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Log-linear models: Ubiquitous in machine learning

v

Given training observations x and labels y
Goal is to learn a weight vector 3 € R to fit a
conditional distribution
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f(x,y) € R? is a feature vector (often fi(x,y) > 0)
Zs(x) is a normalizing constant

» Given instances {(x;,y;)} find 3 to maximize
> i log Pr(Y = yi|x;), i.e., to minimize
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» Given training observations x and labels y
» Goal is to learn a weight vector 3 € R to fit a
conditional distribution
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» f(x,y) € R? is a feature vector (often f:(x,y) > 0)

» Z3(x) is a normalizing constant

» Given instances {(x;,y;)} find 3 to maximize
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Training performance of optimizers

Difference from optimal log-likelihood
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» |terative scaling no longer in the race

From

[Minka 2003]
x-axis: FLOPS
y-axis: difference
from optimal
objective

» Newton method costs too many FLOPS per iteration
» Sparse Newton methods (LBFGS) lead the pack
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Redundancy in f and /3

>

Log-linear models allow us to use large number of
potentially redundant features f;
E.g., hasDigit, isFourDigits, hasCap, isAl1lCaps,
isAbbrev

» isFourDigits = hasDigit

» isAllCaps = hasCap

» Pr(isAllCaps|isAbbrev) > Pr(isAllCaps)
Combined with dictionaries, often leads to millions of
features in NLP tasks

Convenient, but training bottleneck

Optimizer has to deal with objective that is more
complicated than really necessary
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Ridge penalty leads to redundant models

» For every occurrence of feature j, add new feature j’

» Features f; and f; are perfectly correlated

» ;' adds no predictive power to any classifier

» LR without Ridge penalty can keep (3; unchanged and set
By = 0 to get same training accuracy

UB) == (35, 06, v1) — log Za(x3))
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Ridge penalty leads to redundant models

» For every occurrence of feature j, add new feature j’

» Features f; and f; are perfectly correlated

» ;' adds no predictive power to any classifier

» LR without Ridge penalty can keep (3; unchanged and set
By = 0 to get same training accuracy
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1
~ '

Vv Vv
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» With Ridge penalty, better to “split the evidence”

» Set ﬁjpew — ﬁ;’ew — 5J?Id/2

» Data log likelihood remains unchanged whenever
ﬁj[]ew + ngew — B})Id

> 2(54/2 = (422 < (597 + O
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A new form of model parsimony?

» Ridge penalty encourages small |33

» Lasso penalty reduces ||3||1, makes solution sparse, i.e.,
encourages (3; = 0

» In view of (approximately) redundant but informative
features, a new form of model parsimony is that 3 € RY
has far fewer degrees of freedom than d

» Let v € R be the "hidden model” with d’ < d

» In general 5 and ~ can be related in very complex ways

» A very simple starting point is that elements of ~ are
copied into elements of (3

There is no assumption about clusters in the data
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Behavior of 3 with iterations

800
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Topic classification (LR) Named entity tagging (CRF)

» “Big Bang” moment followed by gradual evolution
» Trajectory cross-overs become rare quite quickly

» Can approximate adjacent trajectories with a band for a
short time

» However, cannot ignore cross-overs all the time



|dea: Optimize in clustered subspace

Let initial approximation to the solution be 3 € R
for numRounds rounds do
for finelters iterations do
[f,g] < ObjAndGrad(f)
(B < f£ineBFGS(S,f, g)
d' « d/clusterFactor
Feature cluster map cmap « Cluster((3,d")
v < ProjectDown(3, cmap)
for coarselters iterations do
[¢, ] < ObjAndGrad(y, cmap)
<« coarseBFGS(7, ¢, d)
B < ProjectUp(vy, cmap)
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|dea: Optimize in clustered subspace

Let initial approximation to the solution be 3 € R
for numRounds rounds do
for finelters iterations do
[f,g] < ObjAndGrad(B)  {wait until Big Bang over}
(3 < f£ineBFGS(S,f, g)
d' « d/clusterFactor
Feature cluster map cmap « Cluster((3,d")
v < ProjectDown(3, cmap) {yeRY, d < d}
for coarselters iterations do
[¢, 6] < ObjAndGrad(y, cmap)
<« coarseBFGS(7, ¢, d) {faster than fineBFGS}
B < ProjectUp(vy, cmap)
while not converged do
[, g] < ObjAndGrad((3)
(3 < £ineBFGS(/,f,g) {patch up remaining problems}
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Cluster

» Sort 3;, identify d’ contiguous blocks to minimize square
error within clusters

» For j=1,...,d, 1 < cmap(j) < d’ gives the cluster
index of j

ProjectDown

» (3 always appears in objective as 3" f

» Naturally suggests that initial v, be the average of 3;s
where cmap(j) = k

ProjectUp

» We just copy 7 to all §5; where cmap(j) = k
» Can perhaps do better
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ObjAndGrad(3) to ObjAndGrad(vy, cmap)

» Given code for ¢(3) and V 3/, want code for £(y) and V., ¢

» Add parameter cmap to ObjAndGrad([3)

» In ¢(B), B always appears as 3' f, so replace Zj Bif; by
Zj Yemap(j) f

» To compute V. /, observe that

ot op; cmap(j) = k
8% Zag VK Z {

0 otherwise

> .V, 0 =AVgl, where A € Nd *d is defined as
1 k
Alk )= o SmPU) =
0 otherwise

» Can efficiently push down computation of V¢ by trivial
transformations of V3l code
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Three tuned performance parameters

clusterFactor = d/d’

» d’ too large = not enough redundancy removal

» d’ too small = coarseBFGS drifts from true solution

numRounds

» numRounds = 1 or 2 almost always optimal

coarselters
» coarseBFGS terminated if last 5 iterations improve
objective by less than 0.01%
Training is rarely a one-time job in applications: training data,
labels, features, etc. keep changing
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Sample results: Objective vs. time
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» Clustered optimizer reduces objective much faster

» Careful analysis shows improvement is mainly due to
objective in R which is simpler than objective in R?
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Sample results: Test accuracy vs. training time

F1 score
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Test accuracy may stabilize before training objective

Clustered optimizer shows earlier test accuracy saturation

Sometimes significantly more accurate early on

Overdoing coarseBFGS may damage test F1 momentarily

Final patch-up fixes matters eventually, but wastes time
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Sample results: Effect of clusterFactor choice

ClassName | clusterFactor | TrainTime (s)

10 16.0
Wheat 20 15.7

50 17.3

10 64.3
Money-fx 20 445

50 39.4

10 61.3
Interest 20 44.3

50 87.6

» 10-50 adequate range to explore
» Recommend starting with large clusterfFactor and

reducing it if final patch-up is slow
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Summary

» Log-linear models ubiquitous in machine learning
» State-of-the-art optimizer: LBFGS
Redundant features: Convenient, but training bottleneck

v

v

Very simple idea: Cluster features by 3, optimize in
v € RY instead of 3 € RY, d’ < d, recluster periodically

Experiments with logistic regression and CRFs

v

v

Speeds up between 2x and 12x, typical 3-5x

v

No noticeable degradation of accuracy of trained model
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Speeds up between 2x and 12x, typical 3-5x

v

No noticeable degradation of accuracy of trained model

Future work

» More elaborate maps between 3 and ~
» Extend to other model penalty functions
» Auto-tuning of performance parameters
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