
Accelerating Newton Optimization

for Log-Linear Models

through Feature Redundancy

Arpit Mathur
Soumen Chakrabarti

http://www.cse.iitb.ac.in/∼soumen/

IIT Bombay

1 / 15

http://www.cse.iitb.ac.in/~soumen/

Log-linear models: Ubiquitous in machine learning
I Given training observations x and labels y
I Goal is to learn a weight vector β ∈ Rd to fit a

conditional distribution

Pr(Y = y |x) =
exp

(
β>f (x , y)

)
Zβ(x)

=
exp

(∑
j βj fj(x , y)

)
Zβ(x)

,

I f (x , y) ∈ Rd is a feature vector (often fj(x , y) ≥ 0)
I Zβ(x) is a normalizing constant
I Given instances {(xi , yi)} find β to maximize∑

i log Pr(Y = yi |xi), i.e., to minimize

`(β) = −
∑

i

(
β>f (xi , yi)− log Zβ(xi)

)
︸ ︷︷ ︸

Negative log likelihood of training data

+
1

2σ2

∑
j

β2
j︸ ︷︷ ︸

Gaussian prior
“Ridge penalty”

2 / 15

Log-linear models: Ubiquitous in machine learning
I Given training observations x and labels y
I Goal is to learn a weight vector β ∈ Rd to fit a

conditional distribution

Pr(Y = y |x) =
exp

(
β>f (x , y)

)
Zβ(x)

=
exp

(∑
j βj fj(x , y)

)
Zβ(x)

,

I f (x , y) ∈ Rd is a feature vector (often fj(x , y) ≥ 0)
I Zβ(x) is a normalizing constant
I Given instances {(xi , yi)} find β to maximize∑

i log Pr(Y = yi |xi), i.e., to minimize

`(β) = −
∑

i

(
β>f (xi , yi)− log Zβ(xi)

)
︸ ︷︷ ︸

Negative log likelihood of training data

+
1

2σ2

∑
j

β2
j︸ ︷︷ ︸

Gaussian prior
“Ridge penalty”

2 / 15

Training performance of optimizers

10
7

10
8

10
9

10
10

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

FLOPS

D
if
fe

re
n
c
e
 f
ro

m
 o

p
ti
m

a
l
lo

g
−

lik
e
lih

o
o
d

Newton

Coord

CG

BFGS

FixedH

MISIS

Figure 5: Cost vs. performance of logistic regression algorithms on positive data. The dataset had

1500 points in 500 dimensions.

15

From
[Minka 2003]
x-axis: FLOPS
y-axis: difference
from optimal
objective

I Iterative scaling no longer in the race

I Newton method costs too many FLOPS per iteration

I Sparse Newton methods (LBFGS) lead the pack

3 / 15

Redundancy in f and β
I Log-linear models allow us to use large number of

potentially redundant features fj
I E.g., hasDigit, isFourDigits, hasCap, isAllCaps,

isAbbrev

I isFourDigits⇒ hasDigit
I isAllCaps⇒ hasCap
I Pr(isAllCaps|isAbbrev)� Pr(isAllCaps)

I Combined with dictionaries, often leads to millions of
features in NLP tasks

I Convenient, but training bottleneck

I Optimizer has to deal with objective that is more
complicated than really necessary

4 / 15

Ridge penalty leads to redundant models
I For every occurrence of feature j , add new feature j ′

I Features fj and fj ′ are perfectly correlated
I j ′ adds no predictive power to any classifier
I LR without Ridge penalty can keep βj unchanged and set

βj ′ = 0 to get same training accuracy

`(β) = −
∑

i

(∑
j βj fj(xi , yi)− log Zβ(xi)

)
︸ ︷︷ ︸

data log likelihood

+
1

2σ2

∑
j

β2
j︸ ︷︷ ︸

Ridge penalty

I With Ridge penalty, better to “split the evidence”
I Set βnew

j = βnew
j ′ = βold

j /2
I Data log likelihood remains unchanged whenever

βnew
j + βnew

j ′ = βold
j

I 2 (βold
j /2)2 = (βold

j)2/2 < (βold
j)2 + 02

5 / 15

Ridge penalty leads to redundant models
I For every occurrence of feature j , add new feature j ′

I Features fj and fj ′ are perfectly correlated
I j ′ adds no predictive power to any classifier
I LR without Ridge penalty can keep βj unchanged and set

βj ′ = 0 to get same training accuracy

`(β) = −
∑

i

(∑
j βj fj(xi , yi)− log Zβ(xi)

)
︸ ︷︷ ︸

data log likelihood

+
1

2σ2

∑
j

β2
j︸ ︷︷ ︸

Ridge penalty

I With Ridge penalty, better to “split the evidence”
I Set βnew

j = βnew
j ′ = βold

j /2
I Data log likelihood remains unchanged whenever

βnew
j + βnew

j ′ = βold
j

I 2 (βold
j /2)2 = (βold

j)2/2 < (βold
j)2 + 02

5 / 15

A new form of model parsimony?
I Ridge penalty encourages small |βj |
I Lasso penalty reduces ‖β‖1, makes solution sparse, i.e.,

encourages βj = 0

I In view of (approximately) redundant but informative
features, a new form of model parsimony is that β ∈ Rd

has far fewer degrees of freedom than d

I Let γ ∈ Rd ′
be the “hidden model” with d ′ � d

I In general β and γ can be related in very complex ways

I A very simple starting point is that elements of γ are
copied into elements of β

There is no assumption about clusters in the data

6 / 15

Behavior of β with iterations

0 10 20 30 40 50 60 70 80 90
−600

−400

−200

0

200

400

600

800

weight value

w
ei

gh
t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

−5

0

5

10

15

20

cputime (sec)

W
ei

gh
ts

Topic classification (LR) Named entity tagging (CRF)

I “Big Bang” moment followed by gradual evolution

I Trajectory cross-overs become rare quite quickly

I Can approximate adjacent trajectories with a band for a
short time

I However, cannot ignore cross-overs all the time

7 / 15

Idea: Optimize in clustered subspace

Let initial approximation to the solution be β ∈ Rd

for numRounds rounds do
for fineIters iterations do

[f , g]← ObjAndGrad(β) {wait until Big Bang over}
β ← fineBFGS(β, f , g)

d ′ ← d/clusterFactor
Feature cluster map cmap ← Cluster(β, d ′)
γ ← ProjectDown(β, cmap) {γ ∈ Rd ′

, d ′ � d}
for coarseIters iterations do

[φ, δ]← ObjAndGrad(γ, cmap)
γ ← coarseBFGS(γ, φ, δ) {faster than fineBFGS}

β ← ProjectUp(γ, cmap)
while not converged do

[f , g]← ObjAndGrad(β)
β ← fineBFGS(β, f , g) {patch up remaining problems}

8 / 15

Idea: Optimize in clustered subspace

Let initial approximation to the solution be β ∈ Rd

for numRounds rounds do
for fineIters iterations do

[f , g]← ObjAndGrad(β) {wait until Big Bang over}
β ← fineBFGS(β, f , g)

d ′ ← d/clusterFactor
Feature cluster map cmap ← Cluster(β, d ′)
γ ← ProjectDown(β, cmap) {γ ∈ Rd ′

, d ′ � d}
for coarseIters iterations do

[φ, δ]← ObjAndGrad(γ, cmap)
γ ← coarseBFGS(γ, φ, δ) {faster than fineBFGS}

β ← ProjectUp(γ, cmap)
while not converged do

[f , g]← ObjAndGrad(β)
β ← fineBFGS(β, f , g) {patch up remaining problems}

8 / 15

Idea: Optimize in clustered subspace

Let initial approximation to the solution be β ∈ Rd

for numRounds rounds do
for fineIters iterations do

[f , g]← ObjAndGrad(β) {wait until Big Bang over}
β ← fineBFGS(β, f , g)

d ′ ← d/clusterFactor
Feature cluster map cmap ← Cluster(β, d ′)
γ ← ProjectDown(β, cmap) {γ ∈ Rd ′

, d ′ � d}
for coarseIters iterations do

[φ, δ]← ObjAndGrad(γ, cmap)
γ ← coarseBFGS(γ, φ, δ) {faster than fineBFGS}

β ← ProjectUp(γ, cmap)
while not converged do

[f , g]← ObjAndGrad(β)
β ← fineBFGS(β, f , g) {patch up remaining problems}

8 / 15

Idea: Optimize in clustered subspace

Let initial approximation to the solution be β ∈ Rd

for numRounds rounds do
for fineIters iterations do

[f , g]← ObjAndGrad(β) {wait until Big Bang over}
β ← fineBFGS(β, f , g)

d ′ ← d/clusterFactor
Feature cluster map cmap ← Cluster(β, d ′)
γ ← ProjectDown(β, cmap) {γ ∈ Rd ′

, d ′ � d}
for coarseIters iterations do

[φ, δ]← ObjAndGrad(γ, cmap)
γ ← coarseBFGS(γ, φ, δ) {faster than fineBFGS}

β ← ProjectUp(γ, cmap)
while not converged do

[f , g]← ObjAndGrad(β)
β ← fineBFGS(β, f , g) {patch up remaining problems}

8 / 15

Idea: Optimize in clustered subspace

Let initial approximation to the solution be β ∈ Rd

for numRounds rounds do
for fineIters iterations do

[f , g]← ObjAndGrad(β) {wait until Big Bang over}
β ← fineBFGS(β, f , g)

d ′ ← d/clusterFactor
Feature cluster map cmap ← Cluster(β, d ′)
γ ← ProjectDown(β, cmap) {γ ∈ Rd ′

, d ′ � d}
for coarseIters iterations do

[φ, δ]← ObjAndGrad(γ, cmap)
γ ← coarseBFGS(γ, φ, δ) {faster than fineBFGS}

β ← ProjectUp(γ, cmap)
while not converged do

[f , g]← ObjAndGrad(β)
β ← fineBFGS(β, f , g) {patch up remaining problems}

8 / 15

Cluster

I Sort βj , identify d ′ contiguous blocks to minimize square
error within clusters

I For j = 1, . . . , d , 1 ≤ cmap(j) ≤ d ′ gives the cluster
index of j

ProjectDown

I β always appears in objective as β>f

I Naturally suggests that initial γk be the average of βjs
where cmap(j) = k

ProjectUp

I We just copy γk to all βj where cmap(j) = k

I Can perhaps do better

9 / 15

ObjAndGrad(β) to ObjAndGrad(γ, cmap)
I Given code for `(β) and ∇β`, want code for `(γ) and ∇γ`
I Add parameter cmap to ObjAndGrad(β)
I In `(β), β always appears as β>f , so replace

∑
j βj fj by∑

j γcmap(j)fj
I To compute ∇γ`, observe that

∂`

∂γk
=

∑
j

∂`

∂βj

∂βj

∂γk
=

∑
j

∂`

∂βj

{
1 cmap(j) = k

0 otherwise

I ∴ ∇γ` = A∇β`, where A ∈ Nd ′×d is defined as

A(k , j) =

{
1 cmap(j) = k

0 otherwise

I Can efficiently push down computation of ∇γ` by trivial
transformations of ∇β` code

10 / 15

Three tuned performance parameters

clusterFactor = d/d ′

I d ′ too large ⇒ not enough redundancy removal

I d ′ too small ⇒ coarseBFGS drifts from true solution

numRounds

I numRounds = 1 or 2 almost always optimal

coarseIters

I coarseBFGS terminated if last 5 iterations improve
objective by less than 0.01%

Training is rarely a one-time job in applications: training data,
labels, features, etc. keep changing

11 / 15

Sample results: Objective vs. time

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50

ob
je

ct
iv

e

time(sec)

interest : Cluster Optimizer
interest : Basic OPtimizer

money-fx : Cluster Optimizer
money-fx : Basic Optimizer

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 0.5 1 1.5 2

ob
je

ct
iv

e
x

1e
4

cpu time (sec) x 1e3

Cluster Optimizer
Basic Optimizer

LR, two Reuters topics CRF tagger, one entity type

I Clustered optimizer reduces objective much faster

I Careful analysis shows improvement is mainly due to
objective in Rd ′

which is simpler than objective in Rd

12 / 15

Sample results: Test accuracy vs. training time

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100 120 140 160 180

F1
 s

co
re

cputime (sec)

Cluster Optimizer
Basic Optimizer

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

F1

cpu time (sec) X 100

1 : Basic
1 : Cluster

2 : Basic
2 : Cluster

3 : Basic
3 : Clsuter

LR, one Reuters topic CRF tagger, three entity types

I Test accuracy may stabilize before training objective

I Clustered optimizer shows earlier test accuracy saturation

I Sometimes significantly more accurate early on

I Overdoing coarseBFGS may damage test F1 momentarily

I Final patch-up fixes matters eventually, but wastes time

13 / 15

Sample results: Effect of clusterFactor choice
ClassName clusterFactor TrainTime (s)

Wheat
10 16.0
20 15.7
50 17.3

Money-fx
10 64.3
20 44.5
50 39.4

Interest
10 61.3
20 44.3
50 87.6

I 10–50 adequate range to explore

I Recommend starting with large clusterFactor and
reducing it if final patch-up is slow

14 / 15

Summary

I Log-linear models ubiquitous in machine learning

I State-of-the-art optimizer: LBFGS

I Redundant features: Convenient, but training bottleneck

I Very simple idea: Cluster features by β, optimize in
γ ∈ Rd ′

instead of β ∈ Rd , d ′ � d , recluster periodically

I Experiments with logistic regression and CRFs

I Speeds up between 2× and 12×, typical 3–5×
I No noticeable degradation of accuracy of trained model

Future work

I More elaborate maps between β and γ

I Extend to other model penalty functions

I Auto-tuning of performance parameters

15 / 15

Summary

I Log-linear models ubiquitous in machine learning

I State-of-the-art optimizer: LBFGS

I Redundant features: Convenient, but training bottleneck

I Very simple idea: Cluster features by β, optimize in
γ ∈ Rd ′

instead of β ∈ Rd , d ′ � d , recluster periodically

I Experiments with logistic regression and CRFs

I Speeds up between 2× and 12×, typical 3–5×
I No noticeable degradation of accuracy of trained model

Future work

I More elaborate maps between β and γ

I Extend to other model penalty functions

I Auto-tuning of performance parameters

15 / 15

