
Conditional Models for Non-smooth
Ranking Loss Functions

Avinava Dubey1 Jinesh Machchhar2

Chiranjib Bhattacharyya3 Soumen Chakrabarti4

1IBM Research India
2IIT Bombay
3IISc Bangalore
4IIT Bombay



Ranking
I Given a set of documents and a query, order the

documents in such a way that those documents
which are relevant to the query is placed above
those that are irrelevant

I Not the same as binary classification

I User attention drops off with rank

I Minimize cognitive burden till information need
satisfaction

I Has led to many models of ranking loss functions



Overview of learning to rank
I Training data

I Query set Q
I Document set Dq associated with each query q ∈ Q
I Each document i ∈ Dq is assigned relevance zqi

I For binary relevance Dq is partitioned into relevant/good
documents D+

q ⊂ Dq and irrelevant/bad documents
D−

q = Dq \ D+
q

I Feature vector xqi ∈ Rd is constructed from q and doc i

I Training fits a model w ∈ Rd

I At test time assign score w>xti to each feature
vector xti ∈ Dt for query t

I Sort by decreasing score, take top 10, say



Structured learning interpretation
I Instead of scoring individual documents . . .

I . . . think of assigning Dq a permutation or partial
order as a classification label

I From a huge label set Y
I In case of permutations, Y = (Dq

1:1→ Dq)

I In case of good/bad partial orders,
y ∈ Yq = {−1, +1}n+

q n−q , where n+
q = |D+

q | and
n−q = |D−

q |
I ygb = +1 (−1) if document g is ranked above

(below) document b

I What’s the benefit of thinking this way?



List-oriented loss functions
I yq is the best y ∈ Y for query q

I All good docs ranked above all bad docs

I Loss function ∆(y , yq) ∈ R≥0 tells us how bad y
is wrt ideal yq

I ∆ can encode what item- or pair-decomposable
losses cannot, e.g.:
I Number of misclassified documents (0/1 additive error)
I Number of pair inversions (not rank-sensitive)

I Can be exploited to target w to
I Mean average precision (MAP)
I Normalized discounted cumulative gain (NDCG)
I Mean reciprocal rank (MRR)
I . . . and traditional decomposable losses like area under

curve (AUC)



Feature map φ(x , y)
I y -cognizant aggregation of document features

I E.g., add vectors from rank 1 through 10 and
subtract rest

I More commonly used:

φpo(xq, y) =
1

n+
q n−q

∑
g ,b

ygb(xg − xb)

I At test time, goal is to find arg maxy w>φ(xq, y)

I Can be intractable, but sometimes not



Training
I Look for w that minimizes∑

q ∆
(
yq, arg maxy w>φ(xq, y)

)
I Objective not continuous, differentiable, or convex

I Therefore, use convex upper bound hinge loss

min
w

∑
q

max

{
0, max

y
∆q(y)− w>δφq(y)

}
I The bound can be loose

I Only support vectors decide w

I May not always yield a good model



Our contributions
I Parametric conditional probabilistic model

Pr(y |x ; w) ∝ exp(w>φ(x , y))

I Intuitive minimization of expected ranking loss
(unfortunately non-convex) as an alternative to
hinge loss

I For specific φ and ∆, exact, efficient, closed-form
expressions for above optimization

I Convex bound on expected loss objective
(unfortunately sums over exponentially many ys)

I Monte-Carlo recipe to sample few ys and still
optimize well

I Favorable experimental outcome on LETOR data



Minimizing aggregated expected loss
I Define

Pr(y |xq; w) =
exp(w>φ(xq, y))

Zq

where Zq =
∑

y ′ exp(w>φ(x , y ′))
I Minimize aggregated expected loss∑

q

∑
y

Pr(y |xq; w)∆(yq, y)

or log of monotone function of expected loss∑
q

log

(∑
y

Pr(y |xq; w)f (∆(yq, y))

)



From loss to gain
I Objective has

∑
y · · ·

I Most ys are terrible rankings with ∆ → 1

I Expected loss may drop very slightly on
optimization

I To better condition the problem, use gain G
rather than loss ∆, e.g., NDCG instead of ∆NDCG

ExpGain: max
w

∑
q

log

(∑
y

Pr(y |xq; w)Gq(y)

)
.

I Neither loss nor gain optimization is convex

I Beware the sum over y



Polynomial form for AUC and φpo

I Notation:

Sqi = w>xqi

hq
gb(ygb) = exp

(
ygb(Sqg − Sqb)

n+
q n−q

)
I With gain G being AUC, objective can be written

as

∑
q

log

∑
y

#1y

∏
gb

hq
gb(ygb)

− log Zq


where #1y =

∑
g ,b~ygb = 1�



Polynomial form for AUC and φpo (2)
I Because of

∑
y · · · we would still take∑

q(n
+
q n−q )! or

∑
q 2n+

q n−q time, impractical

I Handy identities (see paper) to replace the∑
y · · · with an expression that can be computed

in
∑

q(n
+
q n−q )2 time

I Likewise with gradient expression



Toward convexity
I Define δφq(y) = φ(xq, yq)− φ(xq, y) and consider

the distribution

Pr(y |xq, yq; w) =
exp(−w>δφq(y))∑
y ′ exp(−w>δφq(y ′))

(1)

I Maximum Likelihood Estimate MLE

L1(w) =
∑

q

L1q(w) =
∑

q

log Zq(w) (2)



Toward convexity (2)
I Expected loss using new distribution

L2(w) =
∑

q

L2q(w) =
∑

q

EY∼(1)(∆q(Y )) (3)

I Finally consider another distribution

Pr(y |xq, yq) =
exp(−w>δφq(y) + ∆q(y))∑

y ′

exp(−w>δφq(y
′) + ∆q(y

′))

(4)



Toward convexity (3)
I . . . and corresponding ConvexLoss:

L(w) =
∑

q

log
∑
y ′

exp(−w>δφq(y
′) + ∆q(y

′))

(5)

I Can find w to minimize ConvexLoss

I Problem:
∑

y · · · is back

I Anyway we want to go beyond AUC and φpo



Markov Chain Monte Carlo sampling

1: while not enough samples do
2: (re)start a random walk at a well-chosen

state y 0

3: for some number of steps t = 1, 2, . . . do
4: transition from y t−1 to y t

5: make an accept/reject decision on y t

6: collect some subset of y 0, y 1, y 2, . . . as
samples

I Choose restart states to span a variety of ∆s

I In each walk, make local changes in y so as to
stay near to the restart ∆

I New swap method to make transitions (see paper)



Experiments: Accuracy
I All data sets from LETOR
I Baselines RankSVM, SVMmap, RankBoost
I Example accuracy comparison on HP2004:

NDCG@1 NDCG@5 NDCG@10 MAP

SVMmap 0.665 0.835 0.845 0.746

Rankboost 0.653 0.821 0.845 0.739

RankSVM 0.695 0.852 0.877 0.764

MLE 0.665 0.854 0.872 0.755

ExpGain_AUC 0.695 0.862 0.885 0.774

ExpGain_MAP 0.680 0.875 0.895 0.775

ExpGain_NDCG 0.680 0.872 0.890 0.772

L_3 AUC 0.695 0.880 0.898 0.771

L_3 MAP 0.709 0.883 0.900 0.786

L_3 NDCG 0.681 0.885 0.900 0.773

ConvexLoss_AUC 0.682 0.890 0.905 0.778

ConvexLoss_MAP 0.724 0.874 0.885 0.791

ConvexLoss_NDCG 0.709 0.892 0.904 0.793



Accuracy vs. MCMC samples

0.580

0.680

0.780

0.880

1000 3000 5000

A
cc

u
ra

cy

Number of Samples

NDCG@1

NDCG@5

NDCG@10

MAP

I More samples =⇒ better accuracy

I Saturates long before Y is approached



Effect of restart skew

0.600

0.700

0.800

0.900

Skewed towards worst 

possible y

Uniform Skewed towards 

optimal ordereing y_q

A
cc
u
ra
cy

Skewness

NDCG@1

NDCG@5

NDCG@10

MAP

I Two restart points, ∆ = 0, ∆max ≈ 1

I Skewing toward best y is better



Effect of restart skew (2)
I Potentially surprising, given learning needs both

good and bad examples to learn

I Sample y w.p. ∝ exp(k∆)

I k � 0 means favor ∆ → 0, better
k → 5 0 −5 −10 −20
MAP .033 .089 .706 .774 .827
NDCG@10 .041 .124 .815 .905 .918

I Why?



Effect of restart skew (3)

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sample Delta

P
er

ce
nt

Delta=0 Delta=0.5 Delta=1

I Three restart seeds



Effect of restart skew (4)
I Perturbing y with ∆ = 0 can push it far, say,

∆ ≈ 0.7 quite easily

I If y has ∆ ≈ 1, most perturbations will keep ∆
near 1

I There algo will not see enough good ys

I Which is why skewing restarts toward ∆ ≈ 0 is
good



Conclusion
I Conditional probabilistic model

Pr(y |x ; w) ∝ exp(w>φ(x , y)) for ranking
I Challenges:

∑
y∈Y · · · , nonconvexity

I Efficient closed form for specific but widely-used
φ and ∆

I Convex upper bound to expected loss in all cases
I Monte-Carlo sampling method to avoid

∑
y∈Y · · ·

I Competitive accuracy in experiments
I In particular, generally better than

I Hinge loss with max-margin learning techniques
I Boosting with weak learners

I Training by sampling the space of ys this way
may have broader application


	Introduction
	Conditional Model
	Sampling
	Experiments
	Conclusion

