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Introduction

= Supervised learning of labels from high-
dimensional data has many applications
Text topic and genre classification

= Many classification algorithms known

Support vector machines (SVM)—most
accurate

Maximum entropy classifiers

Naive Bayes classifiers—fastest and simplest
= Problem: SVMs

Are difficult to understand and implement

Take time almost quadratic in #instances



Our contributions

= Simple Iterated Multiple Projection on
Lines (SIMPL)
Trivial to understand and code (600 lines)
O(#dimensions) or less memory
Only sequential scans of training data
Almost as fast as naive Bayes (NB)
As accurate as SVMs, sometimes better
= |Insights into the best choice of linear
discriminants for text classification

How do the discriminants chosen by NB,
SIMPL and SVM differ?

Naive Bayes classifiers
= For simplicity assume two classes {-1,1}
= t=term, d=document, c=class, /,=length of
document d, n(d,t)=#times t occurs in d
= Model parameters
Priors Pr(c=-1) and Pr(c=1)

0. =fractional rate at which t occurs in
documents labeled with class c

= Probability of a given d generated from c is

Prd|c,iq) =



Naive Bayes is a linear discriminant

= When choosing between the two labels
Terms involving document length cancel out
Taking logs, we compare

IogPr(czl)+Z:n(d,t)logé’1,t ::IogPr(c:—1)+Zn(d,t)|ogt9_u, or
tOd tOd

Z (| 098, —logf_y, )n(d,t) +(logPr(c =1) - logPr(c = -1)):: 0
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= The first part is a dot-product, the second

part is a fixed offset, so we compare
ang (d+b::0
= Simple join-aggregate, very fast

Many features, each fairly noisy

= Sort features in order of
decreasing correlation
with class labels
= Build separate classifiers
1—100, 101—200, etc.
= Even features ranked

100 (Joachims, 2001) |
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= Most features have tiny amounts of useful, noisy
and possibly redundant info—how to combine?

* Naive Bayes, LSVM, maximum entropy—all take
linear combinations of term frequencies



Linear support vector machine (LSVM)

= Want a vector a and a
constant b such that for
each document d, d,
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= Find a to maximize this * Support vector

SVM implementations
" Ogyy IS & linear sum of support vectors
= Complex, non-linear optimization
6000 lines of C code (SVM-light)
= Approx n*—19 time with n training vectors

= Footprint can be large
Usually hold all training vectors in memory
Also a cache of dot-products of vector pairs
= No I/O-optimized implementation known
We measured 40% time in seek+transfer



Fisher’s linear discriminant (FLD)
= Used in pattern recognition for ages
= Two point sets X (c=1) and Y (c=-1)
xOX, yOY are points in m dimensions
Projection on unit vectora is X - d, y - O

= Goal is to find a direction a so as to Sauare of

.. distance
? / projected
(Mﬂzxw‘pﬁzym’] means
xOX yoy

J(a) =

/4
Variance of projected X-points Variance of projected Y-points

Some observations

= Hyperplanes can often completely
separate training labels for text; more
complex separators do not help
(Joachims)

= NB is biased: a, depends only on term t—
SVM/Fisher do not make this assumption

= If you find Fisher’s discriminant over only
the support vectors, you get the SVM
separator (Shashua)

= Even random projections preserve inter-
point distances whp (Frankl+Maehara
1988, Kleinberg 1997)
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Hill-climbing
lteratively update o, < 0,4+ NEI(Q)
where n is a “learning rate”

0J(a) = (dd/oay,...,0d/0a,,)" where

a=(ag,....a)"

Need only 5m + O(1) accumulators for

simple, one-pass update

Can also write as sort-merge-accumulate
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Multiple discriminants

= Separable data points 10° e, — o1 |

= |dea

= 2—3 FLDs suffice for

SVM succeeds

FLD fails to separate
completely
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SIMPL (only 600 lines of C++)

Repeat fork =0, 1, ...

Find a®), the Fisher discriminant for the
current set of training instances

Project training instances to a®
Remove points well-separated by a®)

while =1 point from each class survive
Orthogonalize the vectors a©, a®, a®, ...

Project all training points on the space
spanned by the orthogonal a’s

Induce decision tree on projected points



Robustness of stopping decision

Compute a© to
convergence

Vs., run only half the
iterations required for
convergence

Find a@),... as usual

Later as can cover for

slop in earlier as

While saving time in

costly early-a updates
Later as take
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We tuned parameters
in SVM to give “SVM-
best”

Often beats SVM with
default params

Almost always within
5% of SVM-best

Even beats SVM-best
in some cases

Especially when
problem is not linearly
separable

money-fx

ship
crude

earn

HNB
m SIMPL
B SVM

B SVM-best

0.5 0.7 0.9




Performance

SIMPL is linear-time and | » SVM-time
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SIMPL: a new classifier for high-

dimensional data

Low memory footprint, sequential scan
Orders of magnitude faster than LSVM
Often as accurate as LSVM, sometimes better

An efficient “feature space t

How will SIMPL behave for

high-dim data?

Can we analyze SIMPL?
LSVM is theoretically sound,

ransformer”
non-textual,

more general

When will SIMPL match LSVM/SVM?
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