Fast and accurate text classification via multiple linear discriminant projections

Soumen Chakrabarti Shourya Roy Mahesh Soundalgekar IIT Bombay www.cse.iitb.ac.in/~soumen

Introduction

- Supervised learning of labels from highdimensional data has many applications
 - Text topic and genre classification
- Many classification algorithms known
 - Support vector machines (SVM)—most accurate
 - Maximum entropy classifiers
 - Naïve Bayes classifiers—fastest and simplest
- Problem: SVMs
 - · Are difficult to understand and implement
 - Take time almost quadratic in #instances

Our contributions

- Simple Iterated Multiple Projection on Lines (SIMPL)
 - Trivial to understand and code (600 lines)
 - O(#dimensions) or less memory
 - Only sequential scans of training data
 - Almost as fast as naïve Bayes (NB)
 - As accurate as SVMs, sometimes better
- Insights into the best choice of linear discriminants for text classification
 - How do the discriminants chosen by NB, SIMPL and SVM differ?

VLDB 2002

Naïve Bayes classifiers

- For simplicity assume two classes {-1,1}
- *t*=term, *d*=document, *c*=class, *l_d*=length of document *d*, *n*(*d*,*t*)=#times *t* occurs in *d*
- Model parameters
 - Priors Pr(c=-1) and Pr(c=1)
 - θ_{c,t}=fractional rate at which *t* occurs in documents labeled with class *c*
- Probability of a given d generated from c is

$$\Pr(d \mid c, \ell_d) = \left\{ \ell_{i}, \ell_{i}, \ell_{i} \right\} \prod_{t \in d} \theta_{c,t}^{n(d,t)}$$

VLDB 2002

4

Naïve Bayes is a linear discriminant

- When choosing between the two labels
 - Terms involving document length cancel out
 - Taking logs, we compare

$$\log \Pr(c=1) + \sum_{t \in d} n(d,t) \log \theta_{1,t} :: \log \Pr(c=-1) + \sum_{t \in d} n(d,t) \log \theta_{-1,t}, \text{ or}$$
$$\sum_{t \in d} \left(\log \theta_{1,t} - \log \theta_{-1,t} \right) n(d,t) + \left(\log \Pr(c=1) - \log \Pr(c=-1) \right) :: 0$$

 The first part is a dot-product, the second part is a fixed offset, so we compare

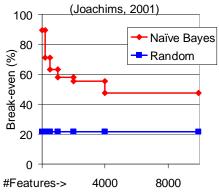
 $\alpha_{\rm NB} \cdot d + b :: 0$

Simple join-aggregate, very fast

VLDB 2002

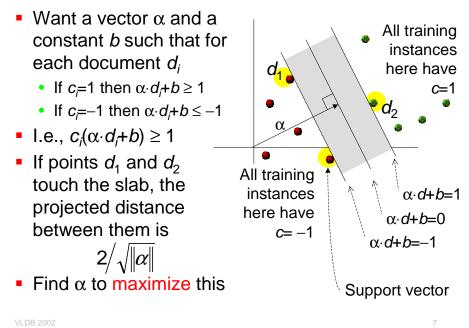
Many features, each fairly noisy

- Sort features in order of decreasing correlation with class labels
- Build separate classifiers
 - 1—100, 101—200, etc.
- Even features ranked 5000 to 10000 provide lift beyond picking a random class



- Most features have tiny amounts of useful, noisy and possibly redundant info—how to combine?
- Naïve Bayes, LSVM, maximum entropy—all take linear combinations of term frequencies

Linear support vector machine (LSVM)



SVM implementations

- α_{SVM} is a linear sum of support vectors
- Complex, non-linear optimization
 - 6000 lines of C code (SVM-light)
- Approx $n^{1.7-1.9}$ time with n training vectors
- Footprint can be large
 - Usually hold all training vectors in memory
 - · Also a cache of dot-products of vector pairs
- No I/O-optimized implementation known
 - We measured 40% time in seek+transfer

Fisher's linear discriminant (FLD)

- Used in pattern recognition for ages
- Two point sets X (c=1) and Y (c=-1)
 - $x \in X$, $y \in Y$ are points in *m* dimensions
 - Projection on unit vector α is $x \cdot \alpha$, $y \cdot \alpha$
- Goal is to find a direction α so as to maximize
 Square of distance
 between

$$J(\alpha) = \frac{\left(\frac{1}{|X|}\sum_{x\in X} x \cdot \alpha - \frac{1}{|Y|}\sum_{y\in Y} y \cdot \alpha\right)^2}{\frac{1}{|X|}\sum_{x\in X} (x \cdot \alpha)^2 - \left(\frac{1}{|X|}\sum_{x\in X} x \cdot \alpha\right)^2} + \frac{1}{|Y|}\sum_{y\in Y} (y \cdot \alpha)^2 - \left(\frac{1}{|Y|}\sum_{y\in Y} y \cdot \alpha\right)^2$$

Variance of projected X-points

Variance of projected Y-points

Some observations

- Hyperplanes can often completely separate training labels for text; more complex separators do not help (Joachims)
- NB is *biased*: α_t depends only on term t— SVM/Fisher do not make this assumption
- If you find Fisher's discriminant over only the support vectors, you get the SVM separator (Shashua)
- Even random projections preserve interpoint distances whp (Frankl+Maehara 1988, Kleinberg 1997)

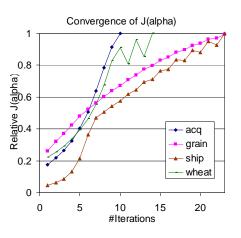
Hill-climbing

- Iteratively update α_{new} ← α_{old} + η∇J(α) where η is a "learning rate"
- $\nabla J(\alpha) = (\partial J/\partial \alpha_1, \dots, \partial J/\partial \alpha_m)^{\mathsf{T}}$ where $\alpha = (\alpha_1, \dots, \alpha_m)^{\mathsf{T}}$
- Need only 5m + O(1) accumulators for simple, one-pass update
- Can also write as sort-merge-accumulate

$$\sum_{x \in X} x \cdot \alpha \text{ (scalar)} \quad \sum_{y \in Y} y \cdot \alpha \text{ (scalar)}$$
$$\forall i : \sum_{x \in X} x_i \text{ (mnumbers)} \quad \forall i : \sum_{y \in Y} y_i \text{ (mnumbers)}$$
$$\forall i : \sum_{x \in X} x_i(x \cdot \alpha) \text{ (mnumbers)} \quad \forall i : \sum_{y \in Y} y_i(y \cdot \alpha) \text{ (mnumbers)}$$

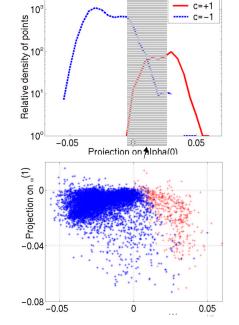
Convergence

- Initialize α to vector joining positive and negative centroids
- Stop if J(α) cannot be increased in three successive iterations
- J(α) converges in 10—20 iterations
 - Not sensitive
 to problem size
- 120000 documents from <u>http://dmoz.org</u>
 - LSVM takes 20000 seconds



Multiple discriminants

- Separable data points
 - SVM succeeds
 - FLD fails to separate completely
- Idea
 - Remove training points (outside the gray zone)
 - Find another FLD for surviving points only
- 2—3 FLDs suffice for almost complete separation!
 - 7074→230→2



VLDB 2002

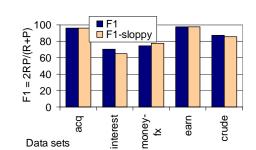
SIMPL (only 600 lines of C++)

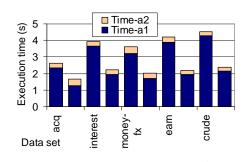
- Repeat for *k* = 0, 1, …
 - Find α^(k), the Fisher discriminant for the current set of training instances
 - Project training instances to $\alpha^{(k)}$
 - Remove points well-separated by α^(k)
 - while ≥ 1 point from each class survive
- Orthogonalize the vectors $\alpha^{(0)}$, $\alpha^{(1)}$, $\alpha^{(2)}$,...
- Project all training points on the space spanned by the orthogonal α's
- Induce decision tree on projected points

14

Robustness of stopping decision

- Compute α⁽⁰⁾ to convergence
- Vs., run only half the iterations required for convergence
- Find $\alpha^{(1)}$,... as usual
- Later αs can cover for slop in earlier αs
- While saving time in costly early-α updates
 - Later αs take negligible time

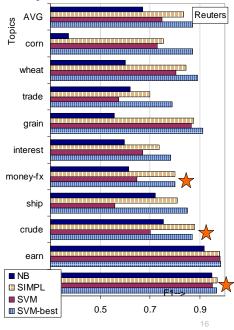


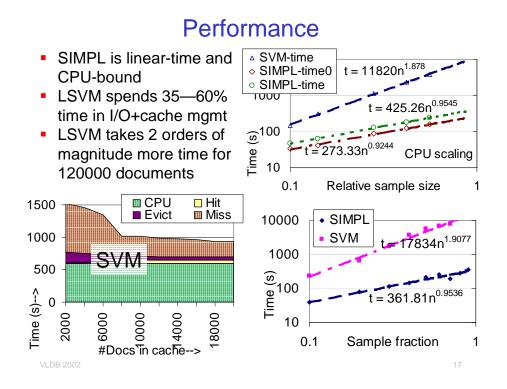


VLDB 2002

Accuracy

- Large improvement beyond naïve Bayes
- We tuned parameters in SVM to give "SVMbest"
- Often beats SVM with default params
- Almost always within 5% of SVM-best
- Even beats SVM-best in some cases
 - Especially when problem is not linearly separable





Summary and future work

- SIMPL: a new classifier for highdimensional data
 - Low memory footprint, sequential scan
 - Orders of magnitude faster than LSVM
 - Often as accurate as LSVM, sometimes better
- An efficient "feature space transformer"
- How will SIMPL behave for non-textual, high-dim data?
- Can we analyze SIMPL?
 - · LSVM is theoretically sound, more general
 - When will SIMPL match LSVM/SVM?

18