
Accelerating Newton Optimization for
Log-Linear Models through Feature Redundancy

Arpit Mathur
IIT Bombay

arpit@cse.iitb.ac.in

Soumen Chakrabarti
IIT Bombay

soumen@cse.iitb.ac.in

Abstract— Log-linear models are widely used for labeling
feature vectors and graphical models, typically to estimate robust
conditional distributions in presence of a large number of
potentially redundant features. Limited-memory quasi-Newton
methods like LBFGS or BLMVM are optimization workhorses
for such applications, and most of the training time is spent
computing the objective and gradient for the optimizer. We
propose a simple technique to speed up the training optimization
by clustering features dynamically, and interleaving the standard
optimizer with another, coarse-grained, faster optimizer that uses
far fewer variables. Experiments with logistic regression training
for text classification and conditional random field (CRF) training
for information extraction show promising speed-ups between 2×
and 9× without any systematic or significant degradation in the
quality of the estimated models.

I. INTRODUCTION

Log-linear models are in widespread use for feature vector
classification [1], [2] and in graphical models [3], [4]. Given
training observations x and labels y, the goal is to learn a
weight vector β ∈ d to fit a conditional distribution

Pr(Y = y|x) =
exp (β′f(x, y))

Zβ(x)
=

exp
(∑

j βjfj(x, y)
)

Zβ(x)
,

(1)

where f(x, y) ∈ d is a feature vector and Z(x) is a normaliz-
ing constant. Throughout we will assume fj(x, y) > 0. Given
instances {(xi, yi)} we seek β to maximize

∑
i log Pr(Y =

yi|xi), i.e., to minimize

�0(β) = −
∑

i

(β′f(xi, yi)− log Zβ(xi)) . (2)

In practice, one often asserts a Gaussian prior on each βj with
zero mean and variance σ2 (i.e., Pr(β) ∝ exp(β′β/(2σ2)),
and minimizes wrt β the objective

�(β) =
β′β
2σ2
−

∑
i

(β′f(xi, yi)− log Zβ(xi))

=
1

2σ2

∑
j

β2
j −

∑
i

(β′f(xi, yi)− log Zβ(xi)) . (3)

The term β′β/(2σ2) is also called the ridge penalty.
Part of the popularity of conditional log-linear models arises

from the flexibility of adding enormous numbers of diverse,
noisy, possibly correlated and redundant features without the
fear of corrupting a naively-estimated joint density between x

and y, as in naive Bayesian classifiers. Logistic regression (LR,
an instance of log-linear models) gives much more accurate
text classifiers than naive Bayes models, and conditional
random fields (CRFs, another instance) gives more accurate
information extractors than hidden Markov models (HMMs).

In traditional machine learning, training is considered a
one-time computational effort, after which the trained model
β is applied to test cases x to compute arg maxy β′f(x, y),
which is computationally much cheaper. However, in deployed
classification or extraction systems, training is a continual
or “life-long” activity, with class labels changing, instances
being added or removed, labeling actively modified, and error
cases interactively analyzed [5]. Consequently, fast training is
important, and much effort has been invested on accelerating
the estimation of β [6], [1], [7], [2].

Leading the field, and used in the vast majority of applica-
tions, is the limited-memory quasi-Newton method called “L-
BFGS” [6], [7]. To use a Newton method, one must implement
routines to calculate, given a specific vector β∗, the objective
�(β∗) and the gradient ∇β�(β) of � wrt β evaluated at β∗.
The optimizer starts with an initial guess β(0) and iteratively
updates it to β(1), β(2), etc., until convergence, calling the
user’s objective and gradient method in each iteration. If the
best-of-breed optimizers are used, most of the training time is
spent in these user-defined methods and relatively little time
is spent inside the optimizer itself.

Our contribution: We start with the most competitive
optimizer L-BFGS, widely used in log-linear models, and
propose a simple and practical approach to further speed it up
substantially without any deep understanding of or modifica-
tion to the optimizer. Our approach achieves convergence 2–9
times faster than the baseline. In fact, we achieve saturation
of test-set accuracy (F1 scores typically within 2–5% of best
possible, and sometimes better than the baseline) even faster
than that. While other approaches are generic to the log-
linear family [2], [8], the crux of our approach is to expose
explicitly to the optimizer the redundancy and correlations
among the βs evolving in time. We achieve this by periodically
clustering and projecting β down to an optimization over a
lower dimensional parameter vector γ, optimize γ for a while,
then “lift” γ back to β and “patch up” the estimates, repeating
this process if necessary. We have applied this idea to text
classification using logistic regression (LR) and to named-
entity tagging using CRFs, demonstrating substantial speedups

beyond state of the art.
Thus, our idea helps retain a key advantage of conditional

models—the ability to exploit large numbers of potentially
useful features—while substantially reducing the computa-
tional burden of doing so. Our proposal may also be regarded
as a means to model parsimony that is quite distinct from
feature selection: even as application writers introduce millions
of features fj , there may be no evidence that millions of
difference weights βj are justified by the data.

The reduction in training time is almost entirely due to sim-
plifying the original high-dimensional optimization problem
into a lower dimensional one. By removing redundancies in
the optimization surface, we make it easier for the Newton
optimizer to find the best hill-climbing directions. In log-
linear models, we can take advantage of feature clustering
in another way: by pre-aggregating high-dimensional feature
vectors into lower dimensional ones, thus saving repeated
access to the feature generators in the original space (which
can be quite expensive in text-processing applications). We
believe we can improve training performance even further by
clever engineering of feature aggregation.

Paper outline: We review background material on opti-
mization for log-linear models in Section II, together with their
adaptation to LR and CRFs. We present the feature-clustering
approach for LR in Section III, and its performance on text
classification tasks. In Section IV we extend the approach
to CRFs and present experimental results on information
extraction or named-entity tagging tasks. We conclude in
Section V.

II. RELATED WORK

A. Optimization review

1) Iterative scaling variants: Suppose weight vector β is
to be updated to β + δ. We would like to maximize the
reduction in the objective (2). The trick is to lower-bound the
reduction with a “nice” function Q(δ|β) ≤ �(β) − �(β + δ),
maximize Q wrt δ, then apply an additive update β(t) ←
β(t−1) + δ. The tighter the bound Q(δ|β) the better, pro-
vided finding arg maxδ Q(δ|β) does not become too difficult.
Several bounding functions and δ optimization strategies have
been devised, leading to Improved Iterative Scaling (IIS) [9]
and Faster Iterative Scaling (FIS) [2]. We will not discuss these
methods in detail because, in text-processing and graphical
model applications, they have been supplanted by direct New-
ton optimization, discussed next. In experiments we describe
shortly, FIS (which was already shown to be faster than IIS)
was decisively beaten by a direct Newton method.

2) Direct Newton optimization: Let �(β) be the (scalar)
objective at β and g(β) = ∇β� ∈ d be the gradient vector.
A Newton method seeks to minimize � by walking against the
gradient, i.e., by setting

β(t+1) ← β(t) − ηtH
−1
t g(t), (4)

where ηt ∈ is a step size, g(t) = g(β(t)) is the gradient
evaluated at β(t), and Ht is the Hessian matrix [10]. (In one
dimension, H is the familiar second derivative �′′(β) and H−1

is just 1/�′′(β), and g(β) = �′(β), leading to the usual update
β(t+1) ← β(t) − η�′(β(t))/�′′(β(t)).)

For large d, maintaining the Hessian matrix from iteration
to iteration is a computational challenge, and that is where the
BFGS family of update methods [11], [6] comes into play.

3) Limited Memory BFGS (L-BFGS): L-BFGS is a limited
memory version of BFGS which saves the time and space
required to compute the Hessian matrix. It maintains the last
m (typically 3–7 in applications) corrections s(t) = β(t) −
β(t−1) and y(t) = g(t) − g(k−1), to the solution vector and
the gradient respectively, and stores an initial approximation
B0 of the inverse of Hessian (identity matrix by default). It
then calculates the product Btg(t) using efficient sparse matrix
multiplications during each iteration. For the first m iterations,
L-BFGS is exactly same as BFGS. The specifics of L-BFGS
are listed in Figure 1. A complete analysis of L-BFGS has
been given by Liu et al. [6].

1: Initialize β0, m, t = 0, and symmetric positive definite matrix
B0, the initial approximation to the inverse of Hessian.

2: Compute

dt = −Bt · g(t) and

β(t+1) = β(t) + αtdt

Step length αt is found by performing line search and choosing
the one which minimizes the function in the direction of
descent. That is,

αt = arg min
α>0

f(β(t) − αdk)

3: Let l = min{t, m−1}. Calculate Bt+1 by updating B0 (l+1)
times using the pairs {yt, st}t

{j=t−m} as follows:

Bt+1 = (V T
t . . . V T

t−l)B0(Vt−l . . . Vt)+

ρt−l(V
T

t . . . V T
t−l+1)st−ls

T
t−l(Vt−l+1 . . . Vt)+

ρt−l+1(V
T

t . . . V T
t−l+2)st−l+1s

T
t−l+1(Vt−l+2 . . . Vt)

+ · · · + ρtsts
T
t

4: If not converged, set t = t + 1 and goto step 2.

Fig. 1. The L-BFGS algorithm.

4) Memory Requirements of L-BFGS: L-BFGS methods are
particularly helpful because of their low memory requirements
as compared to actual BFGS. Since only m pairs of updates
{sk, yk} are stored, with each of size d, the memory required
to store the updates is 2md + O(m). Additional memory is
required to store the initial approximation H0. L-BFGS, by
default starts with H0 being the identity matrix (or some user-
defined matrix), which requires and additional d memory cells.
So the total memory requirement for L-BFGS is d(2m+1)+
O(m). Each update operation Hkgk, where Hk is obtained by
updating H0 m times, is done in 4md + O(m) floating point
operations.

5) FIS vs. BFGS experimental comparison: We are not
aware that FIS [2] has been compared directly with any BFGS
algorithm, so we coded up FIS and BFGS in Matlab and used
it to train on the Reuters [12] text classification task, which
has about 7000 training documents and over d = 26000 raw

2

word features. To keep memory requirements of H tractable,
we chose 500 word features that had the largest mutual
information wrt to the classes. (See Section II-B for details
of LR-based text classification.)

Class-Name Time Taken Time taken
by FIS (in secs.) by BFGS (in secs.)

grain 46.8 25.44
money-fx 46.06 29.32
interest 42.53 23.09

TABLE I

BFGS TRAINS SIGNIFICANTLY FASTER THAN FIS.

Not only does BFGS take significantly less time than FIS
for minimization, but it also attains better objective values (not
shown). There can be quite a few reasons for this. One, the
BFGS approximates the Hessian of the function, hence goes
up to second order of approximations whereas, FIS is just
a first order approximation. Moreover, in FIS, calculating the
difference vector δ at each iteration is not feasible since it takes
a lot of time. So, as proposed by Jin et al. [2], we calculate
this vector just once at the start and use it for all subsequent
iterations to update the weight vector. This approximation may
have caused the quality of FIS solution to suffer.

While BFGS is faster than iterative scaling, Liu et al. [6]
showed that L-BFGS is even faster, so we did not do an in-
house comparison between BFGS and L-BFGS. Text mining
tools overwhelmingly often use L-BFGS.

B. Logistic regression for text classification

LR is a canonical member of the log-linear family. In the
simplest case labels can take two values Y ∈ {−1,+1}. For
text classification, it is common to create a feature fj(x, y) for
each word j in the document x and each y. One common def-
inition is fj(x,−1) = 0 for all j and x, while fj(x,+1) = 1
if word j appears in document x and 0 otherwise. (Some form
of term weighting, like counting the number of occurrences of
j in x, can also be used.) This leads to

Pr(Y = +1|x) =
exp (β′f(x,+1))

1 + exp (β′f(x,+1))
, (5)

because exp (β′f(x,−1)) = exp(0) = 1. The two class LR
is commonly used for “one-vs-rest” text classification, e.g.,
to determine if x is or is not about cricket. Each model
parameter βj corresponds to a word. If βj is strongly positive
(respectively, negative), the existence of word j in x hints that
Y is likely to be +1 (respectively, −1). E.g., for the cricket vs.
not-cricket document classifier, we would expect βwicket to be
positive, and βparachute to be negative. β for function words like
the, an will tend to have much smaller magnitude, because they
appear at similar rates in positive documents (with Y = +1)
and negative documents (with Y = −1). LR does implicit
feature selection by driving these βjs toward zero.

Suppose we take a word j and, in every document where j
occurs, add a new unique word j′. Features fj and fj′ will be
perfectly correlated, and j′ would add absolutely no predictive

power to any classifier. Clearly, the LR optimization would be
at liberty to keep βj unchanged and set βj′ = 0, and achieve
the same accuracy as before on any test data.

However, thanks to the ridge penalty, this will not happen,
because, upon including the ridge penalty into the objective,
a better strategy for the optimizer would be to “split the evi-
dence” and set βnew

j = βnew
j′ = βold

j /2, because 2 (βold
j /2)2 =

(βold
j)2/2 < (βold

j)2 + 02, and the data likelihood part (2)
remains unchanged whenever βnew

j + βnew
j′ = βold

j .
Summarizing, the ridge penalty shrinks weights correspond-

ing to redundant features toward similar values—a vital
property that we exploit. To be sure, this is not always a
desirable property, in particular, the ridge penalty destroys
sparseness of β even if training xs are sparse. Alternatives
like the Lasso assert an L1 penalty ‖β‖1 =

∑
j |βj |, which

is better at keeping β sparse [13, Figure 3.9]. However, the
Lasso penalty leads to a quadratic programming problem that
is computationally more complex, and therefore the L2 ridge
penalty is still overwhelmingly popular.

We conclude this section by noting that the feature set, with
one feature for each word, is very large and highly redundant
in this application. Reuters-21578 [12], a standard text classi-
fication benchmark, has about 10000 labeled documents and
more than this number of distinct words.

C. CRFs for information extraction

Conditional Random Fields (CRFs) are a graphical repre-
sentation of a conditional distribution Pr(Y |x) where both
x and Y can have non-trivial structure (e.g., Y may be a
random sequence of labels), x is observed, and properties of
the distribution over Y are sought. In a linear-chain CRF com-
monly used for sequential tagging, training instances (xi, yi)
are provided. Each instance i is a sequence xi of W tokens
and a sequence yi of W labels. Positions in the sequence are
indexed by p ∈ {1, . . . , W}, thus we will write yi

p as the pth
state of instance i. A label could be, e.g., a part of speech,
or one of person name, place name, time or date, or “none of
the above”. Let there be S possible labels, also called states.
The feature vector corresponding to an instance (x, y) will
be written as F (x, y) ∈ d, and is the result of computing a
vector sum over feature vectors defined at each position p:

F (x, y) =
∑

1≤p≤W

f(yp−1, yp, x, p) (6)

The full set of d scalar features in f is a concatenation of S2

scalar state transition features f(yp−1, yp, x, p) = t(yp−1, yp)
that only depend on and expose dependencies between yp−1

and yp, and something like V S scalar so-called symbol emis-
sion features f(yp−1, yp, x, p) = s(yp, xp) that depend only on
xp and yp and expose dependencies between them. Here V is
the number of predicates defined on each token xp, e.g., does
the word have digits, does it start with an uppercase letter,
etc. (We are simplifying a bit for exposition; in applications,
V may include features defined over multiple positions of x.)

For many NLP tasks, there are also lexicalized predicates,
one for each word in a large vocabulary. Lexicalization assists

3

rote learning, i.e., recognizing in test documents tokens that
appeared in training documents and labeling them accordingly,
and more important, in conjunction with other features, induct
to the immediate neighborhood, e.g. from York and New York
labeled as places, induct that New Hampshire is a place. To
further assist this, lexicalization is sometimes extended to
neighboring tokens at p−1 and p+1, leading to a threefold (or
worse, if features combine xp−1 and xp in any way) increase
in the number of features from a set that already ranges into
tens of thousands. A million features is not uncommon in NLP
tasks.

Given a trained weight vector β ∈ d and an instance (x, y),
we can write Pr(y|x) = Pr(y1, . . . , yW |x) =

exp(β′F (x, y))
Z(x)

=
exp

(
β′ ∑

p f(yp−1, yp, x, p)
)

Z(x)
(7)

Finding the most likely label sequence means finding
arg maxy β′F (x, y). We do not wish to enumerate all SW

possible label sequences, so dynamic programming is used
instead. Let A(y, p) be the unnormalized probability of a
labeling of positions 1 through p ending in state y. A(y, p)
can be defined inductively as

A(y, 0) = y = beginState , and (8)

A(y, p) =
∑
y′

A(y′, p− 1) exp(β′f(y′, y, x, p)) (9)

Similarly we can define the unnormalized probability of a
labeling of positions p through W , starting with state y:

B(y,W + 1) = y = endState , and (10)

B(y, p) =
∑
y′

exp(β′f(y, y′, x, p))B(y′, p + 1). (11)

Note that
∑

y A(y,W) = Z(x) =
∑

y B(y, 1).
For training the CRF using L-BFGS, as in LR, we must

estimate the gradient wrt each βj , corresponding to the jth el-
ement fj(y, y′, x, p) of feature vector f(y, y′, x, p). To within
a constant, the gradient of �0 in (2) is

∂�(β)
∂βj

=
∑

i

(
Fj(xi, yi)− EY |xiFj(xi, Y)

)
, (12)

and we generally add on −βj/σ2 corresponding to the ridge
penalty β2

j /(2σ2). The crux is to compute EY |xiFj(xi, Y),
which, by linearity of expectation, can be written as∑

p

EY |xifj(Yp−1, Yp, x
i, p). (13)

Note that Y , not yi is involved in the above expression. I.e.,
we must sum over all possible Yp−1 and Yp. Again, through
dynamic programming this can be computed via A and B:∑

p

EY |xifj(Yp−1, Yp, x
i, p)

=
∑

p

∑
y,y′

A(y, p− 1)fj(y, y′, xi, p)eβ′f(y,y′,xi,p)B(y′, p)

III. SPEEDING UP FEATURE-VECTOR CLASSIFICATION

In the previous Section we saw the usefulness of BFGS
update and its limited memory version L-BFGS in solving
large-scale optimization problems. When L-BFGS is applied
to text classification and information extraction, it is used
as a black-box, and no specific advantage is taken of the
peculiarities of those problem domains. In this Section we
seek to remedy this limitation.

As mentioned in Section II-B, log-linear text classification
models treat each word of the document as a potential attribute,
leading easily to instances with d in the tens of thousands. In
multi-label (as against one-vs-rest) classification, this would
generally be multiplied by the number of class labels, poten-
tially leading to millions of features of the form fj(x, y) where
j ranges over words and y over class labels. If the labels are
arranged in a hierarchy, the feature space may be even larger.

An important property of text classification problems is
that, although there are potentially many features that can
determine the label of a document, very few features actually
end up getting significant weights βj that decide the score of
the document. The remaining words are regarded as noise.
It is also common to find two informative words strongly
correlated with each other, e.g. Opteron and HyperTransport.
As explained in Section II-B, their corresponding weights may
end up being very similar in value.

A. Motivating examples

To see if this is indeed the case, we trace the evolution
of the β vector, iteration by iteration, in a text classification
application. For these preliminary experiments, we run BFGS
provided by MATLAB on the Reuters data. To keep memory
requirements of H tractable, we chose 500 word features
that had the largest mutual information wrt to the nine most
frequent classes. Figure 2 shows how the weights of these 500
“important” terms evolve.

0 10 20 30 40 50 60 70 80 90
−600

−400

−200

0

200

400

600

800

weight value

w
ei

gh
t

Fig. 2. Evolution of β in BFGS.

A close-up is shown in Figure 3. We point out two important
features. First, many weights co-evolve in largely parallel

4

trajectories, and, after the “big bang” moment has passed, βjs
clustered close together usually tend to remain clustered close
together. Tracing back from the features to class labels and
words gives some interesting insight. E.g., one tight cluster of
contiguous βjs corresponded to class grain in the Reuters data,
and these words: marketing, price, imports, annual, average,
traders, credit, exporters. Meanwhile, another tight cluster of
βjs corresponded to class grain and these words: was, these,
been, among, like, can, what, say, given, and the meta-word
“digits”—for topic grain, these were all low-signal words.

However, it is important to recognize that there are excep-
tions to the “persistent cluster” hypothesis, and crossovers do
happen, and therefore, any algorithm that seeks to exploit re-
dundancy between clusters must occasionally regroup features.

25 30 35 40 45 50 55 60 65

−100

−50

0

50

100

Fig. 3. β evolution, close-up. Note the occasional crossover βjs slashing
vertically across.

B. The feature clustering technique

From the above discussion, we come up with the pseu-
docode shown in Figure 4. The basic idea is to run fineBFGS
for a while, cluster the d features into d′ < d groups, project
down the weight vector β ∈ d to a coarse approximation
γ ∈ d′

, run a faster coarseBFGS procedure over γ, project
back up from γ to β, and run a “patch-up” optimization over
β. If needed we can repeat several alternating rounds between
fineBFGS and coarseBFGS before the final patch-up.

cmap is an index map from feature IDs in [1, d] to cluster
IDs in [1, d′]. Given cmap, β can be reduced to γ by averaging
values in each cluster. Conversely, we can copy back βj =
γcmap(j). The only change required for specific applications is
to generalize the code for calculating �(β) and ∇β� to also
calculate �(γ) and ∇γ� (see this and the next Section).

The intuition is that d′ being much smaller than d,
coarseBFGS will run much faster than fineBFGS, but will
have the benefit of reducing the objective and providing the
next copy of fineBFGS with a better starting point, which
will also ease convergence.

The important policy choices are embedded in these vari-
ables:
Clustering: How we represent features and how we cluster

them are important considerations.

1: Let initial approximation to the solution be β
2: for numRounds do
3: for fineIters iterations do
4: [f, g]← computeFunctionGradient(β)
5: β ← fineBFGS(β, f, g)
6: end for
7: Set numClusters = d/clusterFactor
8: Prepare the feature cluster map

cmap← CLUSTER(β, numClusters)
9: γ ← projectDown(β, cmap)

10: for coarseIters iterations do
11: [φ, δ]← computeFunctionGradient(γ)
12: γ ← coarseBFGS(γ, φ, δ)
13: end for
14: β ← projectUp(γ, cmap)
15: end for
16: while not converged do
17: [f, g]← computeFunctionGradient(β)
18: β ← fineBFGS(β, f, g)
19: end while

Fig. 4. Pseudocode of the proposed feature clustering approach.

numRounds: The number of fine-coarse alternations. 1–2
always suffice.

fineIters: The number of iterations allowed to a fineBFGS
invocation.

coarseIters: Likewise for coarseBFGS. In fact, we may
need a device other than number of iterations to terminate
coarseBFGS, and not run to convergence.

clusterFactor: A target for the reduction factor d/d′. A crite-
ria different from reduction factor (e.g. square error) may
also be used.

The above policies should try to ensure that very little time is
spent in fineBFGS, and that when coarseBFGS terminates,
its output can be used to land fineBFGS close to the
optimum.

We do not have perfect recommendations for all these
policies for all learning problems. However, for a specific
domain and application, only a few trial runs suffice to tune
the above policies quite effectively. Unlike in a one-shot
learning exercise, this small effort will be paid back in a
continual or lifelong learning scenario, e.g. in operational text
classification.

Clustering algorithm: We experimented with two clus-
tering approaches. L-BFGS is very fast and we need a very
lightweight clustering algorithm that consumes negligible CPU
compared to the optimization itself. For L-BFGS, we simply
sorted the current β values and performed a one-dimensional
clustering with a fixed cap of clusterFactor on the cluster
size. This contiguous chunking approach already performed
reasonably well.

BFGS, being somewhat slower than L-BFGS, gives us a
little more time for clustering. Here we tried to bring in a
second attribute of each feature: the temporal behavior of its
weight in recent iterations. Each feature fj is characterized

5

by two numbers: its weight β
(t)
j in the current iteration, and

the latest change β
(t)
j − β

(t−1)
j . The intention was to prevent

clustering together feature pairs where one is momentarily
crossing over the other, e.g. the sample in Figure 3. However,
this did not make a significant difference, probably because
crossovers are rare overall.

In our experiments so far, we have found that clusterFactor
matters more than the clustering algorithm itself.

Final patch-up: Note that we always finish by running a
fine L-BFGS over β. This ensures that we end up as close
to the original optimum as possible. This process actually
brings our algorithm back near the actual optimum, correcting
if coarseBFGS has taken our solution far from it. In our
experiments, we sometimes found that coarseBFGS actually
helped the patch-up stage to find a β better than the baseline.

A bad clustering can take our solution far from original
optimum, implying that we would have to spend more time in
the final patch-up to get back near the original optimum. This
implies that we need a good clustering algorithm to ensure
that we spend as little time in patching up as possible.

We will discuss the remaining issues while narrating our
experiments in Section III-D.

C. Computing �(γ) and ∇γ�

Our recipe requires that, starting with code to compute �(β)
and ∇β�, we write code to compute �(γ) and ∇γ�, for a given
clustering expressed through cmap. Computing �(γ) is trivial,
and so is ∇γ�:

∂�

∂γk
=

∑
j

∂�

∂βj

∂βj

∂γk
=

∑
j

∂�

∂βj

{
1 cmap(j) = k

0 otherwise

=
∑

j:cmap(j)=k

∂�

∂βj
(14)

Most log-linear training routines initialize an array of gradients
wrt β, of size d, and update it additively:

1: gradWrtBeta[1 . . . d]← 0
2: for each instance i do
3: for each feature index j do
4: gradWrtBeta[j] += . . .
5: end for
6: end for

The above code is simply replaced with the many-to-one
accumulation:

1: gradWrtGamma[1 . . . d′]← 0
2: for each instance i do
3: for each feature index j do
4: gradWrtGamma[cmap(j)] += . . .
5: end for
6: end for

It is thus trivial to transform fineBFGS into coarseBFGS
completely mechanically.

D. Experiments with BFGS

To further motivate the point, we show the results of the
experiments done in MATLAB using its in-built minimization

subroutine which uses BFGS updates. We use the same
500-attribute version of the Reuters Corpus. We have each
document represented in a 500 dimensional feature space
and we choose just one of the 9 classes for the one-vs-rest
problem. We call the basic optimization process as “basic
optimizer” and our algorithm as the “cluster optimizer.” The
policy decisions were:

• Fix the value of numRounds to one
• Run coarseBFGS to convergence
• Fix the initial fineIters to 5
• Fix dimensionality reduction factor clusterFactor = 15
• Use the KMEANS subroutine in MATLAB for clustering.

Represent each feature fj as a point in two dimensional
feature space as explained before.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

cputime (sec)

Objective

Fig. 5. Objective �0(β) vs. CPU time of basic and cluster optimizer.

Figure 5 compares the value of �0(β) vs. CPU time in
seconds (no ridge penalty was used here, but it will be in
later experiments). The bold line denotes standard BFGS in
original feature space. The dotted line denotes our algorithm
working (part of the time) in the projected feature space with
parameters γ. When coarseBFGS completes, final patch-
up iterations are never more than one or two. We see that
our clustering collapses the feature space nicely, and the new
features have captured all the key variations of the original
feature space to drive the function faster toward the optimum.

E. Experiments with L-BFGS

Encouraged with our MATLAB experiments, we imple-
mented the scheme in Java on top of the publicly-available
and widely-used L-BFGS package from http://riso.
sourceforge.net/LBFGS-20020202.java.jar.

1) Setting the ridge parameter: The “regularizer” or the
ridge penalty 1/σ2 in (3) is an important parameter, not only to
the accuracy of the learnt model, but also to the training time.
Since this parameter provides a check on ‖β‖2, it determines
the number of cross-overs in the β vector evolution. There is
no algorithmic solution known to find a good ridge penalty
for a given problem and a given dataset, so we find the best
ridge parameter using cross validation. For the Reuters data, a
plot of F1-score vs. ridge parameter (by which we generally
mean 1/σ2) is shown in Figure 6.

6

F1 score is a standard accuracy measure defined in terms of
recall and precision. Let TP be the number of true positives,
that is, the number of documents on which were marked and
predicted to be positives. FN be the false negatives, that is, the
number of documents that were marked positive but predicted
negative; FP be the false positives marked negative but pre-
dicted positives. Then recall is defined as R = TP/(TP + FN)
and precision is defined as P = TP/(TP + FP). F1 is the
harmonic mean of recall and precision: F1 = 2RP/(R + P).

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 1e-04 0.001 0.01 0.1

F
1

sc
or

e

ridge

ship
gas

crude
interest

money-fx
wheat

corn
grain

Fig. 6. Test F1 score vs. ridge parameter for some topics in Reuters.

From Figure 6, it is evident that lower values of ridge
penalty are preferable for Reuters dataset. 10−7 and 10−10

win on test F1-score for most of the topics. We choose both
these values for comparisons in the sections that follow.

Figure 7 shows the performance implications of the ridge
parameter on the training time of the basic LR algorithm. It is
curious to note that training becomes most time-consuming for
a middle range of ridge parameters, where the test accuracy
is not the best possible! Although LR is so widely used, we
have seen no detailed report of the accuracy and performance
implications of the ridge parameter. It turns out that our idea
accelerates L-BFGS at the best ridge value, and is therefore
even faster compared to the worst-case training time.

2) coarseBFGS termination policy: For every call to
coarseBFGS, since it is faster than fineBFGS, our goal
is to let it reach as close to its optimum as possible. Hence,
we do not put any upper bound on the number of coarse
iterations for any call to coarseBFGS. However, the last
few coarse iterations, without any significant change in the
objective, are of little use to us. We do not want coarseBFGS
to drag slowly towards it optimum in the end. We leave
full termination for fine patch-up and decide to terminate
coarseBFGS when the relative change it brings in the
objective in last w iterations, is less than some δ. That is,
when (max �(γ) − min �(γ)) < δ min �(γ), where max �(γ)
and min �(γ) are the maximum and minimum objective values
in the last w iterations.

Through trial-and-error we arrived at choices of history
size w = 5 and δ = 10−4, which worked well for all our
experiments. However these were not very sensitive values.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 1e-04 0.001 0.01 0.1

Ite
rs

tio
ns

ridge

ship
gas

crude
interest

money-fx
wheat

corn
grain

Fig. 7. Training time (seconds) against the ridge parameter for the basic
optimizer.

3) projectUp and projectDown: While going from
the original space to the reduced space (projectDown), we
use the cluster centroids (obtained by averaging of weights of
features mapped to same cluster) as the γ vector in the reduce
feature space.

We compute the function value and gradient by aggre-
gating the features using cmap. Note that there is a call to
computeFunctionGradient before each iteration of L-
BFGS. We pass cmap to it, to calculate the function value and
gradient in reduced feature space on the fly.

While going back from the reduced space to the original
space via projectUp, we just replicate the values as βj =
γcmap(j). computeFunctionGradient then calculates the
objective value and gradient vector in the original space
because calls to coarseBFGS are implemented using the
identity map from [1, d] to [1, d] passed as cmap.

4) numRounds, the number of alternations: The parameter
numRounds determines how many calls to coarseBFGS we
would make. numRounds should not be too small, or the final
fineBFGS patch-up will take a lot of time. It should not
be too large, or we would be doing unnecessary work in
coarseBFGS, while fineBFGS was already getting close
to the optimum in original space.

Luckily, the choice of numRounds is easy. In practice, we
have seen that a value between 1 and 3 suffice for all class
labels and both our application domains. In Table II, we
compare the optimization time for three classes and ridge
parameter 10−7 with several values of numRounds.

As is clear from the table, there is no clear winner among
numRounds = 1 or 2. In practice, we choose the numRounds
= 2, to ensure that we are not over doing any work and at the
same time we have less fine patch-up iterations as well.

5) Comparing basic and cluster optimizers: Fixing the
policies as above, we run our first comparison of basic
optimizer and cluster optimizer. Figure 8 shows the time trace
of objective �(β) in the basic and cluster optimizers for two
classes and ridge parameter 10−7.

It is immediately visible that, as in BFGS, here, too, the

7

Class-Name Policy Training Time
for ridge = 10−7

(in sec)

Grain

basic 33.7
numRounds = 3 13.9
numRounds = 2 9.7
numRounds = 1 10.3

Money-fx

basic 338.5
numRounds = 3 82.9
numRounds = 2 52.3
numRounds = 1 36.9

Gas

basic 22.0
numRounds = 3 11.7
numRounds = 2 10.3
numRounds = 1 8.3

TABLE II

TRAINING TIME OF CLUSTER OPTIMIZER VS. numRounds.

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50

ob
je

ct
iv

e

time(sec)

interest : Cluster Optimizer
interest : Basic OPtimizer

money-fx : Cluster Optimizer
money-fx : Basic Optimizer

Fig. 8. Time trace of objective in basic vs. cluster optimizer for ridge =
10−7. We show time only up to 50 seconds and the basic optimizer has not
converged yet. For full time comparison view Table III.

clustered approach drives down the objective much quicker
than the basic L-BFGS optimizer. What is not visible in
Figure 8 is that the clustered approach also terminates faster,
which is shown in Table III.

Class-Name ridge = 10−7 ridge = 10−10

F1 time(sec) F1 time(sec)

money-fx
basic 73.9 338.5 78.0 293.5
cluster 76.1 46.8 77.1 32.0

wheat
basic 82.6 31.8 84.3 29.8
cluster 82.0 11.7 82.4 11.8

interest
basic 76.0 162.7 75.6 48.7
cluster 68.3 24.5 74.9 27.1

TABLE III

COMPARISON OF TRAINING TIME, F1 AND FUNCTION VALUE OF BASIC

AND CLUSTER OPTIMIZER

For some of the major classes in the Reuters corpus,
clustered L-BFGS is almost 10 times faster than basic L-
BFGS; typically, it is a factor of 2–3 faster. We emphasize
that this gain is CPU-invariant, in the sense that it will persist
as CPUs become faster.

Table IV gives a break-up account of how the time is

spent in fineBFGS, coarseBFGS and clustering itself by
clustered L-BFGS. Clustering time itself is negligible, and
fineBFGS and coarseBFGS divide up the time into fair-
sized chunks, while their sum remains far below the time taken
by basic L-BFGS.

Class-Name ridge = 10−7 ridge = 10−10

money-fx

basic time 338.5 293.5
fineBFGS time 17.1 14.3
cluster time 0.115 0.11
coarseBFGS time 47.3 32.0

interest

basic time 162.7 48.7
fine time 7.4 7.6
cluster time 0.054 0.059
coarseBFGS time 24.5 27.1

TABLE IV

ACCOUNT OF TIME SPENT IN CLUSTER-BASED L-BFGS.

Another important measurement is the F1 score on a sep-
arate test set as the optimizer spends time on the training
data. Figure 9 shows that initial growth in test F1 using
clustered L-BFGS is indistinguishable from baseline L-BFGS,
but over-iterating can lead to some instability. Therefore test-
set validation is recommended.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100 120 140 160 180

F
1

sc
or

e

cputime (sec)

Cluster Optimizer
Basic Optimizer

Fig. 9. Test F1 vs. time spent by basic and clustered L-BFGS on fixed
training data

6) clusterFactor and feature pre-aggregation: While calcu-
lating �(γ) and ∇γ�, rather than first calculate ∇β� and then
transform them to ∇γ� as in (14), we can exploit the linear
interaction between β and γ with f by pre-aggregating feature
values down to the γ space. For k = 1, . . . , d′, we define new
“pseudofeatures”

f̂k(x, y) =
∑

j:cmap(j)=k

fj(x, y). (15)

and then compute �(γ) using f̂ alone.
Pre-aggregation is needed after every round of clustering,

but the results are exploited repeatedly inside coarseBFGS.
A large clusterFactor can save a large number of floating point
operations per iteration of coarseBFGS. But at the same
time, larger the clusterFactor, the worse is the approximation

8

involved in coarseBFGS and hence more work is required
during the final fine patch-up. There is a trade-off in the quality
of solution (and time required for training) and clusterFactor.
Therefore, we study their combined effect in Table V.

Class-Name clusterFactor Training Time
for ridge = 10−7

(in seconds)

Wheat
10 16.0
20 15.7
50 17.3

Money-fx
10 64.3
20 44.5
50 39.4

Interest
10 61.3
20 44.3
50 87.6

TABLE V

EFFECT OF FEATURE PRE-AGGREGATION AND clusterFactor ON TRAINING

TIME OF CLUSTER L-BFGS.

Increasing clusterFactor beyond 50 adversely affects our
solution. The higher training time at 50, as compared to other
factors, can be attributed to increased fine patch-up iterations,
due to poorer quality of approximation in the reduced space.
There are some other classes that are not so sensitive the
quality of approximation, and for those cases we do save
training time. Empirically, 50 is too large a value, and lower
values are preferred. At lower values, the benefits of pre-
aggregation are modest. Only some classes like money-fx with
ridge parameter 10−7 show significant reduction in time by
pre-aggregation. What this implies is that the reduction in
training time we observed is, to a large extent, because of
the simplification of feature space in coarseBFGS.

IV. SPEEDING UP CRF TRAINING

We chose Named Entity Recognition (NER) as our task of
sequential labeling. In NER, each word is labeled with an
entity tag indicating whether it is a mention of a person, an
organization, a place or none of those. We use the CoNLL
dataset, which provides the part-of-speech (POS) tags and
entity tags for Reuters-21578 data. We have used the current
word, the previous word and POS tag of the current word as
the attributes which form our symbol emission features.

A. β evolution in NER

To see that our approach is promising for NER as well,
we repeat the β evolution study from Section III-A. We ran a
CRF (http://crf.sf.net) trainer with standard L-BFGS
for NER on CoNLL data. Figure 10 shows the results of some
features evolving with time. A close-up is shown in Figure 11.

Crossovers appear more frequent than in LR-based text
classification, but Figure 11 shows that there are a lot of
similarly evolving features, too. These observations hint that
we need to keep clusterFactor small, and that we can expect
more iterations during the final patch-up.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−5

0

5

10

15

20

cputime (sec)

W
ei

gh
ts

Fig. 10. Evolution of β in NER.

2400 2500 2600 2700 2800 2900 3000 3100

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cputime (sec)

W
ei

gh
ts

Fig. 11. Evolution of β in NER, close up. Crossovers are more common
than in LR.

B. Computing �(γ) and ∇γ�

We limit feature clustering to the symbol emission features
s(yp, x) because for NER tasks too much of the model infor-
mation would get corrupted if we allowed transition features
to be clustered.

A brief inspection of the formulas in Section II-C leading
up to expressions for �(β) and ∇β� readily reveals that the
transformation (14) can still be computed using the same code
style outlined in Section III-C.

Pre-aggregation of features takes slightly more involved
software engineering and is deferred to future work.

C. Experiments and results

Gaining experience from the experiments in Section III-E,
we set the policies of our algorithm as follows.

• We chose the contiguous chunking approach to clustering
instead of KMEANS.

• numRounds was chosen to be one.

9

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 0.5 1 1.5 2

ob
je

ct
iv

e
x

1e
4

cpu time (sec) x 1e3

Cluster Optimizer
Basic Optimizer

Fig. 12. Objective vs. CPU time for CRF

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

F
1

cpu time (sec) X 100

1 : Basic
1 : Cluster

2 : Basic
2 : Cluster

3 : Basic
3 : Clsuter

Fig. 13. F1 vs. CPU time of basic and clustered optimizers for some entities
types. Type 1 is organization, 2 is location and 3 is person.

• clusterFactor is set to 10, a lower value than in Sec-
tion III-E, considering the increased rate of crossovers.

• fineIters was set to 100, as before.
• We did not do any pre-aggregation of features.
• The ridge parameter was set to 10−7.

Fixing the policies as above, we show the objective attained
by the basic and clustered optimizers against CPU time in
Figure 12.

As with LR, the clustered optimizer reduces the objective
much more quickly, and attains convergence in half the time
taken by the baseline NER implementation.

To ensure that this has not led to any significant damage
to the quality of the solution, we plot the F1 score of some
sample entity types for both the basic and clustered optimizers.
The result is shown in Figure Figure 13. The F1 score grows
more quickly in the clustered optimizer, and quickly becomes
essentially comparable to the baseline accuracy. In fact, about
half the time, the clustered tagger achieves test accuracy
slightly higher than the baseline tagger.

Summarizing, the clustered optimization approach speeds
up NER tasks substantially, achieving a 50% reduction in time
to convergence. It reaches baseline F1 scores even faster, and

there is no systematic loss of accuracy.

V. CONCLUSION

We have proposed a very simple and easy-to-implement
“wrapper” around state-of-the-art quasi-Newton optimizers
that can speed up training text learning applications by large
factors between 2 and 9. We have achieved this by exploiting
natural co-evolving clusters of model parameters in high-
dimensional text learning applications, as well as the specific
form of log-linear models for learning in vector spaces and
graphical models. No understanding of the math behind the
Newton optimizer is required to implement our proposal. A
mechanical and local rewriting of the routines that compute
the objective and gradient suffice. However, a slightly more
involved feature pre-aggregation step may buy even larger
performance benefits; this is ongoing work. We are also
interested in extending the approach to other general graphical
inference and training algorithms, and exploring more complex
β to γ transformations.

REFERENCES

[1] K. Nigam, J. Lafferty, and A. McCallum, “Using maximum en-
tropy for text classification,” in IJCAI-99 Workshop on Machine
Learning for Information Filtering, 1999, pp. 61–67, see http://www.
cs.cmu.edu/∼knigam/ and http://www.cs.cmu.edu/∼mccallum/papers/
maxent-ijcaiws99.ps.gz.

[2] R. Jin, R. Yan, J. Zhang, and A. G. Hauptmann, “A faster iterative
scaling algorithm for conditional exponential model,” in ICML, 2003,
pp. 282–289. [Online]. Available: http://www.hpl.hp.com/conferences/
icml2003/papers/79.pdf

[3] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in
ICML, 2001.

[4] F. Sha and F. Pereira, “Shallow parsing with conditional random
fields,” in HLT-NAACL, 2003, pp. 134–141. [Online]. Available:
http://acl.ldc.upenn.edu/N/N03/N03-1028.pdf

[5] S. Godbole, A. Harpale, S. Sarawagi, and S. Chakrabarti, “Document
classification through interactive supervision of document and term
labels,” in PKDD, 2004, pp. 185–196.

[6] D. C. Liu and J. Nocedal, “On the limited memory BFGS method
for large scale optimization,” Math. Programming, vol. 45, no. 3,
(Ser. B), pp. 503–528, 1989. [Online]. Available: citeseer.ist.psu.edu/
liu89limited.html

[7] S. J. Benson and J. J. Moré, “A limited memory variable metric method
for bound constraint minimization,” Argonne National Laboratory, Tech.
Rep. ANL/MCS-P909-0901, 2001.

[8] S. V. N. Vishwanathan, N. N. Schraudolph, M. Schmidt, and K. P.
Murphy, “Accelerated training of CRFs with stochastic gradient
methods,” in ICML, 2006. [Online]. Available: http://users.rsise.anu.
edu.au/∼vishy/papers/VisSchSchMur06.pdf

[9] A. L. Berger, S. A. D. Pietra, and V. J. D. Pietra, “A maximum entropy
approach to natural language processing,” Computational Linguistics,
vol. 22, no. 1, p. 3971, 1996.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004. [Online]. Available: http://www.stanford.edu/
∼boyd/cvxbook/

[11] C. G. Broyden, “A class of methods for solving nonlinear simultaneous
equations,” Mathematics of Computation, vol. 19, no. 92, pp. 577–593,
Oct. 1965.

[12] D. D. Lewis, “The reuters-21578 text categorization test collec-
tion,” 1997, available at http://kdd.ics.uci.edu/databases/reuters21578/
reuters21578.html.

[13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer, 2001.

10

