Structured Learning for
Non-Smooth Ranking Losses

Soumen Chakrabarti

With Rajiv Khanna, Uma Sawant,
Chiru Bhattacharyya

Learning to rank: Training, testing

» A set of queries
» Each query g comes with a set of documents

» Each doc represented as a feature vector
Xqi € RY d~50...300

» Doc x,; may be good (relevant) or bad

(irrelevant) wrt q: z,; € {0,1}

n:; good docs D ng bad docs D

v

Learner estimates model w € R?

v

v

During testing, good/bad not known

Score of doc is dot product f,,(xg) = w ' xy

v

v

Sort docs by decreasing score, present top-k

2790

| oss functions

» Good doc index g, bad doc index b
» Ideal w ensures f(xgg) > f(xqp) for all g, b

» If not possible, which of many imperfect ws
should we pick?

» Depends on design of loss function
Elementwise: Charge for regression error:

Zi(f(xqi) - Zqi)2

Pairwise: Charge for wrong pair orderings:

> plf (Xag) < f(Xgp)]
Listwise: Loss is a function of ideal ordering and
sorted order defined by scores f(xg;)

Listwise loss function

v

Xq € X4t all document vectors for query q

Yq: space of total or partial orders
> y is a permutation: |V,| = (nf + n;)!

—1, if g after b e
’)’gb:{ — |Vl =27

v

+1, if g before b

v

Y, perfect ranking for query g (all good before
any bad; order among good or bad unimportant)

v

y: some other total or partial order on xgs
» General loss function A(yy, y)
¢ Can express reward for good docs at top ranks

© Rank known only via sort, .*. loss not continuous,
differentiable or convex in w

A 70

Non-smooth loss: Earlier efforts

» Bound by elementwise regression
loss (MCRANK)

» Bound by pairwise hinge loss S —
> imymax{0,1—f(x) +f0x)} T ./ .
(RANKSVM)

» Pairwise loss weighted by function ™ ™ ™ ™ "

of current ranks (LAMBDARANK) . - .
» Probability distribution over g, e H z.
rankings (LISTNET) . | R mﬂ Ll

» Model f(x;) as mean of normal
score distribution, map scores to
expected ranks (SOFTRANK)

5 /20

Listwise feature map ¢(xg, y) € R?

» Rank-sensitive aggregation of doc feature vectors

E-g-, ¢po X y Zng

(intuition: want y, = +1 and w'x; > w'x)
» When testing, predict arg max, w' ¢(xg, y)
» For ¢, equivalent to sort by decreasing w ' x;
» For training, find w so that, Vq, Vy # y;:

w'o(xg,y5) + &g = A, y) + w d(xq, y)

» Usual SVM objective w'w + C ¢,

Cutting plane algorithm overview

v

Problem: Exponential number of constraints
Begin with no constraints and find w

v

Look for violators

v

+e <Alyg.y) +w' d(xq.y)

Vv
maximize this

Add these to the set of constraints and repeat

For fixed €, Tsochanteridis+ showed that a
constant number of rounds give e-approximate
solution

v

v

7 720

Loss-augmented argmax: NDCG

» Recall z;; = 0 for bad, 1 for good doc

» Rank discount D(r) decreases with rank r
» y[i] = doc at rank i under permutation y
» y* puts all good docs at top ranks

DCG(y) = Zogi<k Zw[i]D(’.)
NDCG(y) = DCG(y)/DCG(y")
Andcg(y*v.y) =1- NDCG(y)

Contribution: Simple, O(n, log ng)-time argmax
routine for ¢p, and Apgeg, leading to SVMNDCG

Generic template to max w' ¢ + A

» Assume two levels of relevance z; € {0, 1}

» A unchanged if two good (or bad) docs swapped

.. There exists an optimal y that can be formed by
merging good and bad in decreasing score order

Bad docs in decreasing score order >

0 b

& J3pI0 9109S

(@)

& 0
o

2 |
o

o

@
Py
)

Q.
2
g k1
g ki
g

@,

>

«

k-1 ¢ 2k n—1

« gt good just before bt bad doc
« l.e., g+b docs before gt" good

» Update contribs to ¢ and A
based on previous row

aQ/720

s training on “true” A always best?

OHSUMED TD2003 TD2004 TREC2000 TREC2001

5 3 g 3 5 3 s 3 S 3

E 8 % & 8 % & 8 %1% 8 %l& 8 %

= pd = = Z > = 4 = = zZ = = b4 =
MRR 0.80 0.62 0.57]0.63 0.41 0.33]0.63 0.44 0.38]0.67 0.41 0.24]0.64 0.43 0.23
NDCG* 0.82 0.64 0.58]|0.60 0.40 0.31]0.61 0.49 0.40]0.69 0.46 0.27]0.62 0.44 0.26
DORM 0.81 0.64 0.58]0.59 0.36 0.29]0.47 0.34 0.30]0.66 0.41 0.24]10.62 0.44 0.25
MAP 0.81 0.64 0.59|0.62 0.41 0.31|0.61 0.50 0.41]10.70 0.47 0.28]0.64 0.45 0.27

MRR: Max mean reciprocal rank of #1 good doc
NDCG: Maximize NDCG

DORM: Ditto; Hungarian docs-to-ranks assignment
(Chapelle+2007)

MAP: Maximize mean average precision
(Yue+2007)

10 720

» Observation: Best test accuracy for a given
criterion may be obtained with a different A
during training!

» Mismatch between ¢ and A make constraints
hard to satisfy except with large slacks &,

What use is a perfect loss
function, if no matching
feature map is to be found?

11 720

Tailoring ¢ to A: MRR

> Opo(X,¥) = g b Yeb(Xg — Xb) looks symmetric
across good-bad pairs

> ¢po can also be written as >, >, (X — Xb)
» Let r; be rank of first good doc

> (Roughly speaking) Ay =1—1/n

» l.e., no credit for 2nd and subsequent good docs
» ¢(x,y) should only focus on first good doc

» Accordingly, we define

Cbmrr(xa y) = Z (Xb - Xgo()/))’

b:b>—go(y)

where go(y) is the first good doc in ordering y

Modified arg max, W' Omre + D algo

| 4

2

v

1,1/2,1/3,1/k,0 only possible values of A,

For a given value of MRR, say 1/r, first good doc
must be at rank r

For a given configuration b,.... b, g ,7,7. ...
\Hfl_/ N N———
r— r rest

need to fill good and bad slots to maximize w' ¢
Bad docs b at 1,...,r — 1 with largest w'x,
Good doc g with smallest w'x, at position r

Add up A and w'¢ for each possible A and take
maximum

(MRR = 0 handled separately)

127920

Benefits of using ¢, with Ay

" - 2 - -TD2004 phi_po —&——TD2004 phi_mrr
DE:' - {1+ - -TD2003 phi_po ——TD2003 phi_mrr

08 O - -OHSUMED phi_po —@— OHSUMED phi_mrr

0.7 1

0.6 +

0.5 1

0.4

0.3

0 1 2 3 4kxkb5 6 7 8 9

> ¢mer far superior to ¢p, (originally used for AUC)
» No ¢ngeg found yet S

14 720

Optimization health

) 1E-2 svmC 1E+0 1E+2 1E+4
‘ ‘ ‘ 1E+0
__ 08 [——DORM
T —— SVMmap
3 —&— SVMmrr I o | =
5 061 | ——SVMndcg —e—DORM
= —%—SVMauc b
[s}

N
—#—SVMmap | 1E-4 <§
—4&— SVMmrr -
—>%—S8VMndcg| | 1E-6

0.2+ —¥— SVMauc

0.01 0.1 1 svmC 10 100

» w = 0 is always a (useless) solution

» We broke down a nasty optimization into a
convex QP and a simple argmax problem

» How much can we reduce the objective compared
to w = 0 as we increase C?

» How does ||w/||, grow with C?

18 790

What use is a library of
perfect loss functions, if we
have no idea which A users
want?

» MRR suited for navigational queries
» NDCG suited for researching a topic
» Both kinds of queries very common

v

Must hedge our bets

16 720

Train for multiple As: SVMCOMBO

» Can a single w to do well for many As?

argmin,..g wiw+ 5, Cg|—clg| > £ st
V0, q,Yy # ya o w'6dg(y) = Dilys,y) —

¢ ranges over loss types NDCG, MRR, MAP, ...
» Empirical risk (training error)

R(w,A) = \Q| Z A(yq7 Fur (X))
» Can show

X0 Cirgr Xq€q = Xy R(w, A) = R(w, max, &)

» l.e. learning minimizes upper bound on worst loss

17 79290

Test

accuracy vs. training loss function

OHSUMED TD2003 TD2004 TREC2000 TREC2001
o £ o 2 o 2 o £ o £
- (O] - (O] = (O] - (O] - (O]
© a4 © x [h'4
r 8 2|z 8 % z B |l z 8 % z 8 %
= Z = = Z = = Z = = b4 = = Z =
AUC 799 .635 .582| .510 .349 .256] .639 .501 .420] .607 .448 .267| .632 .441 .264
MAP .808 .642 .586] .618 .411 .314]| .614 .496 .412] .696 .469 .277] .636 .450 .272
NDCG .790| .636 .581] .587 .372 .302] .631 .457 .374] .517 .323 .175] .608 .356 .171
NDCG-NC 818 .640 .582| .595 .404 .306] .611 .486 .404] .685 .455 .265| .624 .443 .264
MRR 795 623 .570] .628 .405 .330] .629 .441 .383] .670 .410 .244] .643 .426 .230
COMBO 813 .635 .578| .667 .434 .345] .647 .458 .384] .695 .465 .277| .647 .449 .272
DORM 807 .637 .583| .587 .362 .290] .474 .340 .297] .662 .413 .243| .621 .435 .250
McRank 701 565 .527] .650 .403 .232] .588 .529 .453| NS
» Row: training As, column: test criterion
» SVMcoMBO, SVMMAP good across the board
» Did not tune C; yet
>

Listwise As better than elementwise or pairwise

192 79°0

SV MNDCG speed and scalability

300000

250000
200000
150000
100000

50000

mQP
O ArgMax

0 e B e |
[a] [se] < [=] 2] <
w 8 8 w <1 8
A s] S s I]
L8| R |Bl3 |8 |
£ I I
T o Algos, O
£ DORM DataSets gymndcg
% —
) Qo - 0]
X i w4 &) -
Z Z, Z, a =
o2 E| E| 2
s 2| g2 g g
Dataset = = = n %]
OHSUMED | 1034 67 1102 4.8 | 30.6
TD2003 9730 383 | 10113 14. 125
TD2004 8760 548 9308 19.1 148

SVMCcOMBO is
» 15x faster than

DORM

» 100x faster than
McRANK

while being more
accurate in over 75% of
data sets

10 720

Takeaway

New efficient learners for MRR and NDCG
Asserting the “correct” A may not be best
Satisfy multiple As using SVMCOMBO
Listwise structured ranking is faster

v

v

v

v

v

And frequently more accurate than competition

Future work

Design ¢s better tailored to respective As

v

Evaluate on larger data sets

v

Diversity and bypass rates

v

Is convexity overrated?

v

270 /20

