Learning to Rank
Networked Entities

Soumen Chakrabarti

[IT Bombay

Learning to rank...

= . .feature vectors, studied in detail
- it entity represented by feature vector x;
- Score of i " entity is dot product 5’ x;
* Want 7 x;< 7 x;if we say “/ <"
« Max-margin setup

min 5' 5 subjectto f'x; +1< f'x; forall i< j
PeR
» Other scores, e.g. 2-layer neural net (RankNet)

= ...nodes in a graph, less so
 Strongly motivated by Pagerank and HITS
- Changing score of one node influences others

Edge conductance and Pagerank

= Conductance of edge i=>j written as C(j,/)
* C(,)=Pr(j @ this step |i @ previous step)
« Pagerank vector p satisfies p=Cp

= Unweighted (standard) Pagerank

iis a
[(7,))eE] :)
C(J,i)= aOutDegree(i) +(1= 0()/’/- eV, dead en_d
r otherwis Zjevrj -

= Weighted Pagerank: i=jedge weight w(i,))
o aLj)‘+(1—a)r. j e Vo Prob. of
C(j,i) = :

following
this edge
2/(2+3+3)

otherwise

Pr(teleport) Teleport? *

Inverse problem

= Traditionally: Given matrix C, find Pagerank

= Clever design of C for various applications

- Hand-tweak teleport vector r— topic sensitive
(Haveliwala), personalized (Jeh+Widom)

- Hand-tweak w(/,j) (Intelligent Surfer, ObjectRank)

= Our problem: Given partial order <., find C
(and p) such that
* p satisfies p = Cp approximately
- p satisfies <, and unseen <, well:
e, pispif i<
* <iqin @NA <isr COMes from same “hypothesis”

Preferred community scenario
Ranking papers for Data Mining
researcher

Some subgraphs and citations more
important than others

Revealed via pairwise preferences

“Favored node”

Do not estimate C(j,/) directly o

Directly estimate p;, a constrained L9

“flow” from i to j o«
Inflow ®

"BTW” C(j,i)=%(k Nl

Local “transductive” setting
Lots of parameters

Entity-relationship graph scenario

Many node and edge types
Edge e has type t(e)e{1,... T}
Weight w(i,j) = B(#(i,)))

Find B(1), B(2), ..., B(T) for least
violation

“Global entanglement”
but far fewer parameters

Somewhat “inductive”,
can augment graph with
objects of known types

cited in-reply-to

1: The constrained flow formulation

P . QIDVEE Z Puy log 7 Pov. 4 BZSUV
interpreted {%< s R

as a flow {q.} is @ parsimonious flow
along (u,v) (unweighted Pagerank}

=1 : ST
Z(u,v)eE' Puv s,, is the slack or violation on preference u < v

Balance Dummy node implements teleport
Yve V' Z(u,v)eE' Puv = Z(v,w)eE'p vw r, = Py,

Teleport
Vp V.- P _ Z(v,W)eE"D""" o X
ve v, . (1-) - a inflow

Preference

Yu<v: Z(W,U)GE"OWU <Ss,, +Z(W,V)€E.PWV (1-ar) X ianO\{v

The dual optimization

O(2| V|+|<|) dual variables
- Unconstrained B, for balance, t, for teleport
* 0 <=, < Bfor preference

= Primal flows in familiar log-linear form
vveV py = exp(+bias(v))

Ava €XP(Sy = B))
viuv)e E p,, exp(+ bias(v))

= Where bias, (v) = ZHV”N - Zwsﬁvs A

= Dual objective: minimize log Z Large bias =

= Can include dual vars gradually | large flow into
v = high rank

Competition: Teleport learning via QP

= Let A be node adjacency matrix with no dead
ends and rows scaled to sum to 1 £

Fit
p=aA'p+(1-a)r, ~.p=(1-a)l—aA) 'r2 M r—this
= Preference < expressed as Hp—Hl\/Ir >O d
I(O,...,—1,...,1, O).(O e Pisees P i
Row of I1 | Column vector p
= Let rVY be the parsimonious uniform teleport
Deviate from unweighted Pagerank as little as possible...

min (Mr—=MrY)'(Mr-MrY)+B1's

reRY! s>0
st. r=20, 1'r=1, IIMr+s=>0
Makes QP very ...while
expensive satisfying <

Data set preparation

= No open benchmark for this task
©@No standardized comparison yet
©We will make code and some data available
©8ynthetic G and < can explore space thoroughly
= Generating graph G
- RMAT (power-law degree, small dia, clustering)
- Real DBLP+CiteSeer graph :
= Generating preference <
* Use hjggen 10 COMPUtE Phiggen 2
‘ Sample <train' ~test from phidden
» Measure flips on <. | g

Optimization dynamics and performance

Gradual jittery decrease
in primal violations

traints
o
o)

o
o

i

[

Time scales $ o4
linearly with |<,;,,| Gradual = 5, "~ fracBalanceOK |
dual var —— fracRatioOK
Time Scales inCIUSion 50 iterations 100 150
linearly with speedup
|V] and |E] ;
& inclTime
:gg . B oneShotTime
700 . . u
ggg 300 - » g [
o £ ,
—?gg:‘ézoo ? “ -
- © 150 o 2 z
i L 1s 2 2550 £ . ; | | | 0! : : :
/é 0.5 \E\% 0 SOOOHUFF:T‘:‘;?HOP{efﬁOOO 20000 1000 2000 sca:ISeOFOa%tor 4000 5000
11

Learning rate and effect of margin

Without HrH1 =1
constraint QP fails to
learn from <
Enforcing ||r|, =1
improves learning
MxM inversion
impractical, QP slow
« Days vs. minutes

Flow formulation with
margin is much better

Margin needs tuning,
not scale-insensitive

0.6
x>
0.5 4
4 —e— maxEntTrainError
0.4 1 —=— maxEntTestError
203 —x— gpTestError
(0]
0.2
0.1
0

>

300 600 900

1200 1500 1800

numTrainPref

\mode\testgﬂceehog

Average of numViolations

290 - margin
270 - \\N -1
250 + = 1.01
230 1.1
g :
170 - B
150 ~8

o o o o o o

o o o o o o

[ep] O [e2] [aV] Te] 0

trainPrefSize

12

Effect of node overlap

Nodes involved in <
V(<)={w:w=<voru=<wj}
What if V(<) and

U <st) OVerlap?

Note, <, and < dO
not overlap!
Well-motivated in
relevance feedback
settings

» Train and test
communities overlap

Test error drops fast

—e—trainErrorl —m— testError
trainError2 testError2

0.35 Y\train&rors —e— testError3
[
Yc\.

g

0.05

300 600 900 1200 1500 1800
numTrainPrefs

o
-
[&)]

trainAndTestError

&

1

0.35 —e

0.3

testError
o
N
[6)]

o
o
\

0.15

0.1

0.6 0.8 1
fracTestNodelnTrain

0.4

13

2: The typed conductance formulation

Edge e has type f(e)e{1,... T}
Weight w(i,j) = B(t(i,j)), params B(1),..., B(T)
Matrix C is now a function of 3, denoted C(B)

Find 3 so that the p satisfying p=C()p also
satisfies <

f}‘l? p'p SL& Both B and p
- are variables,
Scaling all B p=C(p)p leading to
preserves p,so = P; < p; foralli<j nasty quadratic
we can demand equality
all B(t)>1 constraints

14

Two approximations

= Breaking the quadratic constraints

* Approximate p = C(B)"p°® where
« PO is the initial Pagerank vector in power iteration
» His a finite horizon (or, stop at convergence)

= Design of a loss function

» Training loss (not convex or differentiable)
> step(p,—p,) =), step((C"p°),-(C"p°),)

- Approximate using 0, y=0
a smooth Huber loss ~ huber(y)=1y*/W, ye (O,W]
- Gradient descent search for y-Wia W<y
£1
H .0\ _(~HA0
min§'f+BY , huber((C"p%), -(C"p°),) L

15

Assign hidden edge
weights to edge types

Compute weighted
Pagerank and sample < ’

Can recover hidden N
WelghtS falrly well / 10 hiddenbeta 100
 Penalty on B’ shrinks

+ Does not hurt prediction

Can also find hidden o
Time scales as (|V|+|E|

Discovering hidden edge weights

o
o

estimated beta

—_
o

—_

elements toward 0] L
[] ’:

o o
(o] (0]
|

Of <jest

©
~
|

+ B=1e10
= B=1e16

estimated alpha

o
o i
|

1.34 ‘ ‘ ‘ ‘
) 02 04 06 038 1
hidden alpha

o

16

Learning rate and robustness

= 20000-node, 120000- 00T

edge graph]
100 pairwise training

preferences enough to

cut down test error to 11
out of 2000 ‘ ‘
0 50 100 150 200

Training and test numTrainPref

preferences node- 0-05 1.6-08

disjoint 0.04

= 20% random reversal %%
of train pairs = 5%

increase in test error e

(O 1 1 1 1
Model cost 3’ reduces 0 004 008 0.12

fraction noise

S
o
o

w
o
o

N
o
o

testError of 2000

—h
o
o

o

| 8.E-09
7
+ 6.E-093

[}
+ 4.E-09
£

0.02 +

test error

0.01 + + 2.E-09

0.E+00

17

Summary and ongoing work

= Learning to rank nodes in graph from
pairwise preferences: surprisingly unexplored

= |.e., design edge conductance so that
dominant eigenvector satisfies preferences

= Two design paradigms: constrained flows
and typed edge conductance

= New algorithms to learn design parameters

Integrating queries and node features into
models and algorithms (in PKDD 2006)

Rank-sensitive score learning

18

