Document Classification (Supervised Learning)

Soumen Chakrabarti
IIT Bombay
www.cse.iitb.ac.in/~soumen

Definition and motivating scenarios

- Entities = documents
 - Document models at different levels of detail
- Each document has a label taken from a finite set; a label could indicate
 - "News article is about cricket"
 - "Email is spam"
 - "Doc pair is (nearly) duplicate"
- Training set of with labels provided
- Test doc w/o labels: system guesses
- Many applications

Evaluating classifiers: recall, precision

- Document can have only one label
 - Confusion matrix M[i,j] = number of docs with "true" label i assigned label j by classifier
 - Accuracy = sum of diagonals / total over matrix
- Document can have multiple labels (classes)
 - For each label c set up a 2×2 matrix M_c[i,j]
 - True label-set includes c (i=1,0)
 - Classifier's guessed label set includes c (j=1,0)
 - Recall for label $c = M_c[1,1]/(M_c[1,1]+M_c[1,0])$
 - Precision for label c =
 M_c[1,1]/(M_c[1,1]+M_c[0,1])

0,0 <mark>0,1</mark> 1,0 1,1

C hakra bart

Kolyani 2002

Averaging over labels, break-even

- Macro-averaging over labels
 - · Overall recall (precision) is average over labels
 - · Less populated labels get undue representation
- Micro-averaging over labels
 - Add up all the M_c matrices into one matrix M
 - Compute recall and precision of M
 - · Labels appearing on many docs dominate score
- F₁ = 2 × precision × recall / (precision + recall)
- Recall and precision usually inversely related
 - Vary system parameters to get trade-off
 - Find intersection of PR-plot with P=R (breakeven)

Vector space model

- Document d is a point in Euclidean space
 - Each dimension corresponds to a term t
- Component along axis t = product of...

- $\mathbf{F} \quad d,t) = \begin{cases}
 0 & \text{if } n(d,t) = 0 \\
 1 + \mathbf{b}\mathbf{g} \quad 1 + \mathbf{b}\mathbf{g} \quad n(d,t) & \text{otherwise}
 \end{cases}$ $\mathbf{D} \quad (t) = \mathbf{g} \quad \frac{1 + |D|}{|D_t|} \quad \text{Components for rare terms scaled up}$ Large term frequencies dampened
- Here n(d,t) = #times t occurs in d. D = entire collection, D_t = documents containing t
- Ad-hoc choices, but validated by decades of Information Retrieval research

Nearest-neighbor classifiers

- At training time, record each doc d as a labeled point in vector space
- Test doc q also mapped to vector space
- Similarity between q and d is cos(q,d)
- Pick k training documents most similar to q

kNN_c(q) = subset which has label c

 b_c is a tuned constant for each class

Kolyani 2002

Multivariate binary model

- Faithful vs. practical models
 - Attribute = term, phrase, sentence, para, ...?
 - Enormous number of dimensions (30k—500k)
 - Difficult to model joint distribution in any detail
- "Set of words" (multivariate binary)
 - Doc = bit vector with #elems = size of vocabulary
 - Bit at position t = [term t appears in doc]
 - · Term counts and ordering ignored
- Naïve independence assumption

$$\mathsf{P}\left(\overrightarrow{d}\right) = \prod_{t \in \mathcal{d}} \phi_t \prod_{t \notin \mathcal{d}} \left(1 - \phi_t\right) \qquad \mathsf{P}\left(\overrightarrow{d} \mid c\right) = \prod_{t \in \mathcal{d}} \phi_{c,t} \prod_{t \notin \mathcal{d}} \left(1 - \phi_{c,t}\right)$$

Chakrabart

olyani 2002

7

Multinomial (bag-of-words) model

- Author samples length \(\ell\) (total term count) from a suitable length distribution
- Each of ℓ terms chosen by sampling independently from a multinomial distribution of terms
- Simplifying (crude!) assumptions
 - Terms independent of each other, unordered
 - Equally surprised by 1st and 101st occurrence!

$$\Pr(\vec{d}) = \Pr(\ell) \begin{pmatrix} \ell \\ \{n(d,t)\} \end{pmatrix} \prod_{t \in d} \theta_t^{n(d,t)} \qquad \Pr(\vec{d} \mid c) = \Pr(\ell \mid c) \begin{pmatrix} \ell \\ \{n(d,t)\} \end{pmatrix} \prod_{t \in d} \theta_{c,t}^{n(d,t)}$$

Chakrabart

Kolyani 2002

8

Naïve Bayes classifiers

- For simplicity assume two classes {-1,1}
- t=term, d=document, c=class, ℓ_d=length of document d, n(d,t)=#times t occurs in d
- Model parameters
 - Priors Pr(c=-1) and Pr(c=1)
 - $\theta_{c,t}$ =fractional rate at which t occurs in documents labeled with class c
- Probability of a given d generated from c is

$$\mathbb{P} d | c, \ell_d) = \begin{cases} \ell_d \\ \{u(a,t)\} \end{cases} \prod_{t \in d} \theta_{c,t}^{n(d,t)}$$

Chakra barti

olyani 2002

Naïve Bayes = linear discriminant

- When choosing between the two labels
 - · Terms involving document length cancel out
 - Taking logs, we compare

 The first part is a dot-product, the second part is a fixed offset, so we compare

$$\alpha_{NB} \cdot d + b$$
: 0

Simple join-aggregate, very fast

hakrabarti Kolyani 2002 1

Many features, most very noisy

- Sort features in order of decreasing correlation with class labels
- Build separate classifiers1—100, 101—200, etc.
- Very few features suffice to give highest possible accuracy

- Want to select that subset of features leading to highest accuracy
 - Reduced space and time requirements
 - May even improve accuracy by reducing "over-fitting"

Chakrabarti Kolyani 2002 1

Feature selection in the binary model

Model with unknown parameters

Confidence intervals

Observed data

Pick *F*⊆*T* such that models built over *F* have high separation confidence

Chakrabarti Kolyani 2002 12

Feature selection by accumulation

- Add "best" features to an empty set
- Several measures of association between labels and features
 - · Standard chi-square test of dependence

$$\chi^2 = \sum_{\ell,m} \frac{n(k_{11}k_{00} - k_{10}k_{01})^2}{(k_{11} + k_{10})(k_{01} + k_{00})(k_{11} + k_{01})(k_{10} + k_{00})}$$

Mutual information between term and label

$$\mathsf{MI}(I_t,C) = \sum_{\ell,m} \frac{k_{\ell m}}{n} \log \frac{k_{\ell m} / n}{(k_{\ell 0} + k_{\ell 1})(k_{0m} + k_{1m}) / n^2}$$

Fisher's index

$$\mathsf{FI}(t) = \frac{\sum_{c_1, c_2} (\mu_{c_1, t} - \mu_{c_2, t})^2}{\sum_{c} \frac{1}{|D_c|} \sum_{d \in D_c} (x_{d, t} - \mu_{c, t})^2}$$

May include good but redundant features

Chakrabarti Kolyani 2002 1

Feature selection by truncation

- Starting with all terms, drop worst features
- P and Q are conditionally independent given R if Pr(p|q,r) = Pr(p|r) for any p,q,r
 - Q gives no extra info about P over and above R
- T=full feature set, M=a subset of features, X="event" for a given term (X∉M)
- M is a "Markov blanket" for X if X is conditionally independent of T∪C-M-X given M
- Search for X and drop X from feature set F while Pr(C|F) remains close to Pr(C|T)
- Computationally expensive

Chakrabarti Kolyani 2002 14

Effect of feature selection

- Sharp knee in accuracy achieved with a very small number of features
- Saves class model space
 - Easier to hold in memory
 - Faster classification
- Mild decrease in accuracy beyond a maximum
 - · Worse for binary model

Chakrabarti Kolyani 2002

Limitations and better techniques

- Problems with naïve Bayes classifiers
 - Seek to model Pr(d|c): difficult because d has very large number of dimensions
 - Independence assumption gives terrible estimates (although decision boundaries may be ok)
- Remedies
 - Drop (some) independence assumptions: from naïve Bayes to low-degree Bayesian networks
 - Estimate Pr(c|d) directly instead of going via Pr(d|c): maximum entropy and regression
 - · Discriminative (vs. probabilistic) classification

Small-degree Bayesian networks

- Directed acyclic graph
 - Nodes = random variables (1 for class label, 1 for each term)
 - Edges connect coupled variables

- Naïve Bayes: hub-and-spoke
- General model: edges connecting dependent terms
- Problem: induce the graph structure
 - Precompute pairwise correlation
 - Greedy addition of nodes and edges Pr(click = 1 | html = 1, c = painting)
- Computationally expensive

Maximum entropy classifiers

- Training documents (d_i,c_i), i = 1...N
- Want model Pr(c |d) using parameters μ_i as

$$P c \mid d) \propto \frac{1}{Z(d)} \prod_{t \in d} \mu_{c,t}^{n(d,t) / \sum_{\tau} n(d,\tau)}$$

■ Constraints given by observed data

For each
$$(c,t)$$
: $\sum_{d} \frac{\Pr(d)\Pr(c|d)}{\sum_{\tau \in d} \frac{n(d,t)}{n(d,\tau)}} = \sum_{d} \frac{\Pr(d,c)}{\sum_{\tau \in d} \frac{n(d,\tau)}{n(d,\tau)}}$

Objective is to maximize entropy of p

$$H(p) = -\sum_{d \in \overline{\square}} \Pr(d) \Pr(c \mid d) \log \Pr(c \mid d)$$

- Features
 - Numerical non-linear optimization
 - No naïve independence assumptions

Kolyani 2002

Maxent classifier = linear discriminant

Comparing two classes

$$\begin{array}{ll} \mathbb{P} & c = 1 \mid d) \propto \prod_{t \in d} \mu_{1,t}^{n(d,t) \left/ \sum_r n(d,\tau)} & \vdots & \mathbb{P} & c = -1 \mid d) \propto \prod_{t \in d} \mu_{-1,t}^{n(d,t) \left/ \sum_r n(d,\tau)} \\ & \sum_{t \in d} \frac{n(d,t)}{\sum_{\tau} n(d,\tau)} \log \mu_{1,t} & \vdots & \sum_{t \in d} \frac{n(d,t)}{\sum_{\tau} n(d,\tau)} \log \mu_{-1,t} \end{array}$$

- Nonlinear perceptron: $c = sign(\alpha \cdot d + b)$
- Linear regression: Fit α to predict c (=1 or -1, say) directly as c = α·d+b
 - · Widrow-Hoff update rule:

$$\alpha^{(i)} \leftarrow \alpha^{(i-1)} + 2\eta(\alpha^{(i-1)} \cdot d_i + b - c_i)d_i$$

Chakrabarti Kolyani 2002

Linear support vector machine (LSVM)

- Want a vector α and a constant b such that for each document d_i
 - If c_i =1 then $\alpha \cdot d_i + b \ge 1$
 - If c_i =-1 then $\alpha \cdot d_i + b \le -1$
- I.e., $c_i(\alpha \cdot d_i + b) \ge 1$
- If points d₁ and d₂ touch the slab, the projected distance between them is

$$2/\sqrt{\|\alpha\|}$$

Find α to maximize this

SVM implementations

- α_{SVM} is a linear sum of support vectors
- Complex, non-linear optimization
 - 6000 lines of C code (SVM-light)
- Approx $n^{1.7-1.9}$ time with n training vectors
- Footprint can be large
 - Usually hold all training vectors in memory
 - Also a cache of dot-products of vector pairs
- No I/O-optimized implementation known
 - We measured 40% time in disk seek+transfer

Chakrabarti Kolyani 2002 2

Comparison of accuracy

- Naïve Bayes has mediocre accuracy
- Nearest neighbor has varied reports, depending on tuning parameters
- Support vector machines most consistently superior
- Benchmarks don't say the whole story
 - Multi-topic docs, hierarchy
 - Dynamic collections
 - Confidence scores

hakrabarti Kolyanii 2002 22

Summary

- Many classification algorithms known
- Tradeoff between simplicity/speed and accuracy
 - Support vector machines (SVM)—most accurate but complex and slow
 - Maximum entropy classifiers
 - Naïve Bayes classifiers—fastest and simplest but not very accurate
- Mostly linear discriminant techniques
 - Can we achieve the speed of naïve Bayes and the accuracy of SVMs?

Chakrabarti Kolyani 2002 2

Fisher's linear discriminant (FLD)

- Used in pattern recognition for ages
- Two point sets X(c=1) and Y(c=-1)
 - $x \in X$, $y \in Y$ are points in m dimensions
 - Projection on unit vector α is $\mathbf{x} \cdot \alpha$, $\mathbf{y} \cdot \alpha$
- Goal is to find a direction α so as to maximize $J(\alpha) = \frac{\left(\frac{1}{|X|} \sum_{x \in X} x \cdot \alpha \frac{1}{|Y|} \sum_{y \in Y} y \cdot \alpha\right)^2}{\left(\frac{1}{|X|} \sum_{x \in X} (x \cdot \alpha)^2 \left(\frac{1}{|X|} \sum_{x \in X} x \cdot \alpha\right)^2 + \frac{1}{|Y|} \sum_{y \in Y} (y \cdot \alpha)^2 \left(\frac{1}{|Y|} \sum_{y \in Y} y \cdot \alpha\right)^2}$

Variance of projected *X*-points

Variance of projected Y-points

Some observations

- Hyperplanes can often completely separate training labels for text; more complex separators do not help (Joachims)
- NB is biased: α_t depends only on term t— SVM/Fisher do not make this assumption
- If you find Fisher's discriminant over only the support vectors, you get the SVM separator (Shashua)
- Even random projections preserve inter-point distances whp (Frankl+Maehara 1988, Kleinberg 1997)

Chakrabarti Kolyani 2002

Hill-climbing

- Iteratively update α_{new} ← α_{old} + η∇J(α) where η is a "learning rate"
- $\nabla J(\alpha) = (\partial J/\partial \alpha_1, ..., \partial J/\partial \alpha_m)^T$ where $\alpha = (\alpha_1, ..., \alpha_m)^T$
- Need only 5m + O(1) accumulators for simple, one-pass update
- Can also write as sort-merge-accumulate

$$\sum_{x \in X} x \cdot \alpha \quad \textbf{(b)} \qquad \sum_{y \in Y} y \cdot \alpha \quad \textbf{(b)}$$

$$\forall i : \sum_{x \in X} x_i \quad (m \text{ numbers}) \quad \forall i : \sum_{y \in Y} y_i \quad (m \text{ numbers})$$

$$\forall i : \sum_{x \in X} x_i (x \cdot \alpha) \quad (m \text{ numbers}) \quad \forall i : \sum_{y \in Y} y_i (y \cdot \alpha) \quad (m \text{ numbers})$$

$$\text{Chakrabarti} \qquad \text{Kolyani 2002} \qquad 26$$

Convergence

- Initialize α to vector joining positive and negative centroids
- Stop if J(α) cannot be increased in three successive iterations
- J(α) converges in 10—20 iterations
 - Not sensitive to problem size
- 120000 documents from http://dmoz.org
 - LSVM takes 20000 seconds
 - Hill-climbing converges in 200 seconds

Convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

(equal to be a compared to the convergence of J(alpha)

1
0.8

Chakrabarti Kolyani 2002 27

Multiple discriminants

- Separable data points
 - SVM succeeds
 - FLD fails to separate completely
- Idea
 - Remove training points (outside the gray zone)
 - Find another FLD for surviving points only
- 2—3 FLDs suffice for almost complete separation!
 - 7074→230→2

Chakrabar

SIMPL (only 600 lines of C++)

- Repeat for *k* = 0, 1, ...
 - Find $\alpha^{(k)}$, the Fisher discriminant for the current set of training instances
 - Project training instances to $\alpha^{(k)}$
 - Remove points well-separated by $\alpha^{(k)}$ while ≥ 1 point from each class survive
- Orthogonalize the vectors $\alpha^{(0)}$, $\alpha^{(1)}$, $\alpha^{(2)}$,...
- Project all training points on the space spanned by the orthogonal α's
- Induce decision tree on projected points

Chakrabarti Kolyani 2002

Decision tree classifier

- Given a table with attributes and label
- Induce a tree of successive partitions on the attribute space

age	income	student	<mark>credit_rating</mark>	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes

- Path in tree = sequence of tests on attrib values
- Extensive research on construction of trees

Chakrabar

Robustness of stopping decision

- Compute α⁽⁰⁾ to convergence
- Vs., run only half the iterations required for convergence
- Find $\alpha^{(1)},...$ as usual
- Later αs can cover for slop in earlier αs
- While saving time in costly early-α updates
 - Later αs take negligible time

hakrabarti Kolyani 2002 3

Accuracy

- Large improvement beyond naïve Bayes
- We tuned parameters in SVM to give "SVM-best"
- Often beats SVM with default params
- Almost always within 5% of SVM-best
- Even beats SVM-best in some cases
 - Especially when problem is not linearly separable

Chakrabart

16

Performance

△ SVM-time

♦ SIMPL-time0

∘ SIMPL-time

- SIMPL is linear-time and **CPU-bound**
- LSVM spends 35—60%

Ongoing and future work

- SIMPL vs. SVM
 - Can we analyze SIMPL?
 - · LSVM is theoretically sound, more general
 - Under what conditions will SIMPL match LSVM/SVM?
 - Comparison of SIMPL with non-linear SVMs
- More realistic models
 - Document talks about multiple topics
 - Labels form a "is-a" hierarchy like Yahoo!
 - · Labeling is expensive: minimize labeling effort (active learning)
 - Exploit hypertext features for better accuracy

Kolyani 2002

Hypertext Mining

Soumen Chakrabarti IIT Bombay

www.cse.iitb.ac.in/~soumen

Learning hypertext models

 Entities are pages, sites, paragraphs, links, people, bookmarks, clickstreams...

- Transformed into simple models and relations
 - Vector space/bag-of-words
 - Hyperlink graph
 - Topic directories
 - · Discrete time series

occurs(term, page, freq)
cites(page, page)

is-a(topic, topic)
example(topic, page)

Chakrabarti Kolyani 2002 3

Challenges

- Complex, interrelated objects
 - Not a structured tuple-like entity
 - Explicit and implicit connections
 - Document markup sub-structure
 - · Site boundaries and hyperlinks
 - Placement in popular directories like Yahoo!
- Traditional distance measures are noisy
 - How to combine diverse features? (Or, a link is worth a ? words)
 - Unreliable clustering results

Chakrabarti Kolyani 2002 3

Classifying interconnected entities

- Early examples:
 - Some diseases have complex lineage dependency
 - Robust edge detection in images
- How are topics interconnected in hypertext?
- Maximum likelihood graph labeling with many classes

Finding edge

nakrabarti Kolyani 2002 38

Enhanced models for hypertext

- c=class, d=text,N=neighbors
- Text-only model: Pr(d|c)
- Using neighbors' text to judge my topic:
 Pr(d, d(N) | c)
- Better recursive model: Pr(d, c(N) | c)
- Relaxation labeling until order of class probabilities stabilizes

Chakrabarti Kolyani 2002 3

Unified model boosts accuracy

Kolyani 2002

- 9600 patents from 12 classes marked by USPTO; text+links
- 'Forget' and re-estimate fraction of neighbors' classes (semisupervised)
- 40% less error; even better for Yahoo
- Improvement even with 0% of neighborhood known

Co-training

- Divide features into two (nearly) classconditionally independent sets, e.g. text and links
- Use labeled data to train two classifiers
- Repeat for each classifier
 - Find unlabeled instance which it can label most confidently
 - Add to the training set of the other classifier
- Accuracy improves barring local instabilities

Chakrabarti Kolyani 2002 4

Modeling social networks

- The Web is a evolving social network
 - Other networks: phone calls, coauthored papers, citations, spreading infection,...
- Erdös-Renyi random graph model: each of n(n -1) edges created i.i.d. w.p. p
 - Threshold properties for number of connected components, connectivity
- Does not model social networks well:
 - The Web keeps growing (and changing)
 - Edge attachment is preferential ("winners take all")
 - "Winning" nodes have high "prestige"

Preferential attachment

Goal: a simple, few/zero parameter evolution model for the Web

- Start with m₀ nodes
- Add one new node u every time step
- Connect new node to m old nodes
- Probability of picking old node v is $d_v / \Sigma_w d_w$, where w ranges over all old nodes
- Interesting questions:
 - · How does the degree of a node evolve?
 - What is the degree distribution?

Chakrabarti Kolyani 2002

Model predictions and reality

- *t_i* is the time step when node *i* is added
- k_i(t) = expected degree of node i at time step t

$$k_i(t) = m \sqrt{\frac{t}{t_i}}$$

$$P k_i(t) = k \approx \frac{2m^2t}{(m_0 + t)} \frac{1}{k^3}$$

Can we develop a notion of "prestige" to enhance Web search?

abarti Kolyani 2002

Google and PageRank

- Random surfer roaming for ever on the Web
- At page u, make one of two decisions
 - With probability d, jump to a Web page u.a.r
 - With probability 1-d, walk to a outlinked page v
- Irreducible, aperiodic Markov process
- Prestige of a node = steady state probability

$$p(v) = \frac{d}{|V|} + (1 - d) \sum_{(u,v) \in E} \frac{p(u)}{b}$$

 Eigen problem involving the vertex adjacency matrix of the Web, solved by power iterations

Chakrabarti Kolyani 2002

Hubs and authorities

- Many Web pages are "link collections" (hubs)
 - Cites other authoritative pages but have no intrinsic information content
 - Similar to survey papers in academia
- Enhance the prestige model to two scores
 - Hub score h(u) for each node u
 - Authority score a(v) for each node v
- Coupled system: a = E^Th and h = Ea
 - In other words, $h = EE^Th$ and $a = E^TEa$
- Eigen problems of EE^T and E^TE
 - · Solved by power iterations

Shakrabarti Kolyani 2002 4

How to characterize "topics"

- Web directories—a natural choice
- Start with http://dmoz.org
- Keep pruning until all leaf topics have enough (>300) samples
- Approx 120k sample URLs
- Flatten to approx 482 topics
- Train text classifier (Rainbow)
- Characterize new document d as a vector of probabilities $\mathbf{p}_d = (\Pr(c|d) \ \forall c)$

Chakrabarti Kolyani 2002

Background topic distribution

- What fraction of Web pages are about Health?
- Sampling via random walk
 - PageRank walk (Henzinger et al.)
 - Undirected regular walk (Bar-Yossef et al.)
- Make graph undirected (link:...)
- Add self-loops so that all nodes have the same degree
- Sample with large stride
- Collect topic histograms

Convergence

- Start from pairs of diverse topics
- Two random walks, sample from each walk
- Measure distance between topic distributions
 - L_1 distance $|\mathbf{p}_1 \mathbf{p}_2| = \sum_c |p_1(c) p_2(c)|$ in [0,2]
 - Below .05 —.2 within 300—400 physical pages

Chakrabarti Kolyani 2002 4

Random forward walk without jumps

- How about walking forward without jumping?
 - Start from a page u_0 on a specific topic
 - Sample many forward random walks $(u_0, u_1, ..., u_i, ...)$
 - Compare $(\Pr(c|u_i) \ \forall c)$ with $(\Pr(c|u_0) \ \forall c)$ and with the background distribution
- Short-range topical locality on the Web

<u>Hyperlink Induced Topic Search (HITS)</u>

Also called "topic distillation"

Focused crawling

- HITS/PageRank on whole Web not very meaningful
- HITS expands root set by only one link
 - Two or more links introduce too much noise
- Can we filter out the noise?
 - · Yes, using document classification
 - Can expand the graph indefinitely
- Formulation
 - · Set of topics with examples, a chosen topic
 - Start from chosen examples, run for fixed time
 - Maximize total relevance of crawled pages w.r.t. chosen topic

Focused crawling system overview

- If u is relevant and u→v then v is likely to be relevant
- If u→v1 and u→v2 and v1 is relevant then v2 is likely to be relevant

Focused crawling results

- High rate of "harvesting" relevant pages
- Robust to perturbations of starting URLs
- Great resources found 12 links from start set

Chakrabarti Kolyani 2002 5

Conclusion

- Application of statistics and mining to a new form of data: hypertext and the Web
- New challenges
 - Tackling a large number of dimensions
 - · Modeling irregular, interrelated objects
 - · Extracting signal from evolving, noisy data
 - Scaling language processing to the Web
- www.cse.iitb.ac.in/laiir/
- Mining the Web: Discovering Knowledge from Hypertext Data www.cse.iitb.ac.in/~soumen/mining-the-web/

Chakrabarti Kolyani 2002 5: