Conditional Models for Non-smooth
Ranking Loss Functions

Avinava Dubey! Jinesh Machchhar?
Chiranjib Bhattacharyya® Soumen Chakrabarti*

YIBM Research India
21T Bombay

311Sc Bangalore
4IIT Bombay

Ranking

» Given a set of documents and a query, order the
documents in such a way that those documents
which are relevant to the query is placed above
those that are irrelevant

» Not the same as binary classification
» User attention drops off with rank

» Minimize cognitive burden till information need
satisfaction

» Has led to many models of ranking loss functions

Overview of learning to rank

» Training data

vV vV v VY

>

Query set @

Document set D, associated with each query g € Q
Each document i € D, is assigned relevance z;

For binary relevance D, is partitioned into relevant/good
documents D" C D, and irrelevant/bad documents

Dy = Dy \ Df

Feature vector x,; € R? is constructed from g and doc i

» Training fits a model w € R?

» At test time assign score w ' x;; to each feature
vector x;; € D; for query t

» Sort by decreasing score, take top 10, say

Structured learning interpretation

» Instead of scoring individual documents . ..

» ... think of assigning D, a permutation or partial
order as a classification label

» From a huge label set Y

. 1:1
» In case of permutations, Y = (Dq = D)

» In case of good/bad partial orders,
y €Yy ={—1,+1}"%", where ny = |D;| and

> Ygp = +1 (—1) if document g is ranked above
(below) document b

» What's the benefit of thinking this way?

List-oriented loss functions

> Yq is the best y € Y for query q
» All good docs ranked above all bad docs

» Loss function A(y. y,) € R tells us how bad y
is wrt ideal yq

» A can encode what item- or pair-decomposable
losses cannot, e.g.:
» Number of misclassified documents (0/1 additive error)
» Number of pair inversions (not rank-sensitive)

» Can be exploited to target w to
» Mean average precision (MAP)
» Normalized discounted cumulative gain (NDCG)

» Mean reciprocal rank (MRR)

... and traditional decomposable losses like area under
curve (AUC)

Feature map ¢(x, y)

» y-cognizant aggregation of document features

» E.g., add vectors from rank 1 through 10 and
subtract rest

v

More commonly used:

Ppo(Xq, ¥) = n+n Zng Xp)

9 g.b

v

At test time, goal is to find arg max, w' ¢(xg, y)
Can be intractable, but sometimes not

v

Training

» Look for w that minimizes
Eq A (yq, arg max, w ' ¢(xq, y))
» Objective not continuous, differentiable, or convex

v

Therefore, use convex upper bound hinge loss
mMi/n zq: max {O, myax Ay(y) — WT(Sgbq(y)}

The bound can be loose

v

v

Only support vectors decide w

v

May not always yield a good model

Our contributions

>

Parametric conditional probabilistic model
Pr(y[x; w) oc exp(w ' ¢(x, y))

Intuitive minimization of expected ranking loss
(unfortunately non-convex) as an alternative to
hinge loss

For specific ¢ and A, exact, efficient, closed-form
expressions for above optimization

Convex bound on expected loss objective
(unfortunately sums over exponentially many ys)
Monte-Carlo recipe to sample few ys and still
optimize well

Favorable experimental outcome on LETOR data

Minimizing aggregated expected loss
» Define

Pr(y[x,: w) = exp(WTZ(any))

where Z; = 37 exp(w ' é(x, "))
» Minimize aggregated expected loss

D> Priylxg w)A(yg, y)

or log of expected loss

Z log <Z Pr(y|xg; w) Alyg,y))

From loss to gain

>

>

>

Objective has > ---

Most ys are terrible rankings with A — 1
Expected loss may drop very slightly on
optimization

To better condition the problem, use gain G
rather than loss A, e.g., NDCG instead of Anpcg

ExpGain: mvexz log (Z Pr(y|xq; W)Gq(y)) :

Neither loss nor gain optimization is convex
Beware the sum over y

Polynomial form for AUC and ¢,

» Notation:
Sei = W' Xgi
Yeb(Sqe — Sqb)
- en 55

» With gain G being AUC, objective can be written
as

> Qlog | > #1, | [h(ves) | | —log Z
y gb

q

where #1, = > ,[lygp = 11

Polynomial form for AUC and ¢,, (2)

> Because of }_ --- we would still take
> glngng)or >, 2" time, impractical
» Handy identities (see paper) to replace the
>, -+ with an expression that can be computed

y
in > (ngn;)? time

» Likewise with gradient expression

Toward convexity

» Define 0¢q(y) = ¢(xq, ¥q) — ¢(Xq, y) and consider
the distribution

L ep(cw i)
G SPrr e)

» Maximum Likelihood Estimate MLE

Li(w) = Lig(w) = log Zg(w) (2)

Toward convexity (2)

» Expected loss using new distribution
w) =Y Log(w) =Y Eyv.y(Aq(Y)) (3)
q q

» Finally consider another distribution

exp(—w ' dpg(y) + Aq(y))
ZGXP w ' 6dq(y") + Dq(y))

(4)

Pr(ylxq: ya) =

Toward convexity (3)

» ... and corresponding ConvexLoss:
L(w) = log Y exp(—wd¢g(y") + Ag(y))
q y'
(5)

» Can find w to minimize ConvexlLoss

> Problem: > --- is back

» Anyway we want to go beyond AUC and ¢,

Markov Chain Monte Carlo sampling

1: while not enough samples do
2. (re)start a random walk at a well-chosen

state Y
3. for some number of steps t =1,2,... do
4 transition from y'~! to y?
5: make an accept/reject decision on y*
6. collect some subset of y° y! y? ... as
samples

» Choose restart states to span a variety of As

» In each walk, make local changes in y so as to
stay near to the restart A

» New swap method to make transitions (see paper)

Experiments: Accuracy

» All data sets from LETOR
» Baselines RANKSVM, SVMMAP, RANKBOOST
» Example accuracy comparison on HP2004:

NDCG@1 [NDCG@5 |[NDCG@10 |MAP
SVMmap 0.665 0.835 0.845 0.746
Rankboost 0.653 0.821 0.845 0.739
RankSVM 0.695 0.852 0.877 0.764
MLE 0.665 0.854 0.872 0.755
ExpGain_AUC 0.695 0.862 0.885 0.774
ExpGain_ MAP 0.680 0.875 0.895 0.775
ExpGain_NDCG 0.680 0.872 0.890 0.772
L_3 AUC 0.695 0.880 0.898 0.771
L_3 MAP 0.709 0.883 0.900 0.786
L_3 NDCG 0.681 0.885 0.900 0.773
ConvexLoss AUC 0.682 0.890 0.905 0.778
ConvexLoss MAP 0.724 0.874 0.885 0.791
ConvexLoss NDCG 0.709 0.892 0.904 0.793

Accuracy vs. MCMC samples
o ————

0.780

Accuracy

(’/ﬁ ——NDCG@1

—a—NDCG@5
0.680 —+—NDCG@10
——MAP
4/
0.580 T
1000 3000 5000

Number of Samples

» More samples =—> better accuracy
» Saturates long before) is approached

Effect of restart skew

0.900 —

.J/'

0.800
z
e
3
g //‘
<
I
0.700 ——NDCG@1
—=—-NDCG@5
—+—NDCG@10
0.600 = MAP
Skewed towards worst Uniform Skewed towards
possible y optimal ordereingy_q

Skewness

» Two restart points, A =0, Apax =~ 1
» Skewing toward best y is better

Effect of restart skew (2)

» Potentially surprising, given learning needs both
good and bad examples to learn

» Sample y w.p. x exp(kA)
» k < 0 means favor A — 0, better

k — | 5 0 -5 -10 -20
MAP 033 089 706 .774 .827
NDCG@10 | .041 .124 815 .905 .918

> Why?

Effect of restart skew (3)

100 7

‘EDeIta=0 HDelta=0.5 EDelta=1 ‘ g

Z

80 | g

7

%

7

= 60 g

Q /

o =

- o /
o]

8 7z

8 Z

= “

20 | % é

s 2

EN 7

0 a T T ::::g T T g

01 02 03 04 05 06 0.7 08 09
Sample Delta

» [hree restart seeds

Effect of restart skew (4)
» Perturbing y with A = 0 can push it far, say,
A =~ 0.7 quite easily
» If y has A =~ 1, most perturbations will keep A
near 1
» There algo will not see enough good ys

» Which is why skewing restarts toward A ~ 0 is
good

Conclusion

>

Conditional probabilistic model
Pr(y|x; w) o< exp(w ' ¢(x, y)) for ranking
Challenges: > _, -+, nonconvexity

Efficient closed form for specific but widely-used
¢ and A

Convex upper bound to expected loss in all cases

Monte-Carlo sampling method to avoid Zyey e

» Competitive accuracy in experiments
» In particular, generally better than

» Hinge loss with max-margin learning techniques
» Boosting with weak learners

Training by sampling the space of ys this way
may have broader application

	Introduction
	Conditional Model
	Sampling
	Experiments
	Conclusion

