Text Search for Fine-grained
Semi-structured Data

Soumen Chakrabarti
Indian Institute of Technology, Bombay
www.cse.litb.ac.in/“soumen/

Acknowledgments

S. Sudarshan
B. Aditya

Arvind Hulgeri
Parag

Two extreme search paradigms

Searching a RDBMS

= Complex data model:
tables, rows,
columns, data types

= Expressive, powerful
query language

* Need to know
schema to query

= Answer = unordered
set of rows

» Ranking: afterthought

Information Retrieval
= Collection = set of

documents, document
= sequence of terms

Terms and phrases
present or absent

No (nontrivial)
schema to learn

Answer = sequence
of documents

Ranking: central to IR

Convergence?

SQL-> XML search Web search<IR
Trees, reference links = Documents are nodes

Labeled edges in a graph
Nodes may contain = Hyperlink edges have
+ Structured data important but
« Free text fields unspecified semantics
Data vs. document *+ Google, HITS
Query involves node Query Ianguage
data and edge labels remains primitive
+ Partial knowledge of * No data types
schema ok + No use of tag-tree

Answer = set of paths = Answer = URL list

Outline of this tutorial

Review of text indexing and
information retrieval (IR)

Support for text search and similarity join in
relational databases with text columns

Text search features in major XML query
languages (and what’s missing)

A graph model for semi-structured data with
“free-form” text in nodes

Proximity search formulations and techniques;
how to rank responses

Folding in user feedback
Trends and research problems

Text indexing basics

“Inverted index” maps from
term to document IDs

Term offset info enables

My, care, is loss of care
with old care done

phrase and proximity

f

(“near”) searches

Your care is gain of
care with new care won

Document boundary and

limitations of “near” queries care=>D1:1,58
. . D2:1,5,8
Can extend inverted index .
to map terms to o 7]
D1:7
+ Table names, column names °
+ Primary keys, RIDs loss— DL: 3

¢+ XML DOM node IDs

Information retrieval basics

Stopwords and stemming

Each term ¢ in lexicon gets a
dimension in vector space

Documents and the query ==
are vectors in term space Scale up

Component of dalong axis ¢ is TF(d,

+ Absolute term count or scaled by max term count

care

K

D1

D2

(query vector)

of
Scale
down

h

Downplay frequent terms: IDF(#) = log(1+|D}/| D))

+ Better model: document vector dhas component

TF(d, 8 IDF(#) for term ¢

Query is like another “document”; documents

ranked by cosine similarity with query

Map

Data model
Relational XML-like

None talog |[XML-QL, Xquery
IR Schema(|WHIRL ELIXIR, XIRQL

support [No plorer, EasyAsk, Mercado,
schema BANKS, DataSpot, BANKS
DISCOVER boL,

= “None” = nothing more than string equality, containment
(substring), and perhaps lexicographic ordering

= “Schema”. Extensions to query languages, user needs to
know data schema, IR-like ranking schemes, no implicit
joins

* “No schema”: Keyword queries, implicit joins

WHIRL (Cohen 1998)
place(univ,state) and job(univ,dept)
= Ranked retrieval from a RDBMS:
+ select univ from job where dept ~ ‘Civil’

Ranked similarity join on text columns:

+ select state, dept from place, job
where place.univ ~ job.univ

Limit answer to best A matches only

Avoid evaluating full Cartesian product
+ “|ceberg” query
Useful for data cleaning and integration

WHIRL scoring function

A where-clause in WHIRL is a
= Boolean predicate as in SQL (age=35)
+ Score for such clauses are 0/1
= Similarity predicate (job ~ 'Web design'’)
*+ Score = cosine(job, 'Web design)
= Conjunction or disjunction of clauses
+ Sub-clause scores interpreted as probabilities
¢ score(B,0.. UB,,; 0)=M,..,,score(5;0)
* score(B,0.. 0B, 8)=1—M,_,,,(1—score(B,0))

Query execution strategy

select state, dept from place, job
where place.univ ~ job.univ
= Start with place(U1,S) and job(U2,D)
where U1, U2, S and D are “free”

+ Any binding of these variables to constants is
associated with a score

= Greedily extend the current bindings for
maximum gain in score

= Backtrack to find more solutions

XQuery
= Quilt + Lorel + YATL + XML-QL

= Path expressions ‘/ recipes.xml

<dishes_with_flour> { FOR $r IN '
document("recipes.xml") i
//r'eape[//lngredlen‘r[@name'"flour"]]

RETURN <d|sh>{$r'/‘rlﬂe/fex‘r()}</d|sh> }
</dishes_with_flour>

$r

Tortilla

Early text support in XQuery

= Title of books containing some para mentioning
both “sailing” and “windsurfing”
FOR $b IN document("bib.xml")//book
WHERE SOME $p IN $b//paragraph SATISFIES
(contains($p,"sailing") AND
contains($p,"windsurfing"))
RETURN $b/title

= Title and text of documents containing at least

three occurrences of “stocks”

FOR $a IN view("text_table") WHERE
numMatches($a/text_document,"stocks") > 3

RETURN
<text>{$a/text_title}{$a/text_document}/>

Tutorial outline

Data model
Relational XML-like
None SQL,Datalog | 2 Xquery
Schema |WHIRL ELIXIR, XIRQL
R DBXplorer, |—
support |No P ’ EasyAsk, Mercado,
schema BANKS, DataSpot, BANKS
DISCOVER Pob,

Adding IR-like text search features to XML query
languages (Chinenyanga et al. Fuhr et al. 2001)

ELIXIR: Adding IR to XQuery

Ranked select

for $1 in document("db.xml")/items/(book|cd)
where $t/text() ~ "Ukrainian recipe”

return <dish>$1</dish>

Ranked similarity join: find titles in recent
VLDB proceedings similar to speeches in

Macbeth
for $vi in
document(“vidb.xml")/issue[@volume>24],
$si in document(“macbeth.xml")//speech
where $vi//article/title ~ $si
return <similar><titles$vi//article/title</>
<speech>$si</></similar>

How ELIXIR works

ELIXIR Base XML
query documents
v N _
ELIXIR v i + XQuery filters/
Compiler transformers
g Flatten tg WHIRL
—»] WHIRL select/join filters
—> Rewrite to XML <
15
A more detailed view
VLDB.xml Macbeth.xml
<issue><volume>10</> <act number=“_.">
<article>.</> .</> <scene number=“_">
<issue><volume>25</> <speech>To Ireland, I; our
<article><title>Size separated fortune.</>
separation spati*a1 join</>.</></> </></> |
«q21> { for'“$af in o <q22> { for $as in
document(*VLDB .xml")//issue document(“Macbeth.xml")//act/scene/speech
*[volume > 241/ /title return <tuplex<line>{ $as }/></tuple> } </q22>
return
<tuple>ctitle>{ $at k/></tuple> } </q21> q22.xml
g21.xml l <q22><tuple><line>To Ireland,
<g21l><tuple><title>Size separation I; our separated fortune.
spatial join</ti t"l e></tuple></q21> </Tine></tupl e?</q22>

i i

v
q3($title, $line) :- q21($title), q22($line), $title ~ $line

v
WHIRL query <similar>{ for $row in q3/tuple return $row }</>
v

Result

Observations

= SQL/XQuery + IR-like result ranking

= Schema knowledge remains essential
+ “Free-form” text vs. tagged, typed field
+ Element hierarchy, element names,

IDREFs

= Typical Web search is two words long
+ End-users don’t type SQL or XQuery
¢ Possible remedy: HTML form access
+ Limitation: restricted views and queries

Using proximity without schema

= GGeneral, detailed representation: XML

= Lowest common representation
+ Collection, document, terms
¢ Document = node, hyperlink = edge

= Middle ground
+ Graph with text (or structured data) in nodes
+ Links: element, subpart, IDREF, foreign keys
+ All links hint at unspecified notion of proximity

Exploit structure where available, but do not
impose structure by fiat

Two paradigms of proximity search

= A single node as query response
+ Find node that matches query terms...

¢ _oris “near” nodes matching query terms
(Goldman et al., 1998)

Single-node response examples

Travolta, Cage Movie
+ Actor, Face/Off
Travolta, Cage,
Movie

+ Face/Off ‘acted-in”
Kleiser, Movie [As] [T avolta] [Cage]
+ Gathering, Grease
Kleiser, Woo, : Actor
Actor

+ Travolta Kleiser

[Gathering] [Grease} {Face/Off

directed”

Director

20

10

Basic search strategy

= Node subset A activated because they
match query keyword(s)

= Look for node near nodes that are
activated

= Goodness of response node depends
+ Directly on degree of activation
+ Inversely on distance from activated node(s)

21

Ranking a single node response

= Activated node set A

= Rank node r in “response set” /# based
on proximity to nodes a in A

+ Nodes have relevance pz and p, in [0,1]
+ Edge costs are “specified by the system”

= d{a,r = cost of shortest path from a to r
" Bond between gand 7\ _ ,OA(a),ORt(r)
d(a,r)
= Parameter ¢ tunes relative emphasis on
distance and relevance score
= Several ad-hoc choices

22

11

Scoring single response nodes

Additive
score(r) =) _ b(a,r)

Belief L ore(r) =1~ [...0-b(@r)

Goal: list a limited number of find nodes
with the largest scores

Performance issues

+ Assume the graph is in memory?

+ Precompute all-pairs shortest path (| /|3)?
+ Prune unpromising candidates?

Hub indexing

Decompose APSP problem using sparse
vertex cuts
+ |A|+|B | shortest paths to p A B
+ |A|+|B | shortest paths to g
* dp,q)
To find d(a,b) compare
* d(a@> p~>b) not through g
* da> g b) not through p
s da>p>g>b)
s da>g>p>b)
Greatest savings when |A|=|B|
Heuristics to find cuts, e.g. large-degree nodes

23

24

12

Connected subgraph as response
= Single node may not match all keywords

= No natural “page boundary”

= Two scenarios

+ Keyword search on relational data
Keywords spread among normalized relations

+ Keyword search on XML-like or Web data
Keywords spread among DOM nodes and

subtrees

Tutorial outline

Data model

Relational

XML-like

None SQL,Datalog

XML-QL, Xquery

ELIXIR, XIRQL

IR Schema
support [No < gBXplorer,

schema | <~ vER

EasyAsk, Mercado,
DataSpot, BANKS

= A graph model for relational data with “free-form”

text search and implicit joins

25

26

13

Keyword search on relational data

* Tuple = node
= Some columns have

= Foreign key constraints =
edges in schema graph—>

= Query = set of terms

= No natural notion
of a document
+ Normalization

+ Join may be needed
to generate results

¢ Cycles may exist in

Cites Paper
Citing PaperlD¥—|
text Cited PaperName
Author Writes
AuthorlD AuthorlD
AuthorName PaperID|
AuthorID |PaperID ||AuthorID|AuthorName
Al P1 Al Chaudhuri
A2 P2 A2 Sudarshan
A3 P2 A3 Hulgeri
Citing |Cited ||PaperID |PaperName
P2 P1 P1 DBXplorer
P2 BANKS

schema graph: ‘Cites’

27

DBXplorer and DISCOVER

* Enumerate subsets of relations in schema graph
which, when joined, may contain rows which
have al/ keywords in the query

+ “Join trees” derived from schema graph
= Qutput SQL query for each join tree

= Generate joins, checking rows for matches

(Agrawal et al. 2001, Hristidis et al. 2002)

K1,K2,K3

o

iy e

K3

123

123
N Ry

23

2

e

14

Discussion

& Exploits relational
schema information to
contain search

© Pushes final
extraction of joined
tuples into RDBMS

© Faster than dealing
with full data graph
directly

% Coarse-grained
ranking based on
schema tree

% Does not model
proximity or (dis)
similarity of individual
tuples

¢ No recipe for data
with less regular (e.g.
XML) or ill-defined
schema

29

Generalized graph proximity

= General data graph

+ Nodes have text, can be scored against query
+ Edge weights express dissimilarity

= Query is a set of keywords as before
= Response is a connected subgraph of the

database

= Each response graph is scored using
+ Node weights which reflect match, maximize
+ Edge weights which reflect lack of proximity,

minimize

30

15

Motivation from Web search

= “Linux modem driver
for a Thinkpad A22p”

+ Hyperlink path
matches query
collectively

¢ Conjunction query
would fail
* Projects where X and
P work together
¢ Conjunction may
retrieve wrong page
= General notion of
graph proximity

IBM Thinkpads
*A20m
-A22p Thinkpad
Drivers
*Windows XP
Downlor_:1d _ eLinux
Installation tips «—
*Modem

*Ethernet

The B System
Group members

Home Page of :S
Professor X

Papers A/X
*VLDB..

Students

P P’s home page
Q | work on the
project.

31

“Information unit” (Lee et al., 2001)

query keyword

Generalizes join trees to arbitrary graph data
Connected subgraph of data without cycles
Includes at least one node containing each

= Edge weights represent price to pay to connect
all keyword-matching nodes together

= May have to include non-matching nodes

32

16

Setting edge weights

Edges are generally directed Papert
+ Foreign to primary key in relational data l
+ Containing to contained element in XML
+ IDREFs have clear source and target

Consider the RDMS scenario

Paper2

Cites

Citing (Src) |Cited (Dst)

Forward edge weight for edge (¢, V)

Paperl ®|Paper2 ®

¢ u, vare tuples in tables A(v), AV

+ Weight s(A(v),RA(v)) between tables Paper1
Configured heuristically based on semantics
wdu,V)=s(Ru),RA(V)) all such tuple pairs v, v Paper2

Proximity search must traverse edges in

both directions ... what should wg(u,v) be?

33

Backward edge weights

“Distance” between a pair of nodes is
asymmetric in general

+ Ted Raymond acted only in
The Truman Show, which is
1 of 55 movies for Jim Carrey

* m(e,) should be larger than m(e,)
(think “resistance” on the edge)

For every edge (u,v) that exists,
we(u,V=s(AV),RAd)) . IN 1)

* IN () is the #edges from A(V) to u
mu,v) = min{wdu,v), wgu,v)}
More general edge weight models
possible, e.g., R>S—->T relation path-
based weights

34

17

Node weight = relevance + prestige

= Relevance w.r.t. keyword(s)
+ 0/1: node contains term or it does not

¢ Cosine score in [0,1] as in IR My care is
loss of care

+ Uniform model: a /N
node for each keyword v care ’ is loss of
(e.g. DataSpot) ’

> W.p. d jump to

= Popularity or prestige e ~ " arandom node
+ E.g. “mohan transaction” / W.p. (1-d)
jump to an
¢ Indegree out-neighbor
+ PageRank Her
d u
P = 3+ L)Y)
OutDegree(u)

Trading off node and edge weights

= A high-scoring answer A should have
+ Large node weight
+ Small edge weight

Weights must be normalized to extreme values

N(¥)=node weight of v Iog 1+NW)
Overall NodeScore = Z (Am)

#nodes
1

+Z Iog(l+W(e)

Overall score = EdgeScore x NodeScore?
+ A tunes relative contribution of nodes and edges

Ad-hoc, but guided by heuristic choices in IR

Overall EdgeScore =

36

18

Data structures for search

= Answer = tree with at least one leaf
containing each keyword in query

+ Group Steiner tree problem, NP-hard
= Query term ¢ found in source nodes S,
= Single-source-shortest-path SSSP iterator
+ |nitialize with a source (near-) node
+ Consider edges backwards
+ getNext() returns next nearest node

= For each iterator, each visited node v
maintains for each ta set v.R, of nodes in
S,which have reached v

37

Generic expanding search

= Near node sets S,with S=01,S,

= For all sourcenodesoc 1S
+ create a SSSP iterator with source o

= While more results required
+ Get next iterator and its next-nearest node v
+ Let ¢ be the term for the iterator’s source s
¢ crossProduct = {s} x M, V.R,

+ For each tuple of nodes in crossProduct

Create an answer tree rooted at v with paths to
each source node in the tuple

+ Add sto v.R;

38

19

Search example (“Vu Kleinberg”)

Organizing Web pages
by “Information Unit” Authoritative sources in a
hyperlinked environment

A metric
labeling problem

lauthor| | paper | [writes | | cites |

39

First response

writes
| writes |
Organizing Web pages

by “Information Unit” Authoritative sources in a

hyperlinked environment

lauthor| | paper | [writes | | cites |

40

20

Folding in user feedback

= As in IR systems, results may be imperfect

+ Unlike SQL or XQuery, no exact control over
matching, ranking and answer graph form

+ Ad-hoc choices for node and edge weights
= Per-user and/or per-session

+ By graph/path/node type, e.g. “want author
citing author,” not “author coauthoring with
author”

= ACross users

+ Modifying edge costs to favor nodes (or node
types) liked by users

41

Random walk formulations

= Generalize PageRank to _» Wop.djumpto
; : e a random node

treat outlinks differently 1, o 1

¢ 1(u,v) is the “conductance” . +pT o -

T it s
of edge v=>v > 2 jump to an
- - 3 .

= p(v) is a function of (v, v) out-neighbor

for all in-neighbors v of v p(v) = + Zp(“) r(u,v)
* Pguess(V) -- at convergence

* Duser(V) .. user feedback Op(v) = p(u)
Gradient ascent/descent: o7(u,v)
» For each u=> v, set (with learning rate n);

(U)o 7UV)+77 SO, (V) ~ Py (v))%
= Re-iterate to convergence g

u' -v

Prototypes and products
DTL DataSpot - Mercado Intuifind
www.mercado.com/
EasyAsk www.easyask.com/
ELIXIR www.smi.ucd.ie/elixir/

XIRQL Is6-www.informatik.uni-
dortmund.de/ir/projects/hyrex/

Microsoft DBXplorer
BANKS www.cse.iitb.ac.in/banks/

43

Summary

Confluence of structured and free-format,
keyword-based search

+ Extend SQL, XQuery, Web search, IR

+ Many useful applications: product catalogs,
software libraries, Web search

Key idiom: proximity in a graph
representation of textual data

+ Implicit joins on foreign keys

+ Proximity via IDREF and other links
Several working systems

Not enough consensus on clean models

44

22

Open problems

Simple, clean principles for setting weights
+ Node/edge scoring ad-hoc
+ Contrast with classification and distillation

Iceberg queries

+ Incremental answer generation heuristics do
not capture bicriteria nature of cost

Aggregation: how to express / execute

User interaction and query refinement

Advanced applications
+ Web query, multipage knowledge extraction
¢ Linguistic connections through WordNet

Selected references

R. Goldman, N. Shivakumar, S. Venkatasubramanian,
H. Garcia-Molina. Proximity search in databases. VLDB
1998, pages 26-37.

S. Dar, G. Entin, S. Geva, E. Palmon. DTL’s DataSpot:
Database exploration using plain language. VLDB 1998,
pages 645-649

W. Cohen. WHIRL: A word-based information
representation language. Artificial Intelligence 118(1-2),
pages 163—196, 2000.

D. Florescu, D. Kossmann, |. Manolescu. Integrating
keyword search into XML query processing. Computer
Networks 33(1-6), pages 119-135, 2000

H. Chang, D. Cohn, A. McCallum. Creating customized
authority lists. ICML 2000

46

23

Selected references

T. Chinenyanga and N. Kushmerick. Expressive retrieval
from XML documents, SIGIR 2001, pages 163—171

N. Fuhr and K. GroRjohann. XIRQL: A Query Language
for Information Retrieval in XML Documents. SIGIR
2001, pages 172—180

A. Hulgeri, G. Bhalotia, C. Nakhe, S. Chakrabarti,

S. Sudarshan: Keyword Search in Databases. IEEE
Data Engineering Bulletin 24(3): 22-32, 2001

S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
system for keyword-based search over relational
databases. ICDE 2002.

47

24

