
Structured Learning for
Non-Smooth Ranking Losses

Soumen Chakrabarti

With Rajiv Khanna, Uma Sawant,
Chiru Bhattacharyya

1 / 20

Learning to rank: Training, testing
I A set of queries

I Each query q comes with a set of documents

I Each doc represented as a feature vector
xqi ∈ Rd ; d ≈ 50 . . . 300

I Doc xqi may be good (relevant) or bad
(irrelevant) wrt q: zqi ∈ {0, 1}

I n+
q good docs D+

q ; n−q bad docs D−
q

I Learner estimates model w ∈ Rd

I During testing, good/bad not known

I Score of doc is dot product fw(xqi) = w>xqi

I Sort docs by decreasing score, present top-k

2 / 20

Loss functions
I Good doc index g , bad doc index b

I Ideal w ensures f (xqg) > f (xqb) for all g , b

I If not possible, which of many imperfect ws
should we pick?

I Depends on design of loss function

Elementwise: Charge for regression error:∑
i

(
f (xqi)− zqi

)2

Pairwise: Charge for wrong pair orderings:∑
g ,b[[f (xqg) < f (xqb)]]

Listwise: Loss is a function of ideal ordering and
sorted order defined by scores f (xqi)

3 / 20

Listwise loss function
I xq ∈ Xq: all document vectors for query q
I Yq: space of total or partial orders

I y is a permutation: |Yq| = (n+
q + n−q)!

I ygb =

{
−1, if g after b

+1, if g before b
— |Yq| = 2n+

q n−q

I y ∗q : perfect ranking for query q (all good before
any bad; order among good or bad unimportant)

I y : some other total or partial order on xqs

I General loss function ∆(y ∗q , y)

⊕ Can express reward for good docs at top ranks

	 Rank known only via sort, ∴ loss not continuous,
differentiable or convex in w

4 / 20

Non-smooth loss: Earlier efforts

I Bound by elementwise regression
loss (McRank)

I Bound by pairwise hinge loss∑
i�j max{0, 1− f (xi) + f (xj)}

(RankSVM)
I Pairwise loss weighted by function

of current ranks (LambdaRank)
I Probability distribution over

rankings (ListNet)
I Model f (xi) as mean of normal

score distribution, map scores to
expected ranks (SoftRank)

�

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Score s

p
(s

)

0 1 2
0

0.2

0.4

0.6

0.8

1

Rank r1

p
(r

1
)

0 1 2
0

0.2

0.4

0.6

0.8

1

Rank r2

p
(r

2
)

0 1 2
0

0.2

0.4

0.6

0.8

1

Rank r3

p
(r

3
)

s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3s1 s2 s3

�

5 / 20

Listwise feature map φ(xq, y) ∈ Rd

I Rank-sensitive aggregation of doc feature vectors

E.g., φpo(x , y) =
∑
g ,b

ygb(xg − xb)

(intuition: want ygb = +1 and w>xg > w>xb)

I When testing, predict arg maxy w>φ(xq, y)

I For φpo, equivalent to sort by decreasing w>xqi

I For training, find w so that, ∀q, ∀y 6= y ∗q :

w>φ(xq, y
∗
q) + ξq ≥ ∆(y ∗q , y) + w>φ(xq, y)

I Usual SVM objective w>w + C
∑

q ξq

6 / 20

Cutting plane algorithm overview
I Problem: Exponential number of constraints

I Begin with no constraints and find w

I Look for violators

w>φ(xq, y
∗
q) + ξq+ε < ∆(y ∗q , y) + w>φ(xq, y)︸ ︷︷ ︸

maximize this

I Add these to the set of constraints and repeat

I For fixed ε, Tsochanteridis+ showed that a
constant number of rounds give ε-approximate
solution

7 / 20

Loss-augmented argmax: NDCG
I Recall zqi = 0 for bad, 1 for good doc

I Rank discount D(r) decreases with rank r

I y [i] = doc at rank i under permutation y

I y ∗ puts all good docs at top ranks

DCG(y) =
∑

0≤i<k zq,y [i]D(i)

NDCG(y) = DCG(y)/DCG (y ∗)

∆ndcg(y
∗, y) = 1− NDCG(y)

Contribution: Simple, O(nq log nq)-time argmax
routine for φpo and ∆ndcg, leading to SVMndcg

8 / 20

Generic template to max w>φ + ∆
I Assume two levels of relevance zqi ∈ {0, 1}
I ∆ unchanged if two good (or bad) docs swapped

∴ There exists an optimal y that can be formed by
merging good and bad in decreasing score order

Bad docs in decreasing score order 

0 b k−1 ≥k … n−−1

G
o

o
d
 d

o
c
s
 in

 d
e
c
re

a
s
in

g

s
c
o

re
 o

rd
e
r


0



g

k−1



n+−1

• gth good just before bth bad doc

• I.e., g+b docs before gth good

• Update contribs to and 

based on previous row

9 / 20

Is training on “true” ∆ always best?

M
R

R
1
0

N
D

C
G

1
0

M
A

P

M
R

R
1
0

N
D

C
G

1
0

M
A

P

M
R

R
1
0

N
D

C
G

1
0

M
A

P

M
R

R
1
0

N
D

C
G

1
0

M
A

P

M
R

R
1
0

N
D

C
G

1
0

M
A

P

MRR 0.80 0.62 0.57 0.63 0.41 0.33 0.63 0.44 0.38 0.67 0.41 0.24 0.64 0.43 0.23

NDCG* 0.82 0.64 0.58 0.60 0.40 0.31 0.61 0.49 0.40 0.69 0.46 0.27 0.62 0.44 0.26

DORM 0.81 0.64 0.58 0.59 0.36 0.29 0.47 0.34 0.30 0.66 0.41 0.24 0.62 0.44 0.25

MAP 0.81 0.64 0.59 0.62 0.41 0.31 0.61 0.50 0.41 0.70 0.47 0.28 0.64 0.45 0.27

OHSUMED TD2003 TD2004 TREC2000 TREC2001

MRR: Max mean reciprocal rank of #1 good doc

NDCG: Maximize NDCG

DORM: Ditto; Hungarian docs-to-ranks assignment
(Chapelle+ 2007)

MAP: Maximize mean average precision
(Yue+2007)

10 / 20

I Observation: Best test accuracy for a given
criterion may be obtained with a different ∆
during training!

I Mismatch between φ and ∆ make constraints
hard to satisfy except with large slacks ξq

What use is a perfect loss
function, if no matching
feature map is to be found?

11 / 20

Tailoring φ to ∆: MRR
I φpo(x , y) =

∑
g ,b ygb(xg − xb) looks symmetric

across good-bad pairs
I φpo can also be written as

∑
g

∑
b:b�g(xg − xb)

I Let r1 be rank of first good doc
I (Roughly speaking) ∆mrr = 1− 1/r1
I I.e., no credit for 2nd and subsequent good docs
I φ(x , y) should only focus on first good doc
I Accordingly, we define

φmrr(x , y) =
∑

b:b�g0(y)

(xb − xg0(y)),

where g0(y) is the first good doc in ordering y
12 / 20

Modified arg maxy w>φmrr + ∆mrr algo
I 1, 1/2, 1/3, 1/k , 0 only possible values of ∆mrr

I For a given value of MRR, say 1/r , first good doc
must be at rank r

I For a given configuration b, . . . , b︸ ︷︷ ︸
r−1

, g︸︷︷︸
r

, ?, ?, . . .︸ ︷︷ ︸
rest

need to fill good and bad slots to maximize w>φ

I Bad docs b at 1, . . . , r − 1 with largest w>xb

I Good doc g with smallest w>xg at position r

I Add up ∆ and w>φ for each possible ∆ and take
maximum

I (MRR = 0 handled separately)

13 / 20

Benefits of using φmrr with ∆mrr

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9k

M
R
R TD2004 phi_po TD2004 phi_mrr

TD2003 phi_po TD2003 phi_mrr

OHSUMED phi_po OHSUMED phi_mrr

I φmrr far superior to φpo (originally used for AUC)

I No φndcg found yet §

14 / 20

Optimization health

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100svmC

o
b
j/
o
b
j(
w
=
0
)

DORM
SVMmap
SVMmrr
SVMndcg
SVMauc

1E-8

1E-6

1E-4

1E-2

1E+0

1E-2 1E+0 1E+2 1E+4svmC

|w
|^
2DORM

SVMmap

SVMmrr

SVMndcg

SVMauc

I w = ~0 is always a (useless) solution

I We broke down a nasty optimization into a
convex QP and a simple argmax problem

I How much can we reduce the objective compared
to w = ~0 as we increase C?

I How does ‖w‖2 grow with C?

15 / 20

What use is a library of
perfect loss functions, if we
have no idea which ∆ users
want?

I MRR suited for navigational queries

I NDCG suited for researching a topic

I Both kinds of queries very common

I Must hedge our bets

16 / 20

Train for multiple ∆s: SVMcombo
I Can a single w to do well for many ∆s?

arg minw ;ξ≥~0 w>w +
∑

` C`
1
|Q|

∑
q ξ`

q s.t.

∀`, q,∀y 6= y ∗q : w>δφq(y) ≥ ∆`(y
∗
q , y)− ξ`

q

` ranges over loss types NDCG, MRR, MAP, . . .
I Empirical risk (training error)

R(w , ∆) = 1
|Q|

∑
q ∆(y ∗q , fw(xq))

I Can show∑
` C`

1
|Q|

∑
q ξ`

q ≥
∑

` R(w , ∆`) ≥ R(w , max` ∆`)

I I.e. learning minimizes upper bound on worst loss
17 / 20

M
R
R
1
0

N
D
C
G
1
0

M
A
P

M
R
R
1
0

N
D
C
G
1
0

M
A
P

M
R
R
1
0

N
D
C
G
1
0

M
A
P

M
R
R
1
0

N
D
C
G
1
0

M
A
P

M
R
R
1
0

N
D
C
G
1
0

M
A
P

AUC .799 .635 .582 .510 .349 .256 .639 .501 .420 .607 .448 .267 .632 .441 .264

MAP .808 .642 .586 .618 .411 .314 .614 .496 .412 .696 .469 .277 .636 .450 .272

NDCG .790 .636 .581 .587 .372 .302 .631 .457 .374 .517 .323 .175 .608 .356 .171

NDCG-NC .818 .640 .582 .595 .404 .306 .611 .486 .404 .685 .455 .265 .624 .443 .264

MRR .795 .623 .570 .628 .405 .330 .629 .441 .383 .670 .410 .244 .643 .426 .230

COMBO .813 .635 .578 .667 .434 .345 .647 .458 .384 .695 .465 .277 .647 .449 .272

DORM .807 .637 .583 .587 .362 .290 .474 .340 .297 .662 .413 .243 .621 .435 .250

McRank .701 .565 .527 .650 .403 .232 .588 .529 .453

TREC2001OHSUMED TD2003 TD2004 TREC2000

Test accuracy vs. training loss function

I Row: training ∆s, column: test criterion

I SVMcombo, SVMmap good across the board

I Did not tune C` yet

I Listwise ∆s better than elementwise or pairwise

18 / 20

SVMndcg speed and scalability

0

50000

100000

150000

200000

250000

300000

O
H

S
U

M
E

D

T
D

2
0
0
3

T
D

2
0
0
4

O
H

S
U

M
E

D

T
D

2
0
0
3

T
D

2
0
0
4

DORM SVMndcg

Algos,

DataSets

T
im

e
(m

s
)-
->

QP

ArgMax

Dataset M
c
R

a
n
k

tr
ee

M
c
R

a
n
k

b
o
o
st

M
c
R

a
n
k

to
ta

l

S
V

M
n
d
c
g

S
V

M
m
r
r

OHSUMED 1034 67 1102 4.8 30.6
TD2003 9730 383 10113 14.9 125
TD2004 8760 548 9308 19.1 148

SVMcombo is
I 15× faster than

DORM

I 100× faster than
McRank

while being more
accurate in over 75% of
data sets

19 / 20

Takeaway

I New efficient learners for MRR and NDCG

I Asserting the “correct” ∆ may not be best

I Satisfy multiple ∆s using SVMcombo

I Listwise structured ranking is faster

I And frequently more accurate than competition

Future work

I Design φs better tailored to respective ∆s

I Evaluate on larger data sets

I Diversity and bypass rates

I Is convexity overrated?

20 / 20

