Accelerating Newton Optimization
for Log-Linear Models
through Feature Redundancy

Arpit Mathur
Soumen Chakrabarti
http://www.cse.iitb.ac.in/~soumen/

1T Bombay

/15

http://www.cse.iitb.ac.in/~soumen/

Log-linear models: Ubiquitous in machine learning

v

Given training observations x and labels y
Goal is to learn a weight vector 3 € R to fit a
conditional distribution

exp (ﬁTf(X,y)) B exp (ZJ @f}(X,y))

Zs(x) Z5(x) ’
f(x,y) € R? is a feature vector (often fi(x,y) > 0)
Zs(x) is a normalizing constant

» Given instances {(x;,y;)} find 3 to maximize
> i log Pr(Y = yi|x;), i.e., to minimize

(B ==Y (B"F (6, y:) — log Zs(x))

i

v

Pr(Y = y|x) =

vy

[

~
Negative log likelihood of training data

Log-linear models: Ubiquitous in machine learning

» Given training observations x and labels y
» Goal is to learn a weight vector 3 € R to fit a
conditional distribution

exp (ﬁTf(x,y)) e (ZJ 5]’5’()(7)’))
Zs(x) Zs(x) ’

» f(x,y) € R? is a feature vector (often f:(x,y) > 0)

» Z3(x) is a normalizing constant

» Given instances {(x;,y;)} find 3 to maximize
> i log Pr(Y = yi|x;), i.e., to minimize

1
T 2
UB) = =32 (87F %) —log Zu(x)) +5 5>
- J
g -~ h/_/
Negative log likelihood of training data Gaussian prior
“Ridge penalty”

Pr(Y = y|x) =

15

Training performance of optimizers

Difference from optimal log-likelihood

. .
107 10°

FLOPS

» |terative scaling no longer in the race

From

[Minka 2003]
x-axis: FLOPS
y-axis: difference
from optimal
objective

» Newton method costs too many FLOPS per iteration
» Sparse Newton methods (LBFGS) lead the pack

3/15

Redundancy in f and /3

>

Log-linear models allow us to use large number of
potentially redundant features f;
E.g., hasDigit, isFourDigits, hasCap, isAl1lCaps,
isAbbrev

» isFourDigits = hasDigit

» isAllCaps = hasCap

» Pr(isAllCaps|isAbbrev) > Pr(isAllCaps)
Combined with dictionaries, often leads to millions of
features in NLP tasks

Convenient, but training bottleneck

Optimizer has to deal with objective that is more
complicated than really necessary

15

Ridge penalty leads to redundant models

» For every occurrence of feature j, add new feature j’

» Features f; and f; are perfectly correlated

» ;' adds no predictive power to any classifier

» LR without Ridge penalty can keep (3; unchanged and set
By = 0 to get same training accuracy

UB) == (35, 06, v1) — log Za(x3))

i
- i

~
data log likelihood

5/15

Ridge penalty leads to redundant models

» For every occurrence of feature j, add new feature j’

» Features f; and f; are perfectly correlated

» ;' adds no predictive power to any classifier

» LR without Ridge penalty can keep (3; unchanged and set
By = 0 to get same training accuracy

(p) = - Z <ZJ Bifi(xi, yi) — log Zﬁ(xi)) +2(112 Zﬂf

1
~ '

Vv Vv
data log likelihood Ridge penalty

» With Ridge penalty, better to “split the evidence”

» Set ﬁjpew — ﬁ;’ew — 5J?Id/2

» Data log likelihood remains unchanged whenever
ﬁj[]ew + ngew — B})Id

> 2(54/2 = (422 < (597 + O

5/15

A new form of model parsimony?

» Ridge penalty encourages small |33

» Lasso penalty reduces ||3||1, makes solution sparse, i.e.,
encourages (3; = 0

» In view of (approximately) redundant but informative
features, a new form of model parsimony is that 3 € RY
has far fewer degrees of freedom than d

» Let v € R be the "hidden model” with d’ < d

» In general 5 and ~ can be related in very complex ways

» A very simple starting point is that elements of ~ are
copied into elements of (3

There is no assumption about clusters in the data

15

Behavior of 3 with iterations

800

W0 50
weight value

Topic classification (LR) Named entity tagging (CRF)

» “Big Bang” moment followed by gradual evolution
» Trajectory cross-overs become rare quite quickly

» Can approximate adjacent trajectories with a band for a
short time

» However, cannot ignore cross-overs all the time

|dea: Optimize in clustered subspace

Let initial approximation to the solution be 3 € R
for numRounds rounds do
for finelters iterations do
[f,g] < ObjAndGrad(f)
(B < f£ineBFGS(S,f, g)
d' « d/clusterFactor
Feature cluster map cmap « Cluster((3,d")
v < ProjectDown(3, cmap)
for coarselters iterations do
[¢,] < ObjAndGrad(y, cmap)
<« coarseBFGS(7, ¢, d)
B < ProjectUp(vy, cmap)

15

|dea: Optimize in clustered subspace

Let initial approximation to the solution be 3 € R
for numRounds rounds do
for finelters iterations do
[f,g] < ObjAndGrad(B) {wait until Big Bang over}
(3 < f£ineBFGS(S,f, g)
d' « d/clusterFactor
Feature cluster map cmap « Cluster((3,d")
v < ProjectDown(3, cmap)
for coarselters iterations do
[¢, 6] < ObjAndGrad(y, cmap)
<« coarseBFGS(7, ¢, d)
B < ProjectUp(vy, cmap)

15

|dea: Optimize in clustered subspace

Let initial approximation to the solution be 3 € R
for numRounds rounds do
for finelters iterations do
[f,g] < ObjAndGrad(B) {wait until Big Bang over}
(3 < f£ineBFGS(S,f, g)
d' « d/clusterFactor
Feature cluster map cmap « Cluster((3,d")
v < ProjectDown(3, cmap) {yeRY, d < d}
for coarselters iterations do
[¢, 6] < ObjAndGrad(y, cmap)
<« coarseBFGS(7, ¢, d)
B < ProjectUp(vy, cmap)

/15

|dea: Optimize in clustered subspace

Let initial approximation to the solution be 3 € R
for numRounds rounds do
for finelters iterations do
[f,g] < ObjAndGrad(B) {wait until Big Bang over}
(3 < f£ineBFGS(S,f, g)
d' « d/clusterFactor
Feature cluster map cmap « Cluster((3,d")
v < ProjectDown(3, cmap) {yeRY, d < d}
for coarselters iterations do
[¢, 6] < ObjAndGrad(y, cmap)
<« coarseBFGS(7, ¢, d) {faster than fineBFGS}
B < ProjectUp(vy, cmap)

/15

|dea: Optimize in clustered subspace

Let initial approximation to the solution be 3 € R
for numRounds rounds do
for finelters iterations do
[f,g] < ObjAndGrad(B) {wait until Big Bang over}
(3 < f£ineBFGS(S,f, g)
d' « d/clusterFactor
Feature cluster map cmap « Cluster((3,d")
v < ProjectDown(3, cmap) {yeRY, d < d}
for coarselters iterations do
[¢, 6] < ObjAndGrad(y, cmap)
<« coarseBFGS(7, ¢, d) {faster than fineBFGS}
B < ProjectUp(vy, cmap)
while not converged do
[, g] < ObjAndGrad((3)
(3 < £ineBFGS(/,f,g) {patch up remaining problems}

/15

Cluster

» Sort 3;, identify d’ contiguous blocks to minimize square
error within clusters

» For j=1,...,d, 1 < cmap(j) < d’ gives the cluster
index of j

ProjectDown

» (3 always appears in objective as 3" f

» Naturally suggests that initial v, be the average of 3;s
where cmap(j) = k

ProjectUp

» We just copy 7 to all §5; where cmap(j) = k
» Can perhaps do better

15

ObjAndGrad(3) to ObjAndGrad(vy, cmap)

» Given code for ¢(3) and V 3/, want code for £(y) and V., ¢

» Add parameter cmap to ObjAndGrad([3)

» In ¢(B), B always appears as 3' f, so replace Zj Bif; by
Zj Yemap(j) f

» To compute V. /, observe that

ot op; cmap(j) = k
8% Zag VK Z {

0 otherwise

> .V, 0 =AVgl, where A € Nd *d is defined as
1 k
Alk)= o SmPU) =
0 otherwise

» Can efficiently push down computation of V¢ by trivial
transformations of V3l code

10/15

Three tuned performance parameters

clusterFactor = d/d’

» d’ too large = not enough redundancy removal

» d’ too small = coarseBFGS drifts from true solution

numRounds

» numRounds = 1 or 2 almost always optimal

coarselters
» coarseBFGS terminated if last 5 iterations improve
objective by less than 0.01%
Training is rarely a one-time job in applications: training data,
labels, features, etc. keep changing

11/15

Sample results: Objective vs. time

90 T T T 60 T T
interest : Cluster Optimizer Cluster Optimizer =——s=—
interest : Basic OPtimizer 56 Basic Optimizer
80 money-fx : Cluster Optimizer l
money-fx : Basic Optimizer 50
70 b 45
3 40
2 60r x
é o 35
5 50} E 30
g 25
40 20
30| 15
10
20 . . . 5 . . .
0 10 20 30 40 50 0 0.5 1 1.5 2
time(sec) cpu time (sec) x 1e3
LR, two Reuters topics CRF tagger, one entity type

» Clustered optimizer reduces objective much faster

» Careful analysis shows improvement is mainly due to
objective in R which is simpler than objective in R?

12 /15

Sample results: Test accuracy vs. training time

F1 score

0.85 r T T T
Cluster Optimizer =—s=—

08 m__/.._. Basic Opfimizer e
0.75

0.7
0.65
0.6
0.55
0.5
0.45
0.4

0.35 - . -
0 20 40 60
cputime (sec)

LR, one Reuters topic

80 100 120 140 160 180

1
0.9
0.8
0.7
0.6

F1

0.5
0.4
0.3
0.2
0.1

"1 : Basic' ——
1 : Cluster

wenpunusssns2 : Cluster
3 : Basic

NESEEEEEEERE 5 Bogic e |

3: Clsuter = |

50 100 150 200 250
cpu time (sec) X 100

300

CRF tagger, three entity types

Test accuracy may stabilize before training objective

Clustered optimizer shows earlier test accuracy saturation

Sometimes significantly more accurate early on

Overdoing coarseBFGS may damage test F1 momentarily

Final patch-up fixes matters eventually, but wastes time

13/15

Sample results: Effect of clusterFactor choice

ClassName | clusterFactor | TrainTime (s)

10 16.0
Wheat 20 15.7

50 17.3

10 64.3
Money-fx 20 445

50 39.4

10 61.3
Interest 20 44.3

50 87.6

» 10-50 adequate range to explore
» Recommend starting with large clusterfFactor and

reducing it if final patch-up is slow

14 /15

Summary

» Log-linear models ubiquitous in machine learning
» State-of-the-art optimizer: LBFGS
Redundant features: Convenient, but training bottleneck

v

v

Very simple idea: Cluster features by 3, optimize in
v € RY instead of 3 € RY, d’ < d, recluster periodically

Experiments with logistic regression and CRFs

v

v

Speeds up between 2x and 12x, typical 3-5x

v

No noticeable degradation of accuracy of trained model

15/15

Summary

» Log-linear models ubiquitous in machine learning
» State-of-the-art optimizer: LBFGS
Redundant features: Convenient, but training bottleneck

v

v

Very simple idea: Cluster features by 3, optimize in
v € RY instead of 3 € RY, d’ < d, recluster periodically

Experiments with logistic regression and CRFs

v

v

Speeds up between 2x and 12x, typical 3-5x

v

No noticeable degradation of accuracy of trained model

Future work

» More elaborate maps between 3 and ~
» Extend to other model penalty functions
» Auto-tuning of performance parameters

15/15

