
Learning to Rank for Quantity Consensus Queries
Somnath Banerjee

HP Labs India
Soumen Chakrabarti

IIT Bombay
Ganesh Ramakrishnan

IIT Bombay

ABSTRACT
Web search is increasingly exploiting named entities like per-
sons, places, businesses, addresses and dates. Entity ranking
is also of current interest at INEX and TREC. Numerical
quantities are an important class of entities, especially in
queries about prices and features related to products, ser-
vices and travel. We introduce Quantity Consensus Queries
(QCQs), where each answer is a tight quantity interval dis-
tilled from evidence of relevance in thousands of snippets.
Entity search and factoid question answering have benefited
from aggregating evidence from multiple promising snippets,
but these do not readily apply to quantities. Here we pro-
pose two new algorithms that learn to aggregate information
from multiple snippets. We show that typical signals used
in entity ranking, like rarity of query words and their lexical
proximity to candidate quantities, are very noisy. Our al-
gorithms learn to score and rank quantity intervals directly,
combining snippet quantity and snippet text information.
We report on experiments using hundreds of QCQs with
ground truth taken from TREC QA, Wikipedia Infoboxes,
and other sources, leading to tens of thousands of candidate
snippets and quantities. Our algorithms yield about 20%
better MAP and NDCG compared to the best-known col-
lective rankers, and are 35% better than scoring snippets
independent of each other.

Categories and Subject Descriptors: H.3.3
[Information Search and Retrieval]: Retrieval models

General Terms: Algorithms, Experimentation

Keywords: Quantity search, Aggregating evidence from
snippets, Learning to rank

1. INTRODUCTION

1.1 Entity search and corroboration
Search engines are getting increasingly sophisticated in

extracting and exploiting structured data from unstructured
and semistructured Web pages. Most major search engines
identify mentions of people, places, organizations, street ad-
dresses, ZIP codes, dates, prices, disease names, and several
other types of named entities mentioned on the Web pages
they crawl.

Entity search has become a standard task in the research
community as well. INEX (http://inex.is.informatik.
uni-duisburg.de/) features a track where the aim is to re-
turn entities that satisfy a query. The TREC enterprise
track (http://trec.nist.gov/pubs/trec15/) includes an
expert search task, an important special case of entity search.

Approaches to entity and expert ranking include prob-
abilistic generative models that capture relations between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’09, July 19–23, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$10.00.

the query, documents, latent topics [9, 2], and lexical prox-
imity between query words and candidate entities [16, 6,
2]. Answers to TREC-style factoid questions (TREC-QA,
http://trec.nist.gov/data/qamain.html) are frequently
named entities.

Corroboration of an entity, mentioned redundantly across
multiple sites, often increases ranking accuracy and robust-
ness [7]. Syntactic variations (“Washington” vs. “George
Washington”) may exist in candidate mentions, and each
mention may have a score based on query, language, topic
and proximity considerations.

Some researchers [15, 17] have devised type theories with
rule systems to conflate syntactic and quantitative variations
of candidate answers, aggregate evidence across these vari-
ations, and perhaps explain them. Substantial handcrafting
of type systems and conflation rules are required in this ap-
proach. A recent probabilistic graphical model [12] gives a
principled means for learning a model to collectively rank
candidate entities. However, this technique does not readily
apply to quantity search.

1.2 Quantity consensus queries (QCQs)
In this paper we focus on quantity search, an important

special case of entity search. A quantity may be a unitless
number or have an associated unit like length, mass, tem-
perature, currency, etc. TREC-QA 2007, 2006, and 2005
have 360, 403 and 362 factoid queries, of which as many as
125, 177, and 116 queries seek quantities. As against “spot
queries” seeking unique answers like date of birth, we are
specifically interested in what we call quantity consensus
queries (QCQs), where there is uncertainty about the an-
swer quantity (“driving time from Paris to Nice” or “battery
life of Lenovo X300”). TREC-QA 2007, 2006, and 2005 have
at least 61, 39 and 28 such queries. To learn a reasonable
distribution over the uncertain quantity, the user may need
to browse thousands of pages returned by a regular search
engine. A QCQ system reduces this cognitive burden by
zooming down from document to snippet to quantity level.
QCQ engines can also support sites that offer comparison of
prices and features related to products, services and travel.

In the information extraction, integration and warehous-
ing literature, a curate-and-query approach is popular; it
assumes the existence of entity and relationship extractors
[1, 3] for limited domains, which populate (possibly proba-
bilistic) relational databases [4, 20]. We argue that open-
domain ad-hoc QCQs cannot leverage the curate-and-query
strategy, because the queries are too diverse and the sources
are too unstructured for a priori schema design or informa-
tion extraction. Our hypothesis is that some combination of
string-oriented IR and structured aggregation is essential at
query time.

1.3 Our contributions
We introduce QCQs (Section 2) and give novel algorithms

that aggregate evidence in favor of candidate quantities and
quantity intervals from snippets in a collective and corrobo-
rative fashion, without attempting deep NLP on snippets.

1

+giraffe, +height; foot
 La Giraffe was small (approx. 11 feet tall) because she was still young, a full grown giraffe can reach a height of 18 feet.
 Giraffe Photography uses a telescopic mast to elevate an 8 megapixel digital camera to a height of approximately 50 feet.
 The record height for a Giraffe unicycle is about 100 ft (30.5m).
+weight, weigh, airbus, +A380; pound
 Since the Airbus A380 weighs approximately 1,300,000 pounds when fully loaded with passengers ...
 The new mega-liner A380 needs the enormous thrust of four times 70.000 pounds in order to take off.
 According to Teal, the 319-ton A380 would weigh in at 1,153 pounds per passenger
far +raccoon relocate; mile
 It also says – unnervingly – that relocated raccoons have been known to return from as far away as 75 miles.
 Sixteen deer, 2 foxes, one skunk, and 2 raccoons are sighted during one 35 mile drive.
 One study found that raccoons could move over 20 miles from the drop-off point in a short period of time.

 Figure 1: QCQs with snippets (matches underlined; quantities in boldface, good , maybe , bad).

For a given query, the ith snippet is a segment of text to-
kens, centered around the mention of a quantity xi. A quan-
tity is a number or a range accompanied by an (optional)
unit of measurement. To the left and right of the central
quantity mention are other context tokens of the snippet.

As baseline, we first consider (Section 4) algorithms that
learn to rank items (documents or snippets) represented as
feature vectors [10, 11, 22] (for a comprehensive list visit
http://research.microsoft.com/users/LETOR/). An item
(here, a snippet) is usually represented as a feature vector
zi ∈ Rd in response to a query. In our case, zi will en-
code the presence of query words in the snippet context,
lexical proximity between query words and quantity xi, and
rarity of matched query words in the corpus (IDF). Using
manually-provided snippet relevance labels yi ∈ ±1, these
algorithms learn a model vector w ∈ Rd such that the score
of the ith test snippet is w>zi, and snippets are then sorted
by decreasing score. We show that scoring using zi performs
poorly, because zi by itself is a very noisy relevance signal.

We then evaluate a recent technique [21] that aggregates
evidence across snippets i, j only if xi, xj match exactly.
This fails in the face of close but not identical quantities
in dominant clusters. Next we adapt a graph Laplacian
smoothing technique [12, 18] that balances between individ-
ual snippet score evidence w>zi and quantity proximity, say,
|xi−xj |. This formulation cannot ignore quantity proximity
among irrelevant snippets, and gives only modest gains.

These trials and observations prompt us to propose (Sec-
tion 5) new scoring mechanisms for entire intervals of x
values, instead of individual snippets, as was done in prior
work. We show how to aggregate snippet scores into candi-
date interval scores, and then pick the best intervals. This
dramatically boosts accuracy.

In Section 6, we give another algorithm: it represents an
interval I with novel feature vectors ẑI , where some features
are aggregated from snippet-level scores w>zi. Note that i
indexes individual snippets and I represents an interval. We
use max-margin methods [10] to learn a “stacked” model ŵ.
During testing, ŵ>zI is used to sort candidate intervals.

Our stacked ranker further enhances accuracy compared
to interval scoring using w alone. It achieves over 20% rel-
ative improvements in snippet-level MAP and NDCG com-
pared to Laplacian smoothing, which in turn is 10–15% bet-
ter than independent snippet ranking. We compare favor-
ably with the best TREC-QA participants wrt precision-
at-1. We also present a new way to evaluate sequences of
quantity intervals, as against snippet lists.

Providing snippet labels yi is more tedious than providing

ground truth xi values per query. In Section 7, we propose
a very simple alternative to training w and ŵ using only
ground truth xi, with a very small drop in quality.

Given the extreme diversity and noise in snippets, it is
astonishing that clear and often correct consensus can be
mined without the help of deep NLP, even for completely
ad-hoc queries.

2. TERMINOLOGY

2.1 Query
A QCQ has two main parts: a set of words or phrases,

and a quantity type specifier. Some words or phrases may
be marked compulsory with a prefixed ‘+’. The latter may
be unitless, if a count is desired, or have an unit. Some
example QCQs are shown in Figure 1. As with ordinary
Web queries, the onus of getting better snippets, through
the use of ‘+’ and phrases, lies with the user.

A third optional component of QCQs that gives additional
control is a user-defined relative width parameter r, where
0 ≤ r � 1, meaning that the user is looking for a quantity
interval [x, x′], such that x′ ≤ (1+r)x, which has strong col-
lective evidence from snippets. r is necessarily user-defined:
a QCQ about Olympic record times has a fundamentally
different expectation of precision compared to a QCQ about
the distance between the Sun and Pluto. Only the user can
provide that domain knowledge. In practice, a large number
of QCQs run well with a default setting like “r = 0.05”. In
any case, r is an upper bound on the relative width, and our
system will tighten the interval if it can.

2.2 Snippet (xi, zi)
A snippet is a suitably large window of tokens around

a candidate quantity which matches the unit specified in
the QCQ. A quantity scanner (Section 3.1) identifies token
segments that express quantities. The quantity, including
unit, is called xi for the ith snippet for a given query. The
surrounding text is turned into a suitable feature vector rep-
resentation zi ∈ Rd. (zi depends also on the query.)

The design of zi must consider the proximity between the
central quantity mention to snippet tokens that match query
tokens, and is described in detail in Section 3.2. Any snip-
pet that has one or more token matches with the query is
potentially a relevant snippet, and its quantity a candidate
quantity. Some sample relevant and irrelevant snippets for
the above QCQs are shown in Figure 1. The snippets make
clear the great variety of contexts in which plausible quan-
tities appear close to significant query words.

2

Quantity unit
Words, phrases
Interval width

Fetch pages
Tokenize zi

Annotate xi

Snippet
filter

Filtered
snippets

(zi, xi)

Browser UI for
annotation of yi

Labeled snippets
(zi, xi, yi)

Our training
algorithms Models w, ŵ

Our testing
algorithms

QCQ
Ground
truth x

E
va

lu
at

io
n

Web
Search

API
Hit URLs

7

1

234

5 6

Figure 2: Sketch of our QCQ system prototype. Processing stages are numbered from 1 onward.

2.3 Consensus
As is clear from the examples, QCQs are characterized by

an absence of an absolute or single truth. Our first impulse
was to model the quantity of interest as a random variable,
and build a system to return a distribution over it. But
the event space is too complex: it involves natural language
usage and extraction accuracy, among other uncertainties.
We therefore avoid generative models for quantities, and ex-
plore discriminative, collective ranking techniques for snip-
pets. Informally, a consensus interval is a tight range [x, x′]
of quantities that enjoys strong collective support from high-
scoring snippets. We will give more precise proposals in Sec-
tions 5 and 6. There, we will see that this simple notion of
consensus performs very well.

To be fair, consensus is not the only form of useful ag-
gregation; in some cases, it may be limiting or misleading.
E.g., plutonium has multiple isotopes with diverse half lives,
and a name may refer to many people with diverse birth
years. Our QCQ system performs reasonably despite such
ambiguity, because it reports (snippets from) not one but
a number of top-scoring x-intervals. Time-variant quanti-
ties offer another challenge. E.g., the QCQ +"bill gates",

assets, worth; USD may give an outdated answer, depend-
ing on Web coverage. A complete solution would require
“carbon dating”each snippet, which appears even more chal-
lenging than reliable timestamping of whole Web pages. The
causes of multi-valued answers have been analyzed in some
detail [15, 17].

3. QCQ SYSTEM AND TESTBED
In this section, we give an overview of our QCQ system,

sketched in Figure 21. We will first describe the modules for
annotating xi (Section 3.1) and turning snippet text into
zi (Section 3.2). Then we will describe how we collected
queries and ground truth yi for candidate snippets..

3.1 Quantity scanner for annotating xi

A quantity scanner annotates character spans that are
likely to be quantity mentions, which come in diverse forms.
Some have unit prefixes, like currency symbols. Some have
unit suffixes, like scientific measures. Some have exponent
modifiers, like “10 million liters” or “e50 million”. Units are
expressed diversely, e.g., ‘$’ vs. USD, ‘m’ vs. meter vs. metre.
Even the numerals are written in diverse styles. Scientific
quantities may be written without commas, commas after
every third digit, or at irregular spacing, as in “Rs 1,20,000”.
There may be spurious spaces before or after commas. Pe-
riods may end sentences or be decimal points. Very large or
small quantities may be written in mantissa-exponent form.
Small numerals like 1, 2, 30 may be written as words. 1889

1Details at http://www.cse.iitb.ac.in/~soumen/doc/QCQ

might be a unitless count or a year. ‘$’ may indicate different
currencies. xi may also be a range, e.g., 10–20 feet.

We used the rule-based JAPE engine, which is part of
the well-known GATE NLP package (http://gate.ac.uk/).
We compiled about 150 rules covering mass, mileage, power,
speed, density, volume, area, money, time duration, time
epoch, temperature length and so on. Augmenting our rule
base to capture more types of quantities should be straight-
forward. Manual spot checks on our annotator led to esti-
mates of precision, recall and F1 as 0.92, 0.97, 0.95. Luckily,
ranking intervals using consensus is robust to this small rate
of scanner glitches.

Unit normalization: In the example QCQs above, each
query has an associated specific unit (unless the answer is
a count). In a deployed system, more generic units should
be allowed, such as length in place of mile or km, or time
interval in place of hour or year. This would also assist
collecting consensus across candidate quantities expressed
in different units. Our prototype does not handle this issue,
except identifying different standard forms of a unit (e.g.
foot, feet, ft), but it can be added on easily.

3.2 Feature vector design for zi

We defined two families of features on (the query and)
snippet text: first, standard vector-space ranking features
[14, 13], and second, features that encode lexical proximity
between query word matches and quantity tokens [16, 6, 2].

3.2.1 Standard ranking features
Each snippet was characterized by the tokens in five fields

F : snippet, a window of 10 sentences above and below the
snippet, the text of the page from where the snippet is origi-
nated, the HTML title of the page, and the URL of the page.
For each of the five fields F , three features were added to
feature vector zi:
TFSum:

P
t∈q∩F TF(t, F)

IDFSum:
P

t∈q∩F IDF(t)

TFIDFSum:
P

t∈q∩F TF(t, F)IDF(t)

TF(t, F) is the term frequency of t in F and IDF(t) is the
standard IDF of t with respect to a reference corpus (union
of all documents over all queries). In addition, we used:
• Jaccard similarity between query and snippet tokens.
• Number of tokens in the snippet.

3.2.2 Lexical proximity features
Guided by earlier work on locality or proximity based

ranking [8, 6, 16, 2], we defined the proximity between the
mention of quantity xi and a query token match t in its
vicinity as the reciprocal of the number of tokens between
the mention of xi and t (zero if no t exists).

Queries have a variable number of tokens. Therefore we
define four proximity features aggregated over query tokens:

3

• Maximum proximity of xi to any query token.
• Proximity of xi to the rarest (largest IDF) query token.
• Proximity of xi to the smallest IDF query token.
• IDF-weighted average of proximity to all query tokens.

The weights in w corresponding to these proximity features
were among the highest when w was learnt using Rank-
SVM [10]. To keep our system robust and scalable, we
avoided deeper NLP techniques like learning to spot rela-
tions from dependency parse trees.

Altogether, we used 21 features: 4 proximity, 5 × 3 simi-
larity features and 2 other features.

3.3 QCQs with ground truth
We collected 162 QCQs from diverse sources. Each QCQ q

was collected along with ground truth quantity set Xq. Most
Xqs contained multiple values or ranges. Unless noted oth-
erwise, we report performance on the union of these QCQs.
Infobox: We created 40 QCQs by sampling Wikipedia In-

foboxes for numeric attributes of Wikipedia entities.
TREC-QA: We chose TREC-QA queries that had non-

unique quantity answers: 16 from TREC-QA 2004 and
61 from TREC-QA 2007.

Misc.: 9 queries were contributed by W&M [21]. 36 QCQs
were contributed by volunteers, who found ground truth
Xq through careful Web search.

Growing our QCQ set is limited only by snippet-labeling
effort (described next).

3.4 Snippet label yi collection
We used Web search APIs to collect snippets. Unlike QA-

oriented text indices, major Web search APIs do not allow
us to ask for documents containing, say, a distance in feet
within 20 tokens of the word elephant. This necessitated a
two-step filtering approach. In the first step, we sent words,
phrases and unit names in the QCQ to the engine. Re-
sponse URLs were fetched, tokenized, and quantities anno-
tated. Quantities that matched the QCQ unit, and were
within one sentence (or a maximum token window) from a
query word were retained, with their snippet context. We
retained a total of about 15,000 snippets over 162 queries.
We will make this data available in the public domain.

For training, a selection of 100 snippets per QCQ were
presented, using a browser-based GUI, for manual labeling
of yi ∈ ±1, the relevance of snippet i. Six volunteers, in-
cluding the authors, annotated the snippets. There were
(infrequent) inconsistencies between the contributed answer
quantities and yi labels. I.e., snippets with quantities not
in the ground truth ranges were sometimes marked relevant,
mostly because the Web has a more up-to-date ground truth.
We did not attempt to make these consistent, insisting that
a robust algorithm must take this in stride.

3.5 Response and comparative evaluation
QCQ systems may return a ranked list of snippets, with

the quantities highlighted (Figure 1). The advantage is that
the user can glance over and judge the snippets directly. Tra-
ditional criteria [13], such as Mean Average Precision (MAP)
or Normalized Discounted Cumulative Gain (NDCG) can
then be used directly. (Mean Reciprocal Rank or MRR is
not appropriate for QCQs because it does not give credit for
comprehensive coverage of consensus values.)

Alternatively, to display many promising quantities within
scarce real estate, QCQ systems may report a list of x-

intervals, each subject to the user-provided relative width
constraint. Evidence snippets can be shown if an interval is
clicked. Evaluating a list of intervals, or comparing a system
that ranks snippets with one that ranks intervals, are new
challenges. We will discuss these in Sections 5 and 6.

4. PRIOR APPROACHES AND INSIGHTS
We describe existing approaches that can be adapted for

QCQs, culminating in a comparison shown in Figure 5.

4.1 Using Web search directly
The minimal baseline (that any useful QCQ system must

beat) is to send QCQ words/phrases to a search engine, get
the top snippets, scan them for qualifying quantities with
proper units, and list them if they appear within a stipulated
distance of at least one query token. A listed quantity x is
judged correct if it matches (or is contained by) a ground
truth quantity (or interval).

Such snippet-level evaluation gives very poor MAP and
NDCG (below 0.15), partly because search engines have no
mechanism to promote to top ranks those snippets that con-
tain quantities of specified types and query words. We can
be generous and give credit for unsupported but correct
quantities anywhere on the pages (not just reported snip-
pets), which is what we show in Figure 5. We use two major
engines (called Web1 and Web2). Our algorithms are better
at promoting relevant snippets to top positions, comfortably
beating the generous evaluation of Web search engines.

4.2 Snippet-level RankSVM
We tried several techniques for learning [10, 22, 13] a

snippet-level w given snippets (zi, yi) (xi is ignored here),
with the score w>zi used for ranking snippets. We found
standard pairwise RankSVM [10] (formulation given below)
as good as direct optimizers of MAP [22] or NDCG [5].

min
w,ξ

1
2
w>w + C

X
i:yi=1

X
j:yj=−1

ξij subject to (1)

∀i s.t. yi = 1, ∀j s.t. yj = −1,


ξij ≥ 0

w>zi + ξij ≥ w>zj + 1P
i,j ξij upper bounds the number of pair preferences vio-

lated and C balances between violations and |w|. Figure 5
compares the accuracy of various baseline algorithms. (For
all RankSVM-style learning algorithms in this paper, five-
fold cross validation was used and the best value of C in (1)
was picked from among {10−3, 10−2, .1, 1, 10}.)

Figure 5 shows that RankSVM is generally better than
Web1 and Web2. As for MAP, remember that Web1 and
Web2 are given massive advantage while RankSVM snip-
pets are evaluated stringently. However, a closer look at
RankSVM (next) provides key actionable insight.

4.3 Vertical bands in w>zi vs. xi scatter
RankSVM considers only w>zi scores, but how do these

relate to corresponding xis? Figure 3 plots scatters of w>zi

(y-axis) against xi (x-axis) for three representative queries.
For visual uniformity across queries, both axes have been
scaled to [0, 1]. Snippets are also called “points”. If opti-
mization (1) were perfect, all good points would lie higher
along the y-axis than all bad points. This is rarely the
case: although zi was designed with considerable care, de-

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

w
^

T
.z

_i

+height +giraffe; foot

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

w
^

T
.z

_i

how fast does the +Concorde fly; mph

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

w
^

T
.z

_i

+cordless +phone +frequency; MHz

900MHz

49MHz

→ix →ix →ix

→
iz

w
T

Figure 3: Scatter of w>zi against xi for representative QCQs; relevant (irrelevant) points marked ‘+’ (‘◦’).

cent separation between relevant and irrelevant snippets is
never achieved on the basis of w>zi alone.

But the scatter plots also show a valuable clue: relevant
points often cluster in vertical bands. From Figure 3 and the
simplified sketch in Figure 4, it seems that for each query,
one of few upward-open rectangular strips capture most good
snippets with very few bad snippets.

It is natural to ask at this point why we cannot use deci-
sion trees (which naturally find rectangle discriminators) or
SVMs with nonlinear kernels. The reason is that the width
and location of the semi-open rectangles (equivalently, pa-
rameters of non-linear kernels) change from query to query.
Parameters learnt by decision trees or nonlinear SVMs will
not generalize across diverse queries. We need a more non-
parametric approach.

4.4 Wu and Marian’s system (W&M)
A first approach to integrating x from snippets is to take

weighted majority votes, similar to exploiting redundancy
in QA. W&M accumulates a score for each distinct x from
snippets where x occurs. The snippet score is determined
by the following considerations:
• It decays geometrically with the rank assigned by the

search engine to the source page.
• It decreases reciprocally with the number of candidate

quantities on the source page.
• It decreases exponentially with the number of dupli-

cate/mirror pages and pages from the same domain.
(Search engines already enhance diversity and elimi-
nate duplicates, so this rarely fires.)
• It decreases reciprocal to the shortest distance between

the quantity and a query token (lexical proximity).
Score aggregation happens only on exact equality of x. Fig-
ure 5 shows that W&M is consistently worse than Rank-
SVM. Often, relevant snippets are found at quite poor ranks,
because the whole-page ranking imposed by Web1 and Web2

ix

i
T zw

Rectangles
containing
relevant
snippets

Clouds of
irrelevant
snippets

Bottom
boundary

Interval projected on x

Figure 4: Our proposed “hypothesis class” of semi-
open rectangles.

are often not suited for QCQs. Recall again that Web1 and
Web2’s accuracy may be substantial overestimates.

4.5 Laplacian smoothing
A second way to combine xi and w>zi is via a graph

Laplacian approach [18]. Each snippet is made a node in
a graph G = (V, E). Each node/snippet has an associated
feature vector zi as before, inducing a (noisy) local score
w>zi. Meanwhile, the xi values at nodes are used to define
edges weights R(i, j), inversely related to |xi − xj |.

The formulation seeks a model w while assessing a loss
(fi−w>zi)

2 for deviations between final scores fi and local
scores, and a roughness loss

P
{i,j}∈E R(i, j)(fi−fj)

2, where

f ∈ Rn×1 is the column vector of final scores. Finally, there
is the usual training loss if the final score of a good snippet is
less than the final score of a bad snippet. Training involves
solving a quadratic program with linear constraints [18].

The design of edge weights R critically determines the
algorithm, but there is no generic guideline. We tried the
following reasonable definitions:
xi = xj equality: Following W&M’s majority semantics, we

define R(i, j) = 1 if xi = xj and 0 otherwise.

|xi − xj | distance: R(i, j) = max
n

0, 1− |xi−xj |
|xi|+|xj |

o
|xi − xj | decay: R(i, j) is defined as exp(−s‖xi − xj‖) or

exp(−s(xi−xj)
2), where s is a tuned spread param-

eter (inverse variance).
Snippet cosine: Following the pseudorelevance feedback

[18] setting, we ignore xi, xj and use cosine similarity
between the text of snippets i and j as R(i, j). Snip-
pet text is represented as a binary vector over token
space. The intuition is that if snippet texts for i and
j are similar, they should have similar score.

Figure 5 summarizes accuracies of all approaches discussed
thus far. Laplacian smoothing with the “decay” option gives
modest gains over Web1, Web2, RankSVM, and W&M.
The gains are limited by two factors. First, the Laplacian
formulation assesses the roughness penalty on all edges, even
those between snippets putatively labeled irrelevant. For

MAP NDCG@1 NDCG@5 NDCG@10

0.375 0.338 0.362 0.380
0.350 0.413 0.357 0.377
0.369 0.450 0.412 0.406
0.306 0.247 0.303 0.322

Equality 0.384 0.369 0.353 0.382
Distance 0.407 0.413 0.401 0.420
Decay 0.421 0.433 0.422 0.435
Cosine 0.375 0.438 0.396 0.405

Web1
Web2

La
pl

ac
ia

n

RankSVM
W&M

Figure 5: Initial results (bold =⇒max in column).

5

1: inputs: snippet set S with xi and w>zi values, interval
width tolerance parameter r

2: sort snippets S in increasing xi order
3: for i = 1, . . . , n do
4: for j = i, . . . , n do
5: if xj < (1 + r)xi then
6: let I = [xi, xj]
7: merit ← GetIntervalMerit(S, I)
8: maintain intervals with top-k merit values
9: for surviving intervals I in decreasing merit order do

10: present snippets in I in decreasing w>zi order

Figure 6: Interval merit enumeration.

QCQ, we should favor smoothness of fi only among relevant
snippets. Second, there is no ready way to tune the width
parameter s reliably across diverse queries and associated
quantities. Our algorithms get around these issues.

5. LISTING AND SCORING INTERVALS
Instead of scoring and ranking snippets, we shift our fo-

cus to quickly enumerating and scoring rectangular regions
as shown in Figure 4. We begin with searching for the posi-
tion and width of a promising rectangle on the x-axis, i.e.,
searching over intervals I = [x, x′], with x′ ≤ (1 + r)x as
specified in Section 2.1. We will overload I to also mean a
set of snippets. A snippet si = (xi, zi) is said to belong to I
if xi ∈ I. In case a snippet mentions a range (such as 10–20
feet), the snippet belongs to I if the range is contained in I.

For a query q with nq snippets, there are at most
`

nq+1
2

´
functionally distinct (in terms of the snippets they contain)
intervals on the x axis. Some of these intervals I = (x, x′)
are too wide (x′ > (1 + r)x) and can be discarded. Usually
r � 1, so the enumeration of valid candidates I ∈ Ir can be
done efficiently using a left-to-right sweep that takes close
to linear time in practice. For simplicity Figure 6 shows a
naive O(n2

q) enumeration of intervals.
Figure 4 suggests that we should also search over all pos-

sible bottom boundaries of I. In practice, this makes negli-
gible difference. Our results in Section 7 may explain why
this is the case.

5.1 Merit functions GetIntervalMerit(S, I)
As we enumerate over intervals I, we need to use the sig-

nal from w>zi for i ∈ I and potentially i 6∈ I, to evaluate
GetIntervalMerit(S, I). If there is any useful signal in w>zi,
we should prefer intervals I such that points in I have gener-
ally larger values of w>zi than points not in I. Accordingly,
we provide three choices of merit (to maximize over I):P

i:xi∈I w>zi (Sum)P
i∈I

P
j 6∈I(w

>zi − w>zj) (Diff)P
i∈I

P
j 6∈I max

˘
0, w>zi − w>zj

¯
(Hinge)

Observe that terms in (Diff) can be positive or negative;
favorable and unfavorable score pairs can cancel out. This
is prevented in (Hinge). In machine learning one minimizes
hinge loss rather than maximize hinge gain, but in QCQ,
the former leads to tiny proposed relevant clusters that are
often incorrect.

5.2 Snippet-level evaluation experiments
We compare three algorithms: the best two approaches

from Figure 5 (RankSVM and Laplacian Decay) and in-

0.30

0.35

0.40

0.45

0.50

0 1 2 3 4 5 6 7 8 9 10r

M
A

P

Diff

Hinge

Sum

RankSVM

Decay

Figure 7: Interval merit evaluation (MAP).

0.30

0.35

0.40

0.45

0.50

0.55

1 2 3 4 5 6 7 8 9 10Rank
N

D
C

G
@

R
an

k

Diff
Hinge
Sum
RankSVM
decay

Figure 8: Interval merit evaluation (NDCG).

terval merit enumeration (for which the snippet-level model
w was trained using RankSVM). For MAP (Figure 7), we
vary interval width tolerance r (shown as a percentage). For
NDCG (Figure 8) we hold r = 8% and report NDCG at
ranks 1 . . . 10. Note that r = 0 means an interval of width
zero, but this can contain multiple snippets if they mention
the exact same quantity. RankSVM and Laplacian Decay
do not depend on r.

Interval merit beats all baselines. First, interval enumer-
ation with (Diff) beats all other approaches by a wide mar-
gin. Interval enumeration with (Hinge) is second, still beat-
ing all others.

Effect of r. (Diff) and (Hinge) show significant boost in ac-
curacy as r is increased beyond 0. (Diff) is stable between
r = 3% and 9%. This is direct evidence that robust aggre-
gation over xi values is critical to success.

(Diff) better than (Hinge). Occasionally, avoiding deep NLP
leads to systematic pollution from irrelevant but dense inter-
vals. E.g., for the QCQ +giraffe +height: foot, an ir-
relevant cluster (as per predominant human interpretation)
develops around 6 feet thanks to snippets like this: “newborn
giraffe calves begin their lives by falling from a height of 6
feet”, “A young giraffe has to survive a fall of six feet”, or
“A giraffe’s legs alone are taller than many humans—about
6 feet”. These intervals have a lower average w>zi and
(Diff) reveals this better than (Hinge).

6. LEARNING TO RANK INTERVALS
In the previous section we proposed a way to score in-

tervals, based on aggregating w>zi scores of snippets inside
and outside the intervals. In this section we design a learner
that directly learns to rank intervals instead of individual

6

snippets.
As in Section 5, we will use relative tolerance r to define
Ir, the set of candidate intervals satisfying r. We already
know that |Ir| = O(n2

q).
Every candidate interval I ∈ Ir will be represented by an

interval feature vector ẑI . The interval ranker will learn a
corresponding scoring model vector ŵ.

6.1 Interval features ẑI

Unlike in snippet-level RankSVM, we are at liberty to
define collective features of intervals, rather than just aggre-
gate {zi : xi ∈ I}, in simple ways as in Section 5. Specifi-
cally, a simple average of feature vectors may fail to capture
certain significant clustering in the zi space. There may be
much stronger clues to guess how good an interval is.

For example, an interval is good if most of the points in
the interval are relevant to the query, if the interval has high
merit (as defined in Section 5.1) and most of the points in the
interval have consensus on a quantity or there are relative
few distinct quantities. We capture these clues by design-
ing a set of additional features that are collective across an
interval. We call them interval features:

1. Whether all snippets in I contain some query word
2. Whether all snippets in I contain the minimum IDF

query word
3. Whether all snippets in I contain the maximum IDF

query word
4. Number of distinct words found in snippets in I
5. Number of words that occur in all snippets in I
6. One minus the number of distinct quantities mentioned

in snippets in I, divided by |I|
7. Number of snippets in I, divided by nq

8. Three features corresponding to the three merit func-
tions defined in Section 5.1, which require w to com-
pute.

Apart from the above interval features we also append to ẑI

the vector average of the feature vectors zi with i ∈ I.

6.2 Interval relevance and preferences
Recall that we want to learn to compare intervals, but

our ground truth yi is collected over snippets. The next
piece is to define a relevance score over each interval I ∈ Ir.
We assign a relevance score to an interval I based on the
fraction of relevant snippets in I. I.e., if I has n+

I relevant
snippets and nI snippets overall, then its relevance score is
defined as n+

I /nI . Thus, snippet-level yi labels determine
the relevance score of intervals.

For two intervals I and I ′, if the relevance score of I is
larger than that of I ′, we assert a pairwise preference I � I ′

between the intervals. These interval comparisons will re-
place individual snippet comparisons in (1). (Other algo-
rithms [22, 5, 13] may be used in place of RankSVM.)

Initial experience with the algorithm shown in Figure 9
suggested that we were generating too many preference pair
constraints based on insignificant interval relevance differ-
ences. We improved both training speed and accuracy by
discretizing interval relevance to an ordinal scale of 0–10.
In other words, the relevance of an interval was defined as
b10n+

I /nIc. We tried between 5 and 10 ordinal levels and
the accuracy was not very sensitive to the number of levels.

Suppose the interval ranker learns model ŵ. Given a test
query, Ir is enumerated as before. Then the intervals in
Ir are ranked by decreasing ŵ>ẑI . If a snippet list must

1: inputs: snippets si with labels yi, tolerance r
2: for each interval I ∈ Ir do
3: compute the relevance of I using snippet labels yi

4: compute feature vector ẑI

5: generate interval pair preferences I � I ′

6: set up a RankSVM problem involving intervals:

min
ŵ,ξ̂

1
2
ŵ>ŵ + C

X
I�I′

ξ̂I,I′ s.t. (IntervalRank)

∀I � I ′ : ŵ>ẑI − ŵ>ẑI′ ≥ 1− ξ̂I,I′ ; ξ̂I,I′ ≥ 0

7: train using RankSVM to get ŵ
8: return ŵ

Figure 9: Interval training algorithm.

be provided, we run down the intervals in decreasing ŵ>ẑI

order, and order snippets within each interval using snippet
score w>zi.

6.3 Experimental results

6.3.1 Snippet-level comparison
We compare the best algorithm from Section 5, viz., (Diff)

merit score for intervals, against the (IntervalRank) algo-
rithm presented in this section.

Figure 10 compares MAP obtained by IntervalRank vs.
Diff as width tolerance r is varied. IntervalRank is bet-
ter, reaching a MAP of 0.511 against 0.421 by Laplacian
smoothing and 0.369 by RankSVM. The story with NDCG
(Figure 11) is almost similar, the gains increasing with rank.
IntervalRank achieves NDCG@10 of 0.513 against 0.435 by
Laplacian smoothing and 0.406 by RankSVM.

We did an ablation study by removing one feature from all
ẑI at a time. The maximum MAP reduction was for feature
#6. This shows that aggregating evidence from snippets
supporting intervals is critical.

6.3.2 Comparison with TREC-QA participants
Direct comparison is impossible: the corpora are different.

In terms of precision-at-1, for our sample of TREC-QA 2007,

0.45

0.47

0.49

0.51

0 1 2 3 4 5 6 7 8 9 10r

M
A

P

IntervalRank
Diff

Figure 10: Comparison of Merit-Diff and interval
ranking algorithms (MAP).

0.48

0.49

0.50

0.51

0.52

1 2 3 4 5 6 7 8 9 10
Rank

N
D

C
G

@
R

an
k IntervalRank Diff

Figure 11: Comparison of Merit-Diff and interval
ranking algorithms (NDCG).

7

Intervals →
Algo, measure 1 2 3 4 5

IntervalRank recall 0.521 0.581 0.637 0.647 0.685
Lapl. decay recall 0.510 0.569 0.614 0.634 0.655
RankSVM recall 0.458 0.514 0.554 0.596 0.618
IntervalRank prec 0.443 0.432 0.416 0.388 0.371
Lapl. decay prec 0.382 0.367 0.350 0.330 0.316
RankSVM prec 0.330 0.312 0.298 0.294 0.284

Figure 12: Interval-oriented evaluation.

we are second-best. For our sample of TREC-QA 2004, we
are at rank 5 out of 63 teams. While not very meaning-
ful for QCQ, this shows that our system is competitive wrt
precision-at-1.

6.3.3 Interval-oriented evaluation
Our algorithms rank intervals, but to evaluate them wrt

snippet-level yi ground truth, we iterated through intervals
by decreasing ŵ>zI , listing snippets i ∈ I by decreasing
w>zi. Snippet-level NDCG or MAP is suitable when users
inspect snippet lists [19]. If a QCQ system presents a list
of intervals, the user may inspect at most a small number
of evidence snippets per interval, so snippet-level MAP or
NDCG may not accurately reflect cognitive burden. We pro-
pose recall and precision criteria that recognize an interval,
not a snippet, as a unit of attention. Suppose there are n+

snippets marked relevant for a QCQ, and our algorithm A
outputs I1, . . . , Im, where Ij contains nj snippets, of which
kj are good. The interval-oriented precision of A at interval
rank j is defined as (k1 + · · · + kj)/(n1 + · · · + nj). The
interval-oriented recall is defined as (k1 + · · ·+ kj)/n+. To
compare with a snippet-listing algorithm A′ we simply line
up the first n1+· · ·+nj snippets, assume that A′ reported in-
tervals I ′1, . . . , I

′
m, and evaluate similar to I1, . . . , Im. Note

that IntervalRank cannot cheat at recall using arbitrarily
large r, because precision will plummet. Results in Fig-
ure 12 show that collective interval scoring and presentation
can increase both recall and precision, particularly for the
top few intervals. Laplacian decay is between RankSVM
and IntervalRank.

7. QUANTITY-IMPUTED LABELING
We have assumed throughout that the label yi is known

for each training snippet (“complete”supervision). However,
it is much more natural and efficient to train a QCQ system
based on ground truth quantity set Xq and zi. Another
advantage of this form of “partial” training is that we can
semi-automatically glean training data from social media,
such as Wikipedia Infoboxes.

Suppose we sloppily impute yi values using Xq: any snip-
pet with xi ∈ Xq, or contained in a range in Xq, is consid-
ered relevant. These imputed ỹis may conflict with “true”
yis (if available). How drastically might w, ŵ deteriorate
because of using ỹis to train our system in place of yis?

We sampled queries leading to 14,562 yi-labeled snippets.
ỹi gave only 571 false positives and 395 false negatives.
These modest fractions may explain why modeling the bot-
tom boundary of rectangles in Figure 4 did not make a sig-
nificant difference. Figure 13 shows the effect of imputed
training on test MAP score. The drop in test accuracy is
very mild. Our algorithm continues to beat all baselines.

yi known yi imputed
RankSVM 0.369 0.361
Merit-Diff 0.487 0.475
IntervalRank 0.511 0.480

Figure 13: Effect of imputation on test MAP.

8. CONCLUSION
We introduced QCQs, and proposed algorithms for return-

ing consensus intervals in response to QCQs. We showed
that corroborative ranking of intervals is more accurate than
ranking snippets independently. We next hope to improve
our system by replacing search APIs with our own quantity
index on Web-scale corpora.

9. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: Extracting relations

from large plain-text collections. In ICDL, pages 85–94, 2000.

[2] K. Balog, L. Azzopardi, and M. de Rijke. A language modeling
framework for expert finding. Information Processing and
Management, 45(1):1–19, 2009.

[3] R. C. Bunescu and R. J. Mooney. A shortest path dependency
kernel for relation extraction. In EMNLP Conference, pages
724–731. ACL, 2005.

[4] M. J. Cafarella, C. Re, D. Suciu, O. Etzioni, and M. Banko.
Structured querying of web text: A technical challenge. In
CIDR, pages 225–234, 2007.

[5] O. Chapelle, Q. Le, and A. Smola. Large margin optimization
of ranking measures. In NIPS 2007 Workshop on Machine
Learning for Web Search, 2007.

[6] T. Cheng, X. Yan, and K. C. Chang. EntityRank: Searching
entities directly and holistically. In VLDB Conference, pages
387–398, Sept. 2007.

[7] C. L. A. Clarke, G. V. Cormack, and T. R. Lynam. Exploiting
redundancy in question answering. In SIGIR, pages 358–365,
2001.

[8] O. de Kretser and A. Moffat. Effective document presentation
with a locality-based similarity heuristic. In SIGIR
Conference, pages 113–120, 1999.

[9] H. Fang and C. Zhai. Probabilistic models for expert finding. In
ECIR, pages 418–430, 2007.

[10] T. Joachims. Optimizing search engines using clickthrough
data. In SIGKDD Conference, pages 133–142. ACM, 2002.

[11] T. Joachims, H. Li, T.-Y. Liu, and C. Zhai, editors. Learning
to Rank for Information Retrieval, Amsterdam, 2007. SIGIR
Workshop.

[12] J. Ko, E. Nyberg, and L. Si. A probabilistic graphical model for
joint answer ranking in question answering. In SIGIR
Conference, pages 343–350, 2007.

[13] T.-Y. Liu. Learning to rank for information retrieval. Tutorial
at SIGIR, 2008.

[14] T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. LETOR:
Benchmark dataset for research on learning to rank for
information retrieval. In LR4IR Workshop, 2007.

[15] V. Moriceau. Numerical data integration for cooperative
question-answering. In EACL Workshop on Knowledge and
Reasoning for Language Processing, pages 42–49, 2006.

[16] D. Petkova and W. B. Croft. Proximity-based document
representation for named entity retrieval. In CIKM, pages
731–740. ACM, 2007.

[17] J. Prager, S. Luger, and J. Chu-Carroll. Type nanotheories: a
framework for term comparison. In CIKM, pages 701–710.
ACM, 2007.

[18] T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, W.-Y. Xiong, and
H. Li. Learning to rank relational objects and its application to
Web search. In WWW Conference, pages 407–416, 2008.

[19] S. Robertson. A new interpretation of average precision. In
SIGIR Conference, pages 689–690. ACM, 2008.

[20] F. Wu and D. S. Weld. Automatically semantifying Wikipedia.
In CIKM, pages 41–50, 2007.

[21] M. Wu and A. Marian. Corroborating answers from multiple
web sources. In WebDB: Tenth International Workshop on
the Web and Databases, 2007.

[22] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support
vector method for optimizing average precision. In SIGIR
Conference, pages 271–278, 2007.

8

