

$$C(j,i) = \begin{cases} \alpha \frac{[(i,j) \in E]}{\text{OutDegree}(i)} + (1-\alpha)r_j & i \in V_o \\ r_j & \text{otherwise} \end{cases}$$

i is a dead-end $\sum_{j \in V} r_j = 1$

• Weighted Pagerank: $i \rightarrow j$ edge weight w(i,j)

$$C(j,i) = \begin{cases} \alpha \frac{w(i,j)}{\sum_{j} w(i,j')} + (1-\alpha)r_j & i \in V_o \\ r_j & \text{otherwise} \end{cases}$$

$$r_j \qquad \text{otherwise} \qquad Prob. of following this edge } \frac{1}{2/(2+3+3)}$$

$$Pr(teleport) \qquad Teleport?$$

Inverse problem

- Traditionally: Given matrix C, find Pagerank
- Clever design of C for various applications
 - Hand-tweak teleport vector r topic sensitive (Haveliwala), personalized (Jeh+Widom)
 - Hand-tweak w(i,j) (Intelligent Surfer, ObjectRank)
- Our problem: Given partial order $<_{train}$, find C (and p) such that
 - p satisfies p = Cp approximately
 - p satisfies $<_{\text{train}}$ and unseen $<_{\text{test}}$ well: i.e., $p_i \le p_i$ if i < j
 - \prec_{train} and \prec_{test} comes from same "hypothesis"

Preferred community scenario

- Ranking papers for Data Mining researcher
- Some subgraphs and citations more important than others
- Revealed via pairwise preferences
- Do not estimate C(j,i) directly
- Directly estimate p_{ij} , a constrained "flow" from i to j

"BTW" $C(j,i) = \sum_{(k,i) \in E} p_{ki}$ Inflow into i

Lots of parameters

"Favored node"

5

Entity-relationship graph scenario

- Many node and edge types
- Edge *e* has type *t*(*e*)∈ {1,... *T*}
- Weight $w(i,j) = \beta(t(i,j))$
- Find $\beta(1)$, $\beta(2)$, ..., $\beta(T)$ for least violation
- "Global entanglement" but far fewer parameters
- Somewhat "inductive", can augment graph with objects of known types

1: The constrained flow formulation

The dual optimization

 $\forall u \prec v : (1+\varepsilon) \sum_{(w,v) \in F} p_{wu} \leq s_{uv} + \sum_{(w,v) \in F} p_{wv} (1-\alpha) \times inflow$

• O(2|V|+|<|) dual variables

Preference

- Unconstrained β_{ν} for balance, τ_{ν} for teleport
- $0 \le \pi_{uv} \le B$ for preference
- Primal flows in familiar log-linear form

$$\forall v \in V \qquad p_{dv} = (1/Z)q_{dv} \exp(\beta_v - \beta_d + \operatorname{bias}(v))$$

$$\forall v \in V_o \qquad p_{vd} = (1/Z)q_{vd} \exp(\beta_d - \beta_v + \alpha \tau_v)$$

$$\forall v \in V \setminus V_o \qquad p_{vd} = (1/Z)q_{vd} \exp(\beta_d - \beta_v)$$

$$\forall (u,v) \in E \qquad p_{uv} = (1/Z)q_{uv} \exp(\beta_v - \beta_u - (1-\alpha)\tau_u + \operatorname{bias}(v))$$

- Where bias_{ε}(v) = $\sum_{r \prec v} \pi_{rv} (1 + \varepsilon) \sum_{v \prec s} \pi_{vs}$
- Dual objective: minimize log Z
- Can include dual vars gradually

Large bias \Rightarrow large flow into $v \Rightarrow$ high rank

Competition: Teleport learning via QP

Let A be node adjacency matrix with no dead ends and rows scaled to sum to 1

$$p = \alpha A' p + (1 - \alpha)r$$
, $\therefore p = (1 - \alpha)(\mathbb{I} - \alpha A')^{-1}r \triangleq M r < \text{this}$

Preference < expressed as $\prod_{p=\prod Mr \ge 0} (0,...,-1,...,1,...0) (0,...,p_i,...,p_j,...,0)' \ge 0$ Row of \prod Column vector p

Let r^U be the parsimonious uniform teleport

Deviate from unweighted Pagerank as little as possible...

$$\min_{r \in \mathbb{R}^{|V|}, s \ge 0} (Mr - Mr^U)'(Mr - Mr^U) + B\mathbf{1}'s$$

s.t.
$$r \ge 0$$
, $1'r = 1$, $\Pi Mr + s \ge 0$

Makes QP very expensive

...while satisfying <

Data set preparation

- No open benchmark for this task
 - No standardized comparison yet
 - ©We will make code and some data available
 - ○Synthetic G and < can explore space thoroughly</p>
- Generating graph G
 - RMAT (power-law degree, small dia, clustering)
 - Real DBLP+CiteSeer graph
- Generating preference <
 - Use r_{hidden} to compute p_{hidden}
 - Sample \prec_{train} , \prec_{test} from p_{hidden}
 - Measure flips on <_{test}

Learning rate and effect of margin

- Without $||r||_1 = 1$ constraint QP fails to learn from <
- Enforcing $||r||_1 = 1$ improves learning
- |V|×|V| inversion impractical, QP slow
 - Days vs. minutes
- Flow formulation with margin is much better
- Margin needs tuning, not scale-insensitive

12

Effect of node overlap

- Nodes involved in < $V(\prec) = \{ w : w \prec v \text{ or } u \prec w \}$
- What if V(≺_{train}) and $V(\prec_{\text{test}})$ overlap?
- Note, ≺_{train} and ≺_{test} do not overlap!
- Well-motivated in relevance feedback settings
 - Train and test communities overlap
- Test error drops fast

13

2: The typed conductance formulation

- Edge e has type t(e)∈ {1,... T}
- Weight $w(i,j) = \beta(t(i,j))$, params $\beta(1),...,\beta(T)$
- Matrix C is now a function of β, denoted C(β)
- Find β so that the p satisfying $p=C(\beta)p$ also satisfies <

Scaling all B preserves p, so we can demand all $\beta(t)$ ≥1

min $\beta'\beta$ subject to:

$$p = C(\beta)p$$

 $p_i \le p_i$ for all $i \prec j$

Both β and pare variables, leading to nasty quadratic equality constraints

Two approximations

- Breaking the quadratic constraints
 - Approximate $p \approx C(\beta)^H p^0$ where
 - p^0 is the initial Pagerank vector in power iteration
 - *H* is a finite horizon (or, stop at convergence)
- Design of a loss function
 - Training loss (not convex or differentiable)

$$\sum\nolimits_{u \prec v} \operatorname{step}(p_u - p_v) = \sum\nolimits_{u \prec v} \operatorname{step}\left((C^H p^0)_u - (C^H p^0)_v \right)$$

Approximate using

Approximate using a smooth Huber loss huber(y) =
$$\begin{cases} 0, & y \le 0 \\ y^2/W, & y \in (0, W] \end{cases}$$

Gradient descent search for

$$\min_{\beta \geq 1} \beta' \beta + B \sum_{u \prec v} \text{huber} \left((C^H p^0)_u - (C^H p^0)_v \right)$$

Discovering hidden edge weights

- Assign hidden edge weights to edge types
- Compute weighted Pagerank and sample <
- Can recover hidden weights fairly well
 - Penalty on β'β shrinks elements toward 0
 - Does not hurt prediction of \prec_{test}
- Can also find hidden α
- Time scales as $(|V|+|E|)^{1.34}$

Learning rate and robustness

- 20000-node, 120000edge graph
 - 100 pairwise training preferences enough to cut down test error to 11 out of 2000
 - Training and test preferences nodedisjoint
- 20% random reversal of train pairs → 5% increase in test error
 - Model cost β'β reduces

17

Summary and ongoing work

- Learning to rank nodes in graph from pairwise preferences: surprisingly unexplored
- I.e., design edge conductance so that dominant eigenvector satisfies preferences
- Two design paradigms: constrained flows and typed edge conductance
- New algorithms to learn design parameters
- Integrating queries and node features into models and algorithms (in PKDD 2006)
- Rank-sensitive score learning