
The VLDB Journal (1998) 7: 163–178 The VLDB Journal
c© Springer-Verlag 1998

Scalable feature selection, classification and signature generation
for organizing large text databases into hierarchical topic taxonomies
Soumen Chakrabarti, Byron Dom, Rakesh Agrawal, Prabhakar Raghavan

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA; e-mail: soumen,dom,ragrawal,pragh@almaden.ibm.com

Edited by M. Jarke. Received January 25, 1998 / Accepted May 27, 1998

Abstract. We explore how to organize large text databases
hierarchically by topic to aid better searching, browsing and
filtering. Many corpora, such as internet directories, digi-
tal libraries, and patent databases are manually organized
into topic hierarchies, also calledtaxonomies. Similar to in-
dices for relational data, taxonomies make search and ac-
cess more efficient. However, the exponential growth in the
volume of on-line textual information makes it nearly im-
possible to maintain such taxonomic organization for large,
fast-changing corpora by hand.

We describe an automatic system that starts with a small
sample of the corpus in which topics have been assigned by
hand, and then updates the database with new documents as
the corpus grows, assigning topics to these new documents
with high speed and accuracy.

To do this, we use techniques from statistical pattern
recognition to efficiently separate thefeaturewords, ordis-
criminants, from thenoisewords at each node of the taxon-
omy. Using these, we build a multilevel classifier. At each
node, this classifier can ignore the large number of “noise”
words in a document. Thus, the classifier has a small model
size and is very fast. Owing to the use of context-sensitive
features, the classifier is very accurate. As a by-product, we
can compute for each document a set of terms that occur
significantly more often in it than in the classes to which it
belongs.

We describe the design and implementation of our sys-
tem, stressing how to exploit standard, efficient relational op-
erations like sorts and joins. We report on experiences with
the Reuters newswire benchmark, the US patent database,
and web document samples fromYahoo!. We discuss appli-
cations where our system can improve searching and filtering
capabilities.

1 Introduction

The amount of on-line data in the form of free-format text
is growing extremely rapidly. As text repositories grow in
number and size and global connectivity improves, there is

a pressing need to support efficient and effective informa-
tion retrieval (IR), search and filtering. A manifestation of
this need is the recent proliferation of over 100 commercial
text search engines that crawl and index the web, and sev-
eral subscription-based information multicast mechanisms.
Nevertheless, there is little structure on the overwhelming
information content of the web.

It is common to manage complexity by using a hierar-
chy1, and text is no exception. Many internet directories,
such asYahoo!2, are organized as hierarchies. IBM’s patent
database3 is organized by the US Patent Office’s class codes,
which form a hierarchy. Digital libraries that mimic hard-
copy libraries support some form of subject indexing such
as the Library of Congress Catalogue, which is again hier-
archical.

We will explore the opportunities and challenges that are
posed by such topic hierarchies, also calledtaxonomies. As
we shall show, taxonomies provide a means for designing
vastly enhanced searching, browsing and filtering systems.
They can be used to relieve the user from the burden of
sifting specific information from the large and low-quality
response of most popular search engines [9, 35]. Querying
with respect to a taxonomy is more reliable than depending
on presence or absence of specific keywords. By the same
token, multicast systems such asPointCast4 are likely to
achieve higher quality by registering a user profile in terms
of classes in a taxonomy rather than keywords.

The challenge is to build a system that enables search
and navigation in taxonomies. Several requirements must
be met. First, apart from keywords, documents loaded into
such databases must be indexed ontopic pathsin the tax-
onomy, for which areliable automatic hierarchical classifier
is needed. As one goes deep into a taxonomy, shared jargon
makes automatic topic separation difficult. Documents on
stock prices and on impressionist art look very different to
us, but may be carelessly filed as “human affairs” by a Mar-
tian. Second, the taxonomy should be used also to present to

1 A hierarchy could be any directed acyclic graph, but in this paper we
only deal with trees.

2 http://www.yahoo.com
3 http://www.ibm.com/patents
4 http://www.pointcast.com

164

the user a series of progressively refinedviewsof document
collections in response to queries. Third, the system must
be fast, especially since it will often be used in conjunction
with a crawler or newswire service. Fourth, the system must
efficiently updateits knowledge when it makes mistakes and
a human intervenes, or when an incremental update is made
to the topic taxonomy.

We describe such a taxonomy-and-path-enhanced-retrie-
val system calledTAPER . For every node in the taxonomy,
it separatesfeatureand noise terms by computing the best
discriminants for that node. When classifying new docu-
ments, only the feature terms are used. Good features are
few in number, so the class models are small and the clas-
sification is speedy. In contrast to existing classifiers that
deal with a flat set of classes, the feature set changes by
context as the document proceeds down the taxonomy. This
filters out common jargon at each step and boosts accuracy
dramatically. Addition and deletion of documents is easily
handled and discriminants recomputed efficiently. The text
models built at each node also yield a means to summarize
a number of documents using a few descriptive keywords,
which we call theirsignature(these are distinct from, and
not necessarily related to, the features).

In addition to the algorithmic contributions, we describe
the design and implementation of our system in terms of
familiar relational database idioms. This has the following
benefits. Our system can handle extremely large numbers of
classes, documents and terms, limited essentially by word
size of the computer. It adapts to a wide range of physical
memory sizes, while maximizing fast sequential scans on
disk when needed. Moreover, our design leads to insights
into how database text extenders can exploit the core rela-
tional engine.

We report on our experience withTAPER using the
Reuters newswire benchmark5, the US patent database, and
samples of web documents fromYahoo!. Depending on the
corpus, we can classify 66–87% of the documents correctly,
which is comparable to or better than the best known num-
bers. We can process raw text at 4–8 MB/min on a 133-
MHz RS6000/43P with 128 MB memory. Our largest train-
ing runs, taking up to a day (including fetching web pages),
was with over 2,100 topics, over 266,000 URLs, and over
600,000 unique terms/tokens, is the most extensive web page
classification experiment known to us.

Organization of the paper. In Sect. 2, we demonstrate that
using a taxonomy, topic paths, and signatures can greatly im-
prove retrieval. Next, in Sect. 3, we study the problems that
must be solved to provide the above functionality. The prob-
lems are hierarchical classification, feature selection, and
document signature extraction. These are explored in de-
tail in Subsects. 3.2, 3.3, and 3.5, respectively. Section 3.4
describes the architecture of our prototype. The proof of
quality of signatures is necessarily anecdotal at this point;
some examples can be found in Sect. 2. More rigorous eval-
uation of feature selection and classification is presented in
Sect. 4. Related work is reviewed in Sect. 5, and concluding
remarks made in Sect. 6.

5 http://www.research.att.com/˜lewis

2 Capabilities and features

We discuss two important contexts in which accurate, high-
resolution topic identification is needed: querying and filter-
ing.

Querying. Most queries posted to search engines are very
short. Such queries routinely suffer from theabundance
problem: there are many aspects to, and even different in-
terpretations of the keywords typed. Most of these are un-
likely to be useful. Consider the wildlife researcher asking
AltaVista6 the queryjaguar speed [9]. A bewildering va-
riety of responses emerge, spanning the car, the Atari video
game, the football team, and a LAN server, in no partic-
ular order. The first page about the animal is ranked 183,
and is a fable. Thwarted, she triesjaguar speed -car
-auto . The top response goes as follows: “If you own a
classic Jaguar, you are no doubt aware how difficult it can
be to find certain replacement parts. This is particularly true
of gearbox parts.” The wordscar and auto do not occur
on this page. There is no cat in sight for the first 50 pages.
She triesLiveTopics7, but all the clusters are about cars or
football. She tries again:jaguar speed +cat . None of
the top 24 hits concern the animal, but all these pages in-
clude the termcat frequently. The 25th page is the first
with information about jaguars, but not exactly what
we need. Instead, we can go toYahoo!, and visit the likely
directory Science:Biology, and queryjaguar . This takes
us to Science:Biology:Zoology:Animals:Cats:Wild Cats and
Science:Biology:Animal Behavior, but we could not find a
suitable page about jaguars there8.

Filtering. Another paradigm of information retrieval isfil-
tering, in which a continual stream of documents are gen-
erated on-line, as in newsgroups and newsfeed. The system
collectsinterest profilesfrom users and uses these to imple-
ment either content-based or collaborative filtering, i.e., it
notifies the user only of the documents they are likely to be
interested in [4, 19, 29, 41].

In its simplest form, a profile may be a set of terms
and phrases specified explicitly by the user. This has the
same problem as querying without topic context as discussed
above. A better notion of a profile is the set of documents
the user has seen and/or liked, perhaps with scores. This is
a fine-grained characterization of the user, and may work
well with small systems, but for thousands of users and the
web at large, a system storing this level of detail will not
scale. A promising alternative is to characterize profiles not
at the individual document level, but at the level of nar-
row but canonical topics, such as the taxonomy ofYahoo!.
Such an approach is used in Surf Advisor, a collaborative
recommendation system [31].

We identify a few core capabilities from these examples.
Text search must be based on topical context as well as
keywords. Once the broad topic of a document is known, it
can be characterized by terms that are frequent compared to
the topic model. To identify document topics, an automatic
classification system needs to separate words that contain

6 http://www.altavista.digital.com
7 http://www.altavista.digital.com/av/lt/help.html
8 The anecdote relates to the time of writing

165

topic information and words that are essentially noise. We
discuss these at length next.

2.1 Querying in a taxonomy

In a database that associated not only keywords but also
topics with documents, the queryjaguar speed could
elicit not a list of documents, but a list of topic paths:

Business and Economy:Companies:Automotive
Recreation:

Automotive
Games:Video Games
Sports:Football

Science:Biology:Animal Behavior

The user can now restrict queries byconcept, not by key-
word. Using samples, it is possible to show the above re-
sponse even as the user types the query,beforeactually is-
suing a search. At this point, the user can restrict the search
to only a few topic paths. The artificial limit to the length
of the response list from search engines, together with pages
on cars and video games, will not crowd out pages related
to the cat. As we have shown above, enforcing or forbidding
additional keywords cannot always be as effective. If new
documents can be binned into these topic paths in real-time,
this ability may be very useful for multicast channels as well.
User profiles will be topic paths rather than keywords.

2.2 Context-sensitive signatures

An exhaustive keyword index, as inAltaVista, is perhaps
more of a problem than a solution. A single occurrence of a
term in a document, even one that is not a “stopword,” no
matter how useless an indicator of the contents, is indexed.
The IR literature has advanced further; there exist proto-
types that extractsignatureterms, which are then used for
indexing. These signatures can also be used as summaries
or thumbnails; their descriptive power can often compare
favorably with that of arbitrary sentences as extracted by
popular search engines. They are also effective for describ-
ing a document cluster [2].

We claim that the common notion of a document abstract
or signature as a function of the document alone is of limited
utility. In the case of a taxonomy, we argue that a useful sig-
nature is a function of both the document and the reference
node; the signature includes terms that are “surprising”given
the path from the root to the reference node. In the above
example,car and auto may be good signature terms at the
top level or even at theRecreation level, but not when the
user has zoomed down intoRecreation:Automotive. Here is
another illustration from a document9 in Health:Nursing that
starts like this:

Beware of the too-good-to-be-true baby that is sleeping and
sleeping and doesn’t want to nurse. Especially monitor the number
of wet diapers, as seriously jaundiced babies are lethargic.

The first-level classification isHealth. We can compute the
top signature terms with respect toHealth as:

9 http://www2.best.com/˜goodnews/practice/faq.htm

Jaundice, dampen, dehydration, lethargic, hydrate, forcibly,
caregiver, laxative, disposable.

This tells us the document is about treating jaundice. The
second-level classification isHealth:Nursing. Shifting our
reference class, we compute the new signature to be

Baby, water, breast-feed, monitor, new-born, hormone.

Now we know the document is about nursingbabies; this
information comes from both the path and the signatures.
In Sect. 3.5, we shall propose some means of computing
context-sensitive signatures. Thus, significant improvement
in search quality may be possible by maintaining function-
ally separate indices at each taxonomy node, using only a
few signature terms from each document.

Another application of context-sensitive signatures is
finding term associations. Using phrases for search and clas-
sification can potentially boost accuracy. The usual way to
find phrases is to test a set of terms for occurrence rate
far above that predicted by assuming independence between
terms. Unfortunately, associations that are strong for a sec-
tion of the corpus may not be strong globally and go unno-
ticed. For example,precisionmay be visibly associated with
recall in a set of documents on information retrieval, but not
in a collection also including documents on machine tools.
Computing signatures at each node makes it more likely that
all such associations get exposed.

2.3 Context-sensitive feature selection

Separating feature terms from noise terms is central to all of
the capabilities we have talked about. In the above examples,
car andautoshould be “stopwords” withinRecreation:Auto-
motive and hence be pruned from the signatures. Feature
and noise terms must be determined at each node in the
taxonomy.

It is tricky to hand-craft the stopwords out of domain
knowledge of the language;can is frequently included in
stopword lists, but what about a corpus on waste manage-
ment? The contents of a stopword list should be highly de-
pendent on the corpus. This issue looms large in searching
using categories and clusters. In hierarchical categories, the
importance of a search term depends on the position in the
hierarchy [35].

In Sect. 3, we will design an efficient algorithm to find,
for each node in the taxonomy, the terms that are best suited
for classifying documents to the next level of the taxonomy.
Conversely, we detect the noise words that are of little help
to distinguish the documents. We reuse the term “feature se-
lection” from pattern recognition to describe this operation.

Feature selection enables fine-grained classification on a
taxonomy. For diverse top-level topics, a single-step classi-
fier suffices. But as a document is routed deep into a taxon-
omy, shared jargon makes sophisticated feature selection a
necessity. Together with feature selection, we have to pick
models for each class and a classifier. Many options have
been evaluated [40]. In spite of its simplicity, naive Bayesian
classifiers are often almost as accurate as more sophisticated
classifiers [24]. For a fixed number of features, naive Bayes
is faster than more complex classifiers. However, to ap-

166

proach the latter in accuracy, naive Bayes typically needs
many more features.

Finding feature terms for each node mitigates this prob-
lem. Often, fewer than 5–10% of the terms in the lexicon
suffice to discriminate between documents at any node in
the taxonomy. This can greatly speed up classification. The
need for fast multilevel classification is not restricted to the
time a text database is populated. With increasing connec-
tivity, it will be inevitable that some searches will go out to
remote sites and retrieve results that are too large for direct
viewing. There are already several “meta-search” tools that
forward queries to a number of search engines and combine
the results; we have seen how a hierarchical view is much
better.

Applications of feature selection. Feature selection is use-
ful in any setting where salient distinctions are sought be-
tween two or more sets of documents. Consider the scenario
where a set of documents (e.g., a keyword query result)
has been clustered into subsets, and we wish to annotate
the clusters with salient keywords. We can regard the clus-
ters as given classes, and use feature selection to find these
keywords. Other example applications include differentiat-
ing between patents filed by two companies, or by the same
company at different times (to expose any trend along time).
We shall see some examples of such applications in Sect. 4.

3 Models, algorithms and data structures

In this section, we will deal with the core components of
our system. Consider first the task of computing the terms
that induce the best distinction between the subtopics of a
given topic. To do this, we have to find terms that occur
significantlymore frequently in some subtopics compared to
others, as against those that show this property “by chance”
owing to a finite sample. We can make such judgements
only on the basis of some statistical model of document
generation. This we discuss in Sect. 3.1. The model leads
to a natural classification procedure, described in Sect. 3.2.
Finding good features for the classifier to use is discussed in
Sect. 3.3. Performing all the above functions efficiently on
large databases ranging into tens of gigabytes raises several
performance issues that are discussed in Sect. 3.4; we also
give details of our data structures and implementation there.
Finally, in Sect. 3.5, we discuss how to use the class models
to extract context-sensitive document signatures.

3.1 Document model

There have been many proposals for statistical models of
text generation. One of the earliest indicators of the power of
simple rules derived from both quantitative and textual data
is Zipf’s law [48]. The models most frequently used in the IR
community are Poisson and Poisson mixtures [37, 42]. (IfX
is distributed Poisson with rateµ, denotedX ∼ P (µ), then
Pr[X = x] = e−µµx/x! and if Y is distributed Bernoulli
with n trials and meannp, denotedY ∼ B (n, p), then
Pr[Y = y] =

(
n
y

)
py(1 − p)n−y. As n → ∞ and p → 0, the

distributionsB (n, p) and P (np) converge to each other.)

We will assume a Bernoulli model of document generation
for most of the paper. In this model, a documentd is gener-
ated by first picking a class. Each classc has an associated
multifaced coin10; each face represents a termt and has some
associated probabilityθ(c, t) of turning up when “tossed.”

Conceptually, as the training text is being scanned, our
classifier database will be organized as a (very sparse) three-
dimensional table. One axis is forterms; their string forms
being replaced by 32-bit IDs, we call them TIDs and denote
themt in formulae. The second axis is for documents; these
are calledd in formulae. The third axis is forclassesor
topics. Topics have a hierarchy defined on them; for this
paper, we will assume a tree hierarchy. These classes are
also assigned IDs and called CIDs; we denote themc in
formulae.

The measure maintained along these dimensions (t, d, c)
is calledn(t, d, c), which is the number of timest occurs in
d ∈ c. This number is non-zero only whent ∈ d ∈ c. t ∈ d
means termt occurs in documentd, andd ∈ c meansd is a
sample document in the training set for classc. A superclass
of c, i.e., an ancestor in the topic tree, inherits alld ∈ c.

Aggregations along the dimensions give some important
statistics about the corpus.

– Thelengthof documentd is given byn(d, c) =
∑

t n(t, d,
c). The length of all documents can be found using a
GROUP BYon (d, c).

– The total length of training documents in classc, denoted
n(c).

– The total number of times termt appeared in training
documents of classc.

– The fraction of times t occurs ind ∈ c, i.e., f (t, d, c) =
n(t, d, c)/

∑
t n(t, d, c). This can be computed from the

above, but we materialize this value for efficiency rea-
sons. We will need the sum off andf2 over documents
in a class as explained later. We will omitc when it is
clear from the context.

– Thenumberof training documents in classc that have at
least one occurrence of a specific termt. This is denoted
m(t, c).

– The number of training documents in classc, denoted
|c|.

We will describe the details of arranging this table later in
Sect. 3.4.

Assuming the Bernoulli model with parametersθ(c, t),

Pr[d|c] =
(

n(d)
{n(d,t)}

) ∏
t θ(c, t)n(d,t), (1)

where
(

n(d)
{n(d,t)}

)
= n(d)!

n(d,t1)! n(d,t2)!··· is the multinomial coeffi-
cient. The above Bernoulli model makes the assumption that
the term occurrences areuncorrelated, which is certainly not
correct. First, given a term has occurred once in a document
it is more likely to occur again compared to a term about
which we have no information. Second, the term frequency
distributions are correlated.

Our independence assumption leads to what is called a
naive Bayesclassifier. (A naive Bayes classifier in essence
builds density functions for each class that are marginally
independent, and then classifies a data point based on which
density function has the maximum value at that point.) In

10 We use the termcoin here for what is perhaps better called adie.

167

practice, these simple classifiers perform surprisingly well
compared to more sophisticated ones that attempt to approx-
imate the dependence between attributes.

Recently, this phenomenon has been investigated in
depth by Friedman [17]. A classifier that uses an estimate of
class densities is subject tobias(decision boundaries that are
shifted from the “best” position, because the model is inac-
curate) andvariance(decision boundaries thatoverfit noisy
data). Friedman analyzes how the low variance of naive den-
sity estimates can mitigate the high bias to give simple clas-
sifiers that can often beat more sophisticated ones. It will
also be clear from Sect. 3.4 that this simplicity lets us de-
sign a system that can handle enormous problem sizes.

Rare events and laws of succession.We return to the issue
of estimating the model parametersθ(c, t), the rate at which
term t occurs in documents of classc.

The average English speaker uses about 20,000 of the
1,000,000 or more terms in an English dictionary [36]. In
that sense, many terms that occur in documents are “rare
events.” This means that, with reasonably small sample sets,
we will see zero occurrences of many, many terms, and
will still be required to estimate a non-zero value off (c, t).
The maximum likelihood estimate,f (c, t) = n(c, t)/n(c), is
problematic: a class withf (c, t) = 0 will reject any document
containingt.

Finding such estimates, also calledlaws of succession,
has been pursued in classical statistics for centuries. Laplace
showed that, given the results ofn tosses of ak-sided coin,
i.e., the number of times each face occurred,n1, . . . , nk, the
correct Bayesian estimate for the probability of facei, de-
noted PrL(i|{ni}, n), is notni/n, but ni+1

n+k [26]. This is the
result of assuming that all possible associatedk-component
vectors of face probabilities (p1, . . . , pk) area priori equally
likely. This is called theuniform prior assumption. The
above value of PrL(i|{ni}, n) is obtained by using Bayes
rule and evaluating 1

Pr[ni]

∫ 1
0 θ Pr[ni|θ]dθ. Alternative priors

have been suggested and justified. We experimented with
many of these, and found that Laplace’s law wins by a few
percent better classification accuracy all the time. We re-
fer the reader to Ristad’s paper for details [36]. With this
adjustment (and returning to our earlier notation),f (c, t) is
estimated as (1+n(c, t))/(n(c)+L(c)), whereL(c) is the size
of the lexicon of classc.

The binary model. Thus far, our model has been quite
sensitive to the number of times a term is repeated in a
document. The obvious criticism is that, given a term has
occurred once, we expect it to occur again and again. A
model at the other extreme is the binary model, in which
the repetition count is ignored. The parameterθ(c, t) then
becomes the fraction of documents in classc that contained
t at least once. Laplace’s correction can be applied here
as well. TheTAPER framework also makes it possible to
explore various models in between Bernoulli and binary,
for example, models in which term counts are thresholded
or bucketed into ranges, etc. Detailed investigation of the
predictive accuracy of such models is left as future work.

3.2 Hierarchical classification

A classifier inputs a document and outputs a class. For a
document with a pre-specified class, if the class output by the
classifier does not match the pre-specified class, we say the
classifiermisclassifiedthat document. Typically, a classifier
is trained by giving it example documents with class labels
attached.

Our system has a classifier at each internal node in the
taxonomy, with diverse feature sets. Given a new document
d, the goal is to find a leaf nodec such that the posterior
Pr[c|d] is maximized among all leaves. There is a danger in
greedily picking one’s way down the tree: an irrevocable er-
ror may be made early in the process [24]. Let the path to a
leaf c from the root bec1, c2, . . . , ck = c. Since the root sub-
sumes all classes, Pr[c1|d] = 1 for all d. Furthermore, we can
write Pr[ci|d] = Pr[ci−1|d] Pr[ci|ci−1, d], for i = 2, . . . , k.
Taking logs, log Pr[ci|d] = log Pr[ci−1|d] + log Pr[ci|ci−1, d].
Suppose in the taxonomy we mark edge (ci−1, ci) with the
edge cost− log Pr[ci|ci−1, d]. We are then seeking the least
cost path from the rootc1 to some leaf.

Computing the one-step conditional probability
Pr[ci|ci−1, d] is straightforward. For notational convenience,
nameci−1 asr0 and its children{rj}. Then, the probability
that the documentd belongs to the child noderi, given that
it belongs to the parent noder0, is given by Pr[ri|r0, d] =
Pr[ri|d]/ Pr[r0|d], where Pr[r0|d] =

∑
j Pr[rj |d] (where∑

j is over all the siblings ofri). Note that Pr[ri|d] =
Pr[d, ri]/

∑
j Pr[d, rj] by Bayes’ rule. If we use the Bernoulli

model as before, Pr[d|rj] =
(

n(d)
{n(d,t)}

) ∏
t θ(rj , t)n(d,t). Care

is needed here with finite-precision numbers, because the
probabilities are very small (often less than 10−5000) and the
scaling needed to condition the probability prevents us from
maintaining the numbers always in log-form. For example,
given very small positive numbersp1, . . . , pc, which can
only be stored as their logs̀i = logpi, we need to normalize
the sum to one, i.e., computepi/

∑
j pj = e`i/

∑
j e`j . We

first computeµ = maxj `j and then compute
∑

j e`j−µ by
adding the terms in increasing order of magnitude.

3.3 Feature selection

Now we will discuss how to select terms that the classifier
will use in its models. Suppose we are given two sets of
points inn-dimensional Euclidean space, interpreted as two
classes.Fisher’s discriminant methodfinds a direction on
which to project all the points so as to maximize (in the
resulting one-dimensional space) the relative class separa-
tion as measured by the ratio of interclass to intraclass vari-
ance. More specifically, letX andY be the point sets, and
µX , µY be the respective centroids, i.e.,µX = (

∑
X x)/|X|

andµY = (
∑

Y y)/|Y |. Further, let the respectiven × n co-
variance matrices beΣX = (1/|X|) ∑

X (x−µX)(x−µX)T

andΣY = (1/|Y |) ∑
Y (y − µY)(y − µY)T .

Fisher’s discriminant seeks to find a vectorα such that
the ratio of the projected difference in means|αT (µX −
µY)| to the average variance,1

2αT (ΣX + ΣY)α = αT Σα

is maximized. It can be shown thatα = Σ−1(µX − µY)
achieves the extremum whenΣ−1 exists. Also, whenX

168

and Y are drawn from multivariate Gaussian distributions
with ΣX = ΣY , this is the optimal discriminator in that
thresholding onαT q for a test pointq is the minimum error
classifier [14, 47].

Computingα involves a generalized eigenvalue prob-
lem involving the covariance matrices. In applications like
signal processing where Fisher’s discriminant is used,n is
typically a few hundred at most; in the text domain,n is
typically 50,000–100,000; and the covariance matrices may
not be suitably sparse for efficient computation. Moreover,
it is hard to interpret a discriminant that is a linear sum of
term frequencies, possibly with negative coefficients!

Our approach is to take the directionsα as given,
namely, a coordinate axis for each term. We assign each
term (i.e., each dimension) a figure of merit, which we call
its Fisher index, based on the variance figures above, which

is |αT (µX−µY)|
αT Σα

in the two-class case. For each termt, α = et

is a unit vector in the direction oft. Given the discriminat-
ing power of terms, we will pick terms greedily until we get
good discrimination between classes.

In general, given a set of two or more classes{c}, with
|c| documents in classc, we compute the ratio of the so-
called between-class to within-class scatter. Switching back
to our term frequency notations, we express this as:

Fisher(t) =

∑
c1,c2

(
µ(c1, t) − µ(c2, t)

)2

∑
c

1
|c|

(
x(d, t) − µ(c, t)

)2 , (2)

where µ(c, t) = 1
|c|

∑
d∈c x(d, t). (3)

The information theory literature provides some other
notions of good discriminants. One of the best known is
mutual information[11]. Closer inspection shows that its
computation is more complicated and not as easily amenable
to the optimizations we implement in our system for the
Bernoulli model. We will discuss other related work in text
feature selection later in Sect. 5.

The remaining exercise, having sorted terms in decreas-
ing order of Fisher index, is to pick a suitable number of
top-ranking terms. LetF be the list of terms in our lexicon
sorted by decreasing Fisher index. Our heuristic is to pick
from F a prefixFk of the k most discriminating terms.Fk

must include most features and exclude most noise terms.
If Fk is small in size, we can cache a larger portion of the
term statistics in memory. This results in faster classifica-
tion. Too large anFk will fit the training data very well,
but will result in degraded accuracy for test data, due to
overfitting. There are various techniques for pruning feature
sets. We minimize classification error on a set of documents
kept aside formodel validation, shown in Fig. 1. Some oth-
ers approaches are to use the minimum description length
principle, resampling or cross-validation. We randomly par-
tition the preclassified samples intoT , the training set and
V , the validation set. We compute the Fisher index of each
term based onT , and then classifyV using various pre-
fixes Fk. Let Nk be the number of misclassified documents
using Fk; then we seek that value ofk, sayk∗, for which
Nk is minimized.

For classification, we choose the classc that maximizes
the following a posteriori class probability based on the

Bernoulli model introduced in Sect. 3.1:

Pr[c|d, Fk] =
π(c)

∏
t∈d∩Fk

θ(c, t)n(d,t)∑
c′ π(c′)

∏
t∈d∩Fk

θ(c′, t)n(d,t)
, (4)

whereπ is the prior distribution on the classes. Letc∗(d) be
the “true” class ofd ∈ V , thenNk =

∑
d Nk(d), where

Nk(d) =

{
1, ∃c /= c∗(d) : Pr[c|d, Fk] > Pr[c∗(d)|d, Fk]
0, otherwise (5)

3.4 Data structures and pseudocode

The modules described so far are parts of a topic analysis
system that we have built, called TAPER. In building an
“industry grade” topic analyzer, we set the following goals.

– We must handle thousands of classes and millions of
documents; the current limits are 216 classes, 232 unique
tokens, and 232 documents, on a 32-bit architecture. By
using the “unsigned long long ” datatype or a 64-
bit architecture, we can easily get up to 232 classes and
264 tokens and documents. We make the reasonable as-
sumption that we can hold a simple pointer representa-
tion of the taxonomy tree in memory with a few words
per node (class).

– Training must be essentially on-line, say, as in a crawling
and indexing application. Testing or applying must be
interactive. As we will see in Sect. 4, we can train at
140 µs per token and test at 30µs per term. Training
should preferably make a single pass over the corpus.

– Since our statistics modules maintain combinable aggre-
gates, it is simple to incrementally update a fixed taxon-
omy with new document, and correct misclassifications
by moving a document from an incorrect class to one ad-
judged correct. With some more work, it is also possible
to reorganize entire topic subtrees.

A sketch of the TAPER system is shown in Fig. 1. The
training documents are randomly split into two subsets: one
subset for collecting term statistics and estimating term pa-
rameters, and another subset for “pruning” the models by
deciding which terms are noise.

TAPER supports leave-one-out cross validation, or a pre-
liminary partitioning (typically 1

3 : 2
3) of the pre-classified

corpus into training and validation documents. The resulting
class models restricted to features alone are stored on disk
using an indexed access method. For some corpora, these
statistics can be effectively cached in main memory. During
classification the classifier loads, these model statistics on
demand and emits a set of the most likely classes for the
input document.

TAPER has the following modules.

– Maps between terms and 32-bit IDs, and between classes
and 16-bit IDs.

– A tree data structure for storing class-specific informa-
tion.

– A module for statistics collection.
– A module for feature selection.
– A module for applying the classifier to a new or test

document.

We will discuss the last three in detail.

169

Select top
ranking features

by validation

Store term,
document and
class statistics

Training
Documents

Unlabeled
Documents

Random
Split or
Cross-

validation

Statistics
Collection Set

Model
Validation Set

Construct class
models restricted to

these features

Classifier

Class

Raw
Statistics

Sort and
aggregate

Order features by
discriminating

power

Indexed
Statistics

Fig. 1. A sketch of the TAPER hierarchical feature selection and classification engine

SF1TID KCID SMC SNC SF2

Sorted
unique key

Term Child class c

Number of
documents in the
class c having the

term t at least
once

Total count of
the term t in
documents in

the class c

∑
∈cd dn

tdn

)(

),(
2

)(

),(∑
∈

cd dn

tdn

PCID

Parent class

Fig. 2. The columns of the frequency table after aggregation on (TID, PCID, KCID). PCID is not explicitly stored; it is looked up from the taxonomy tree
stored in memory

3.4.1 Statistics collection

The goal of this module is to collect term statistics from
a document and dispense with it as fast as possible. After
simple stopword filtering and stemming while scanning, the
document is converted to a sequence of 32-bit TIDs (term
IDs). The main table maintained on disk is thefrequency ta-
ble shown in Fig. 2. TID corresponds to a term that occurs in
some document belonging to a class corresponding to KCID
(kid class ID). CIDs (KCIDs and PCIDs) are numbered from

one onwards. PCID represents the parent of KCID (zero if
KCID is the root). There are four other numeric fields per
row. All these four numbers are additive over documents,
so, for each documentd and termt, we can just append a
row to the frequency table, with SMC set to one, SNC set to
the number of timest occurred ind, calledn(d, t), SF1 set
to n(d, t)/

∑
t n(d, t) = n(d, t)/n(d) and SF2 set to (SF1)2.

SMC is used in the binary model; SNC is needed in the
Bernoulli model. Intermittently, this run is sorted and ag-
gregated on (TID,PCID,KCID) and merged into a table with

170

TID KCID SMC SNC SF1 SF2PCID
Store term
statistics
into tree

Sc
an

Append a
record to the
Fisher table

Clear tree
before next
term runs

Fig. 3. Scanning the frequency table and com-
puting the Fisher index of each term

PCID FI TID

Key

Class

Fisher
index

Term
Discarded
features

Selected
features

Decreasing
Fisher index

PC
ID

1
PC

ID
2

Fig. 4. The Fisher table. When sorted using
the (PCID, FI) key, we get a contiguous run for
each internal topic node, the run containing the
best features first. If a suitable feature set size
is specified, we can truncate the run to produce
a table of feature TIDs for each internal topic

unique key (TID, PCID, KCID), other fields being aggre-
gated. PCID is not stored explicitly, as it can be looked up
from the taxonomy tree stored in memory. Figure 2 shows
the contents of the fields after such aggregation: SMC con-
tains the number of documents in the class KCID that con-
tains the term TID at least once, SNC contains the total count
of term TID in documents of class KCID, SF1 contains∑

d∈c n(d, t)/n(d) and SF2 contains
∑

d∈c(n(d, t)/n(d))2,
wherec corresponds to class KCID.

This trades off space for time, and the frequency table
grows rather quickly, but with a lot a duplicate keys. De-
pending on how much disk space exists, once in a while we
must pause to catch our breath and sort and aggregate the
duplicate keys. For large corpora, this is vastly preferable to
a disk hash table with random I/O. Since sorting is a super-
linear operation, it is good to keep the size of the current
run of the frequency table small, not only to conserve disk
space, but also for faster sorting. We use simple heuristics
to start a sort phase. First, we configure some upper bound
to the number of rows for which a sort must be initiated
to conserve space. We also estimate the sorting time given
the number of rows and the average number of rows that
a document adds to the table. From previous sorts, we also
maintain an estimate of the fraction of rows compacted by
aggregation. We can also do this guided by recent sampling
techniques [1].

Given a moment in the execution and an infinite supply
of documents, we can continue training until we hit the up-
per bound dictated by space limits, and then sort. We can
estimate the time to complete this. We can also estimate the
total time needed if we sorted right away, trained the same
number of documents (which need not create an overflow)
and sorted again. If the latter estimate is smaller, we initiate

a sort. In our current implementation, processing documents
stops while the sorting is in progress. To meet tough real-
time requirements, one can open a new frequency table and
fork a thread, perhaps on another processor, to aggregate the
last run while more documents continue to be accepted.

We could have chosen an indexed access method in-
stead of the frequency table, and looked up and updated
SMC, SNC, SF1 and SF2 as we scanned each document.
That would have resulted in index lookups and random I/O
potentially for every term in the training set. It was far more
efficient to append statistics in a logged fashion. The fre-
quency table is a temporary file and no direct indexed access
to it is actually required later. Another benefit is compact-
ness: this is the most space-intensive phase of training, and
we avoid the storage overheads of indexed access and take
control of compaction explicitly. The space overhead of stor-
ing TID and PCID redundantly is moderate, as the rest of
each row is already 18 bytes long.

3.4.2 Feature selection

Before beginning feature selection, we aggregate the fre-
quency table one last time, if necessary, to eliminate all du-
plicates. We rewind the frequency table and prepare to scan
it. At this stage, all rows with the same TID are collected
in a contiguous run, going through all CIDs where that TID
occurred (see Fig. 3), with all the children KCID of parent
class PCID collected together. We also prepare to output
another file, called theFisher table. For the following dis-
cussion, we will assume it has the format shown in Fig. 4.
Rows are keyed by PCID and a floating point number FI
(FI stands forFisher index), where for each fixed PCID the

171

PCID KCID SMC SNCTID

TID FIPCID

Key

Key Fisher
table

Frequency
table

Sort
Merge

Hashed
Index

TID PCID

KCID SMC SNC Fig. 5. Creating an indexed topic model statis-
tics table that is used by the classifier while
classifying new documents

rows are sorted in decreasing order of FI. The last column
is the TID whose corresponding CID and FI are the first
and second columns. Note that the notion of FI is associated
only with internal nodes PCID.

Because TID is the primary key in the frequency table, as
we scan it, we will get a sequence of runs, each run having
a fixed TID. Associated with each topic node in memory,
we keep a few words of statistics (derived from SMC, SNC,
etc.). When we start a run for a given TID, we clear these.
As we scan through the various KCID’s for the given TID in
the frequency table, we locate the node corresponding to the
KCID in the taxonomy and update these statistics. In a large
taxonomy, very few of the nodes will be updated during a
run. If a node is updated, its parent will be updated as well.
We can therefore reset these statistics efficiently after each
run.

When the run for a given TID completes, we can com-
pute, exploring only the updated nodes, the Fisher index of
that term for every internal node in the taxonomy (using Eq.
2). For each of these PCIDs, we append a row to the Fisher
table. Next, we sort the Fisher table on the key (PCID, FI).
This collects all classes into contiguous segments, and for
each PCID, orders terms by decreasing values of FI.

Consider now the case in which, for each internal topic
c, the numberk∗(c) of features to pick is specified to TAPER
directly. (The next section discusses howk∗ is determined
in one pass over the portion of the training documents set
apart earlier for model pruning.) Givenk∗(c), we scan the
sorted Fisher table, copying the firstk∗(c) rows for the run
corresponding to classc to an output table, and discarding
the remaining terms. This involves completely sequential
I/O.

Next we sort the truncated Fisher table on (TID, PCID)
and merge it with the frequency table, which is already sorted
on (TID, PCID, KCID). We consider rows of the Fisher table
one by one. For each row, once we find the beginning of a
key-matched row of the frequency table, we read it as long
as the key remains unchanged, constructing a memory buffer
of the form (KCID, SMC, SNC). This buffer is then written
into a hash table on disk as shown in Fig. 5.

3.4.3 Finding a good cutoffk∗

Given terms in decreasing Fisher index order, we wish to
find a good value fork∗, the number of chosen features.

Fix a test documentd ∈ V and consider what happens as
we grow the prefixk. Typically, d will be misclassified up
to some prefix, because there are not enough discriminating
terms in the prefix, and then at some point it may get cor-
rectly classified owing to some good features being included.
For some documents, at a larger prefix, a noise term may
enter into the feature set and caused to be misclassified. Let
this 0-1 function (1 iffd is misclassified) beNk(d); then we
seek to find

∑
d Nk(d) for all k. A naive approach to this

would be the following pseudocode:
Naive algorithm:
For all (or suitably many) values ofk

Prepare models with onlyk features
For each documentd ∈ V

DetermineNk(d) and add on toNk.
This approach would make many unnecessary passes

over the input text, wasting time tokenizing and mapping
IDs. If one has enough disk space, part of this cost can be
avoided by storing tokenized text, but a closer look at the
determination ofNk(d) also reveals that computation would
also be repeated in determiningNk(d) for a modelM2 that
uses a superset of features used by another modelM1. In
fact, one can computeNk(d) underM2 very efficiently and
directly, provided the documentd is held fixed and succes-
sive models are built by adding more and more features.

We wish to compute this aggregate functionNk in only
one pass over all internal taxonomy nodes and all validation
documents inV . For a small number of internal nodes in
the taxonomy, we can assume that theNk functions for all
the internal nodes can be held in memory (a lexicon of size
100,000 takes only 400 KB). But for a larger taxonomy, we
must be able to contain memory usage.

We associate an output file with every internal noder
of the taxonomy. (If this requires too many open file han-
dles, we resort to simple batch writes and keep most handles
closed.) We start scanning through the validation documents
one by one. Consider documentd, with an associated (leaf)
classc. We locatec in the taxonomy, and its parent, say
r. Earlier we have computed the Fisher score for all terms
seen at noder. We sort the terms in documentd in decreas-
ing order of this score; terms ind that are not found atr
are discarded. Let these terms have rankt1, t2, . . . , t|d|. We
construct a sequence of classifiers forr. The first uses terms
ranked between 1 andt1, the second uses terms ranked be-
tween 1 andt2, etc. For the classifier using terms ranked 1

172

throught, we see ifd is correctly routed fromr to c or not,
and compare this outcome with that for using terms ranked
1 throught − 1. If the outcome changes fromt − 1 to t,
we record the jump inNk(d) by writing out a “delta” record
“ t, ±1” to the output file associated withr (+1 means no
error att − 1, error att; and vice versa). Finally, the output
file at eachr is sorted on the term rank column, and a cu-
mulative sum generatesNk for noder. Before discardingd
from memory, we perform the above step for all the edges
on the path betweenc and the root of the taxonomy.

I/O-efficient algorithm:
For each documentd ∈ V

Consider the edge (r, c) as above
Sort the terms ofd in decreasing order

of score atr
Let the term ranks bet1, t2, . . . , t|d|
For i = 1, 2, . . . , |d|

Construct a classifier forr with terms
ranked 1. . . ti

Let Nti(d) be 1 iff this classifier
misclassifiesd

Compare withNti−1(d) and output delta
if different

Repeat for all edges fromc to root
For each noder

Sort files by term rank (first column)
Compute cumulative sums of the second column

3.4.4 Updates to the database

For a batch job, the large frequency and Fisher tables can
now be deleted, leaving the relatively smaller indexed topic
statistics and the term-to-TID maps. If the system is used
in a setting where new documents will be added to classes,
it is necessary to preserve the frequency table. It continues
to be used in the same way as before: rows are appended
and occasionally it is compacted to aggregate duplicate keys.
Running feature selection integrates the new data into the in-
dexed statistics. Like running statistics generation for a rela-
tional server, feature selection is not an interactive operation.
For example, on a database with 2000 classes, average 150
documents per class, and average 100 terms per document,
it may take a couple of hours. So this is invoked only when
there is reason to believe that the refreshed statistics will
improve classification. Automatically detecting such times
is an interesting question.

Another issue is deletion of documents and moving of
documents from one class to another (perhaps because clas-
sification was poor or erroneous for those documents). Since
feature selection is always preceded by a frequency table ag-
gregation, we can always place negative “correction” entries
in it! This means, we produce a frequency table row corre-
sponding to each term in the deleted document and negate
SMC, SNC, SF1 and SF2 for the class(es) the document is
being deleted from. (Here, we cannot ensure that the docu-
ment was originally included in the aggregate, but that can
be done by preserving IDs for training documents.)

A more difficult issue is the reorganization of the tax-
onomy itself. Although the current system leaves this issue

unresolved, we believe its design will make reorganization
relatively simple. Notice that in TAPER, a parent class in-
herits, in anadditive fashion, the statistics of its children,
since each training document generates rows for each topic
node from the assigned topic up to the root. We thus en-
visage a procedure of reassigning CIDs and writing out a
new frequency table with some negative “correction” en-
tries. Consider detaching a subtree under nodec1 and at-
taching it elsewhere under nodec2. Statistics at or above the
least common ancestorc` of c1 and c2 remain unchanged.
Negative (respectively, positive) rows are appended to the
frequency table corresponding to all classes betweenc` in-
clusive andc1 (respectively,c2) exclusive. And the parent
and child links have to be modified in the taxonomy tree.

3.4.5 Classification

The rationale for the data organization described earlier be-
comes clear when we consider what happens when the clas-
sifier is invoked on a document. In the basic API, one loads
a taxonomy and its precomputed statistics, and submits a
document (represented by term counts) to the classifier. In
our model, the probability that the document is generated by
the root topic is 1 by definition and decreases down any path
in the taxonomy. Accordingly, also specified in the API is a
probability cutoff for nodes reported back as close matches.

Consider the documentd at some internal nodec0 with
children c1 and c2. TAPER needs to intersectd with the
feature set atc0, then, for each surviving termt, look up the
class models forc1 andc2. It is thus best for both space and
I/O efficiency to index the statistics by (c0, t) and include
in the record a vector of statistics for eachci, i = 1, 2. The
obvious pseudocode has to be slightly modified to reflect
this (̀ c denotes log Pr[c| · · ·]).

Naive index lookup:
For each childci of c0, i = 1, 2, . . .

Initialize `ci to 0
For each termt ∈ d

Lookup term statistics for (ci, t)
Update`ci

Normalize
∑

i exp(̀ ci
) to one

Add `c0 to each`ci
.

Optimized index lookup:
Initialize all `ci

to zero
For each termt ∈ d

Skip if key (c0, t) is not in index
Retrieve record for (c0, t)
For eachci that appears in the record

Update`ci

Normalize etc.

3.5 Context-sensitive document signatures

Up to a point, the user can sift a query response based only
on the topic paths. However, even the leaf classes are neces-
sarily coarser than individual documents; support is therefore
needed to browse quickly through many documents without
looking into the documents in detail. Most search engines

173

attach a few lines from each document. Often these are the
title and first few lines; or they are sentences with the most
search terms. For many documents, better keyword extrac-
tion is needed. Moreover, as we have argued, these signa-
tures should be extracted relative to a node in the taxonomy.

Given this reference nodec, one approach is to concate-
nate the training documents associated withc into a super
documentd, and then rank termst ∈ d in decreasing order of
the number of standard deviations thatx(d, t) is away from
f (c, t). Here, our earlier simplistic document model gets into
trouble: as mentioned in Sect. 3.1, a term that has occurred
once in a document is more likely to occur again. Since the
Bernoulli model does not take this into account, frequent
terms often remain surprising all along the taxonomy path.

Matters are improved by moving to the binary model.
First, suppose we have a single test documentd, and consider
t ∈ d. If the observed fraction of training documents in class
c containing termt is θ(c, t), we simply sort allt ∈ d by
increasingθ(c, t) and report the top few. If there arè> 1
test documents inc, we find the fractionφ(t) that containst,

and sort thets in increasing order of(θ(c,t)−φ(t))
√

`√
θ(c,t)(1−θ(c,t))

. Both,

in fact, correspond toP -values computed using the normal
approximation to the binomial distribution.

4 Performance

In this section, we study the performance of our system.
There are three aspects to performance: first, to what extent
this paradigm assists in text search and browsing; second,
how accurate our techniques for feature selection and hierar-
chical classification are; and third, how efficient or scalable
our system is. The first item is at this point a matter of
qualitative judgement, as is the evaluation of the signature-
finding techniques. The quality of feature selection and clas-
sification can be measured precisely, and we present these
results here. As regards efficiency and scalability, we quote
TAPER ’s running times for specific platforms, show that
they scale favorably with corpus size, and compare with the
performance of a well-known text classifier from the prior
art [3].

4.1 Datasets and measures

We used three data sources: the Reuters benchmark used
widely in the IR community, the US patent database, here-
after referred to asUSPatent, and Yahoo!. For evaluation,
the simple scenario is anm-class problem, where each doc-
ument belongs to exactly one class. We can draw up an
m × m contingency table, entry (i, j) showing how many
test documents of classi were judged to be of classj. This is
called theconfusion matrix. One important number to com-
pute from a confusion matrix is the sum of diagonal entries
divided by the sum of all elements: this gives the fraction of
documents correctly classified. If each document has exactly
one class, this number is the same asmicroaveraged recall
and precision as defined by Lewis [27]. He also proposes
how to evaluate performance on data sets in which docu-
ments have multiple classes. The classifier is required to out-
put for documentd the setCk(d) of thek classes having the

highest “match.” Let the set of “true” classes beC∗(d). Then
precisionis defined as

∑
d |Ck(d) ∩ C∗(d)|/ ∑

d |Ck(d)| and
recall is defined as

∑
d |Ck(d) ∩ C∗(d)|/ ∑

d |C∗(d)|. By
changingk, one can achieve a trade-off between recall and
precision. The point where recall equals precision is called
the break-even point.

4.2 Evaluation of feature selection

Although Reuters has provided a taxonomy for its articles,
the data available does not include taxonomy codes in the
class header. For this subsection, we will work with other
corpora where such information is explicitly provided.

The sample ofUSPatent that we used has three nodes
in the first level,Communication, Electricity andElectronics.
Each has four children in the second level. Figure 6 shows
the taxonomy we used. The overlap in vocabulary between
some of the nodes, e.g., modulator, demodulator, amplifier,
oscillator; and motive, heating, resistor make the classifica-
tion task appear more challenging than Reuters, which deals
with a more diverse set of topics.

4.2.1 Classification error vs feature set size

Figure 7a–d shows the results of validation experiments
over the patent database. Five hundred training patents and
300 validation patents were picked at random from each
of the 12 leaves in Fig. 6. The Fisher index ordering gives
rapid reduction in classification error within just a few hun-
dred feature terms, out of the roughly 30,000 terms in our
lexicon. For some classes, the error goes up slightly (not
visible in the range shown) after a minimum due to over-
fitting. The smallest minima and corresponding errors are
roughly at 160 terms, 25.1% forPatent; 200 terms, 11.7%
for Communication; 890 terms, 17.8% forElectricity; and
9130 terms, 16.6% forElectronics. The minima are not very
sharp, but the diversity of the feature set sizes still questions
the common practice of picking a fixed number of most fre-
quent terms in each class as features.

4.2.2 Best discriminants and applications

We list the best features in the patent taxonomy below; notice
how the sets change down the levels.

Patent: Signal, modulate, motor, receive, antenna, telephone, transmit, fre-
quency, modulation, modulator, demodulator, current, voltage, data,
carrier, power, amplifier, phase, call, amplitude.

Patent:Communication: Antenna, telephone, modulator, demodulator, sig-
nal, modulate, output, call, modulation, input, demodulated, frequency,
phase, communication, radar, demodulating, space, detector, line, de-
modulation, transmit, circuit.

Patent:Electricity: Motor, heat, voltage, transistor, output, circuit, connect,
input, weld, extend, surface, current, position, gate, speed, control,
terminal, drive, regulator, signal, rotor.

Patent:Electronics: Amplifier, oscillator, input, output, frequency, transistor,
signal, laser, emitter, couple, amplify, gain, resistance, connect, extend,
form, contact, differential, material, resistor.

We have also applied the feature selection algorithm to
find salient differences between various sets of documents.

174

Social Science

Society&Culture

Health

Recreation

Reference

Science

Education

Entertainment

Government

Computers&Internet

Arts

Business&Economy

Communication

Electricity

Electronics

331 Oscillator

330 Amplifier

338 Resistor

361 System

307 Transmission

318 Motive

323 Regulator

219 Heating

329 Modulator

332 Demodulator

379 Telephony

343 Antenna
Pa

te
nt

Y
ah

oo

Regional

Class code

News&Media

Fig. 6a,b.Sample of topic taxonomies we have experimented
with. a A portion of the US patent database taxonomy with
numeric class codes.b The first level of a web taxonomy
derived fromYahoo!, with a total of 2,218 nodes

/Patent

0

20

40

60

80

100

0 100 200 300 400 500

#Features

%
E

rr
or

/Patent/Communication

0

20

40

60

80

100

0 100 200 300 400 500

#Features

%
E

rr
or

/Patent/Electricity

0

20

40

60

80

100

0 100 200 300 400 500

#Features

%
E

rr
or

/Patent/Electronics

0

20

40

60

80

100

0 100 200 300 400 500

#Features

%
E

rr
or

Fig. 7a–d.Evaluation of feature selection

One application is to find descriptions for clusters in unsu-
pervised document clustering. For example, the querymouse
gets hundreds of responses from the IBM Patent Server. To
quickly zoom in to the right notion, one clusters the re-
sponse and runs TAPER with the clusters treated as classes.
A sample of results is shown:

Cluster 1: Tissue, thymus, transplanted, hematopoietic, treatment, exem-
plary, organ, immunocompromised, host, trypsin.

Cluster 2: Computer, keyboard, hand, edge, top, location, keys, support,
cleaning.

Cluster 3: Point, select, environment, object, display, correspondence, di-
rect, image.

175

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400

#Features

A
cc

ur
ac

y

Binary

Bernoulli

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

%Training set used

A
cc

ur
ac

y

Fig. 8a. Choice between the Bernoulli and binary text models for classification. Bernoulli appears consistently superior in our experiments.b Verification
that the training set is adequate

These “cluster digests” lets the user easily refine the query.
In the context of the patent database, TAPER can also

be used, for example, to compare and contrast the patent
portfolios of two assignees or one assignee at two different
times. For example, a comparison betweenSun Microsystems
andSilicon Graphicsgives the following:

Sun Microsystems Silicon Graphics
• General-purpose programmable
digital computer systems
• Electrical computers and
data-processing systems
• Integrated circuit, processor,
voltage, interface

• Information-processing system
organization
• Data presentation, computer
graphics
• Surface detail, texture
• Adjusting resolution or
level of detail

An even more interesting example is comparing Intel patents
in 1993–94 with those in 1994–95. TAPER detects a new
line of research and patenting in the second year:

Intel, 1993–94 Intel, 1994–95
• General-purpose programmable
digital computer systems
• Chip fabrication
Counter, input

• Interactive television bandwidth
reduction system
• Involving difference transmission
• Field or frame difference
• Involving adaptive transform
coding

(It is possible to get the coherent phrases because the patent
database effectively stores them as single terms associated
with patents.)

4.2.3 Choice of system configurations

Binary vs Bernoulli. TAPER supports both the Bernoulli
(term counts are significant) and the binary (term count is
zero or one) text models. As we discussed in Sect. 3.1, the
Bernoulli model might be criticized as paying too much at-
tention to each additional occurrence of a term, so we com-
pare Bernoulli with binary in Fig. 8a. The Bernoulli classifier
appears to be more effective in exploiting the count infor-
mation, so, for the rest of the paper, we restrict ourselves to
this model.

Sufficiency of training data. Before we compare TAPER
with other known approaches, we ensure that the training
set is adequate. To do this, we train using random samples
of increasing sizes from the training set and verify that the
test performance has saturated. This is shown in Fig. 8b.

4.3 The Reuters benchmark

The Reuters benchmark has 7775 training documents and
3019 testing documents from 115 classes. We experimented
with Reuters to ensure that our basic classifier is of accept-
able quality. Less than a tenth of the articles are assigned
multiple classes. In fact, in some cases, some class labels
were refinements of others, e.g.,grain and wheat, and it
would be incorrect to regard them as classes at the same
level, since some classes imply others.

In our first experiment, we used only the first of the
classes assigned to each document. Our micro-averaged re-
call, which, for this setup, equals the micro-averaged preci-
sion, was 87%. We also studied recall-precision trade-offs
in the multi-class scenario. The results are shown in Fig. 9.
Our interpolated breakeven point is 76%. Since only 9% of
the documents have two or more classes, the best policy is
to return the top class at a recall of 71.3% and precision of
88.6%.

For this benchmark, there is no benefit from hierarchy.
To test the effect of our feature selection, we compared
it with an implementation that performs singular value de-
composition (SVD) on the original term-document matrix,
projects documents down to a lower dimensional space,
and uses a Bayesian classifier in that space, assuming the
Gaussian distribution (S. Vaithyanathan, personal commu-
nication). Our classifier was more accurate by 10–15%, in
spite of its simplicity. Our explanation is that the SVD, in
ignoring the class labels, finds projections along directions
of large variance, which may not coincide with directions of
best separation between documents with different classes.

176

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

P
re

ci
si

on

Fig. 9. Recall-precision trade-off on Reuters. Our break-even point is 76%

Table 1.Confusion matrix for the weighted cosine one-level classifier. Each
row sums to 100, modulo rounding. The diagonal elements add up to only
0.48 of the total number of the documents. This is the microaveraged recall

Class name 329 332 343 379307 318 323 219330 331 338 361
329 Demodulator 51 9 2 1 0 6 5 2 12 11 0 2
332 Modulator 21 27 3 2 3 7 6 4 10 12 2 2
343 Antennas 10 6 47 3 4 2 6 1 1 4 14 3
379 Telephony 9 1 1 65 1 5 2 5 3 1 5 3
307 Transmission 1 1 1 1 57 2 8 5 0 1 19 4
318 Motive 6 4 1 1 1 41 7 13 14 4 2 3
323 Regulator 8 3 1 3 7 4 59 7 2 1 2 5
219 Heating 2 1 0 0 0 18 9 49 12 1 2 5
330 Amplifier 6 5 1 0 1 17 1 8 53 3 4 1
331 Oscillator 10 2 3 0 6 9 4 7 10 33 13 4
338 Resistor 0 0 0 0 3 0 3 2 0 0 87 4
361 System 2 1 1 1 9 8 8 9 1 1 30 29

Table 2.Confusion matrix for our multilevel classifier, showing much larger
diagonal elements, i.e, more frequently correct classification. The microav-
eraged recall is 0.66

Class name 329 332 343 379307 318 323 219330 331 338 361
329 Demodulator 80 5 0 0 0 2 0 3 5 4 0 0
332 Modulator 16 55 1 0 1 2 1 3 9 11 0 0
343 Antennas 5 5 63 1 1 0 2 0 0 2 15 6
379 Telephony 4 2 1 82 0 1 0 2 1 1 1 4
307 Transmission 0 0 0 0 55 2 3 3 0 2 26 8
318 Motive 6 4 0 2 3 48 5 16 8 5 1 2
323 Regulator 3 1 1 2 3 2 81 6 0 0 1 1
219 Heating 1 1 0 0 0 10 4 72 7 0 3 1
330 Amplifier 3 9 0 0 0 10 0 11 57 8 0 1
331 Oscillator 15 8 0 0 0 4 0 7 8 47 5 4
338 Resistor 0 0 0 0 1 0 2 0 1 0 92 4
361 System 1 0 0 0 2 6 6 10 1 1 12 61

4.4 Evaluation of hierarchical classification

In this section, we describe our experience with the hierar-
chicalUSPatent dataset. We compare the hierarchical classi-
fier with a standard vector-space-based [38] classifier. Each
document is a vector in term space; each class is the sum
or centroid of its document vectors. The similarity between
two vectors is their cosine. Weighting the terms usually re-
sults in better relevance ranking. There are over 287 variants
of term-weighting schemes with tuned magic constants re-

Table 3. The benefits of hierarchy. The prefix field in the second row
correspond to the four internal nodes in theUSPatent tree: /Patent,
/Patent/Communication, /Patent/Electricity and /Patent/Electronics

Classifier Prefix Parameters Recall Time/doc
Flat 250 2651 0.60 15 ms
Taxonomy 950;200;400;800 2649 0.63 6 ms

ported [38]. We pick one version recommended by Sparck-
Jones [20, 23].

nmax(d) = maxt∈d n(d, t)

m = number of classes

nt =
∑

c sign(n(c, t))

w(c, t) = (1 + n(d,t)
nmax(d))(1 + lg m

nt
)

Score(c, d) =
xd · wc

|xd| |wc|
We see a substantial gain in accuracy over the standard

weighted-cosine classifier. We did further experiments to see
how much of the gains was from feature selection as against
the hierarchy. To do this, we can fix the feature selection and
classification modules, and only change the taxonomy: one
will be the taxonomy in Fig. 6, the other will have the root
and the 12 leaves. We have to be very careful to make this a
fair competition, making sure that the class models are rep-
resented with the same complexity (number of parameters)
in the two settings. In counting the number of parameters
we must also account for the sparsity of the term frequency
tables; we have no direct control on this. By trial and er-
ror, we came up with the comparative evaluation shown in
Table 3.

In this dataset, the accuracy benefit from hierarchy is
modest compared to the benefit from feature selection. How-
ever, note that the flat classifier has a steep performance
penalty, because it has to compare too many classes all
at once. This gap is dramatic for larger taxonomies, such
as Yahoo!. How to allocate a fixed number of parameters
among the taxonomy nodes for best overall classification is
an interesting issue.

Summarizing, we showed that our feature selection is
effective, and that our classifier is significantly more accurate
than cosine-based ones and comparable to the best known for
flat sets of classes. Hierarchy enhances accuracy in modest
amounts, but greatly increases speed.

4.5 Running times

TAPER has undergone extensive revisions to make it effi-
cient. One can specify some maximum amount of memory
it should use, and it uses the disk intelligently to stage larger
data. Here, we will merely give some examples of the cur-
rent performance, not compare it with all the preliminary
versions. Also, an extensive comparison with other existing
packages on a common hardware platform is left for fu-
ture work. TAPER has been evaluated on two platforms: a
133-MHz RS 6000/43P with 128 MB RAM, and a 200-MHz
Pentium-II with 256 MB RAM. On the former, we can train
at 140µs per term and test at 30µs per term. These times

177

are measured after the document is in memory, and they ac-
count for the database reorganization costs during training.
The whole Reuters experiments, including I/O time for text,
takes less than 610 seconds.

The running time performance of the classifier of Apte
et al [3] is not published, although its break-even point, at
80.5%, is 4.5% above ours. A classifier using a similar tech-
nology and with similar accuracy called KitCat has a train-
ing time that is about 60 times the training time of TAPER.
On larger corpora where efficient I/O management is more
important, the difference in performance is even more sig-
nificant.

On the latter platform, 266,000 web documents from
2118 Yahoo! classes have been trained (from a disk image
obtained by crawling) in about 19 h. TAPER processes doc-
uments that are several hundred words long in about the time
needed for a disk access. This makes it possible to directly
connect TAPER to a web crawler and populate the search
database with topic information as well as keyword index,
on the fly.

5 Related work

We survey the following overlapping areas of related re-
search and point out differences with our work where appro-
priate: IR systems and text databases, data mining, statistical
pattern recognition, and machine learning.

Data mining, machine learning, and pattern recognition.
The supervised classification problem has been addressed in
statistical decision theory (both classical [44] and Bayesian
[5]), statistical pattern recognition [14, 18] and machine
learning [5, 32, 45]. Classifiers can be parametric or non-
parametric. Two well-known classes of non-parametric clas-
sifiers are decision trees, such as CART [6] and C4.5 [34],
and neural networks [21, 22, 28]. For such classifiers, feature
sets larger than 100 are considered extremely large. Docu-
ment classification may require feature selection from more
than 500,000 features, and result in models with over 10,000
features.

IR systems and text databases.The most mature ideas
in IR, which are also successfully integrated into commer-
cial text search systems such asVerity11, ConText12 and
AltaVista, involve processing at a relatively syntactic level;
e.g., stopword filtering, tokenizing, stemming, building in-
verted indices, computing heuristic term weights, and com-
puting similarity measures between documents and queries
in the vector-space model [16, 39, 42].

More recent work includes statistical modeling of doc-
uments,unsupervisedclustering (where documents are not
labeled with topics and the goal is to discover coherent clus-
ters) [2], supervisedclassification (as in our work) [3, 10],
query expansion [40, 43]. Singular value decomposition on
the term-document matrix has been found to cluster seman-
tically related documents together even if they do not share
keywords [13, 33]. For a survey see [15].

Contrast with our work. Our work emphasizes the per-
formance issues of feature selection and classification raised

11 http://www.verity.com
12 http://www.oracle.com/products/oracle7/oracle7.3/html/contextqa.html

by corpora ranging into tens to hundreds of gigabytes, rather
than exploring many variants of learning algorithms on small
corpora and lexicon (10,000 documents and terms).

Most closely related to our work [7] are the concurrent
investigations made by Koller and Sahami [24] and Yang
and Pedersen [46]. Koller and Sahami propose a sophisti-
cated feature selection algorithm that uses a Bayesian net to
learn interterm dependencies. The complexity in the num-
ber of features is supralinear (e.g., quadratic in the number
of starting terms and exponential in the degree of depen-
dence between terms). Consequently, the reported experi-
ments have been restricted to a few thousand features and
documents. Yang and Pedersen’s experiments appear to in-
dicate that much simpler methods suffice, in particular, that
the approach of Apte et al. [3] of picking a fixed fraction
of most frequent terms per class performs reasonably. There
is a possible danger that this fraction is very sensitive to
corpus and methodology (e.g., whether stemming and stop-
wording is performed). This is indicated by the poor perfor-
mance of such simplistic methods observed in recent work
by Mladenic [30].

Our goal has been to look for techniques that have good
statistical foundation, while remaining within almost linear
time and one pass over the corpus, even when doing feature
selection simultaneously for many nodes in a large topic tax-
onomy. Koller and Sahami also emphasize the importance
of hierarchies, but they use a greedy search for the best leaf
and point out the potential dangers of this approach. Our
formulation fixes this problem. Also, our approach of com-
puting context-dependent document signatures to aid search
and browsing appears to be a new extension to the scatter-
gather type of retrieval interface [12].

6 Conclusion

We have demonstrated that hierarchical views of text data-
bases can improve search and navigation in many ways,
and presented some of the tools needed to maintain and
navigate in such a database. A combination of hierarchy,
feature selection, and context-sensitive document signatures
greatly enhanced the retrieval experience.

Our work raises several questions for future investiga-
tion. Usually, TAPER finds good feature set sizes indepen-
dently for each internal node; the space needed to store the
resulting model was not explicitly controlled. In Sect. 4.4,
we raised the question of designing classifiers that maxi-
mize accuracy given bounded space, i.e., model size, and
bounded time. Table 3 suggests the interesting problem of
allocating the total space among nodes of a hierarchy for
best overall accuracy. Resolving the following performance
issue can greatly cut down space and time during training:
is it possible to prune off terms with poor Fisher index even
as term statistics are being collected? Another issue related
to accuracy is whether the classifier can reliably stop at a
shallow level of the tree when classifying a document about
which it is uncertain. Finally, in recent work, we have found
that adding hyperlink information to the feature set used by
TAPER greatly improves accuracy [8].

178

Acknowledgements.Thanks to Mark Jackson, Alex Miller, Bruce Hönig,
and Carol Thompson from the IBM Patent Server Team, to Chandra
Chekuri, Mike Goldwasser, and Eli Upfal for helpful discussions, and to
Sunita Sarawagi and Martin van den Berg for comments on the paper.

References

1. Alon N, Matias Y, Szegedy M (1996) The space complexity of ap-
proximating the frequency moments. In: Symposium on the Theory of
Computing (STOC), May 1996, Philadelphia, Pa., pp 20–29

2. Anick P, Vaithyanathan S (1997) Exploiting clustering and phrases for
context-based information retrieval. In: SIGIR, 1997

3. Apte C, Damerau F, Weiss SM (1994) Automated learning of decision
rules for text categorization. IBM Research Report RC18879

4. Balabanovic M, Shoham Y (1997) Content-based, collaborative rec-
ommendation. Commun ACM 40(3):66–72

5. Berger JO (1985) Statistical Decision Theory and Bayesian Analysis.
Springer, Berlin Heidelberg New York

6. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification
and Regression Trees. Brooks/Cole, Pacific Grove, Calif

7. Chakrabarti S, Dom B, Agrawal R, Raghavan P (1997) Using taxon-
omy, discriminants, and signatures for navigating in text databases. In:
VLDB Conf, August 1997, Athens, Greece

8. Chakrabarti S, Dom B, Indyk P (1998) Enhanced hypertext categoriza-
tion using hyperlinks. In: SIGMOD ACM, 1998

9. Chekuri C, Goldwasser M, Raghavan P, Upfal E (1996) Web search
using automatic classification. In: Sixth World Wide Web Conference,
1996, San Jose, Calif

10. Cohen WW, Singer Y (1996) Context-sensitive learning methods for
text categorization. In: SIGIR ACM, 1996

11. Cover TM, Thomas JA (1991) Elements of Information Theory. Wiley,
Chichester

12. Cutting DR, Karger DR, Pedersen JO (1993) Constant interaction-time
scatter/gather browsing of very large document collections. In: SIGIR,
1993

13. Deerwester S, Dumais ST, Landauer TK, Furnas GW, Harshman RA
(1990) Indexing by latent semantic analysis. J Soc Inf Sci 41(6):391–
407

14. Duda R, Hart P (1973) Pattern Classification and Scene Analysis. Wi-
ley, New York

15. Falaoutsos C, Oard DW (1995) A survey of information retrieval and
filtering methods. Technical Report CS-TR-3514. University of Mary-
land, College Park, MD 20742

16. Frakes WB, Baeza-Yates R (1992) Information retrieval: Data struc-
tures and algorithms. Prentice-Hall, Englewood Cliffs, NJ

17. Friedman JH (1997) On bias, variance, 0/1 loss, and the curse-of-
dimensionality. Data Min Knowl Discovery 1(1):55–77

18. Fukunaga K (1990) An Introduction to Statistical Pattern Recognition,
2nd ed. Academic Press, New York

19. Goldberg D, Nichols D, Oki B, Terry D (1992) Using collaborative
filtering to weave an information tapestry. Commun ACM 35(12):61–
70

20. Harman D Ranking algorithms. In: Frakes WB, Baeza-Yates R (eds)
Information retrieval: Data structures and algorithms, Chapter 14.
Prentice-Hall, Englewood Cliffs, N.J.

21. Hush DR, Horne BG (1993) Progress in supervised neural networks.
IEEE Signal Process Mag: 8–39

22. Jain AK, Mao J, Mohiuddin K (1996) Artificial neural networks: A
tutorial. Computer 29(3):31–44

23. Jones KS A statistical interpretation of term specificity and its appli-
cations in retrieval. J Documentation 28(1):11–20

24. Koller D, Sahami M (1997) Hierarchically classifying documents using
very few words. In: International Conference on Machine Learning,
Vol. 14, 1997, Morgan-Kaufmann, San Mateo, Calif

25. Langley P (1996) Elements of Machine Learning. Morgan Kaufmann,
San Mateo, Calif

26. Laplace P-S (19959 Philosophical Essays on Probabilities (Translated
by A.I. Dale from the 5th French edition of 1825). Springer, New York

27. Lewis D (1991) Evaluating text categorization. In: Proceedings of the
Speech and Natural Language Workshop, 1991, Morgan-Kaufmann,
San Mateo, Calif., pp 312–318

28. Lippmann RP (1989) Pattern classification using neural networks. IEEE
Commun Mag :47–64

29. Miller BN, Reidl JT, Konstan JA (1997) Experiences with GroupLens:
Making Usenet useful again. In: USENIX Annual Technical Confer-
ence, 1997, pp 219–233

30. Mladenic D (1998) Feature subset selection in text-learning. In: 10th
European Conference on Machine Learning, 1998

31. Mirsky S (1997) Untangling the web. IBM Res Mag 4:8–10
32. Natarajan BK (199) Machine Learning: A Theoretical Approach.

Morgan-Kaufmann, San Mateo, Calif
33. Papadimitriou C, Raghavan P, Tamaki H, Vempala S (1996) Latent

sematic indexing: A probabilistic analysis.
34. Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan

Kaufmann, San Mateo, Calif
35. Raghavan P (1997) Information retrieval algorithms: A survey. In:

Symposium on Discrete Algorithms, 1997
36. Ristad ES (1995) A natural law of succession. Research report CS-TR-

495-95, Princeton University, Princeton, Calif
37. Robertson SE, Walker S (1994) Some simple effective approximations

to the 2-Poisson model for probabilistic weighted retrieval. In: SIGIR,
1994, pp 232–241

38. Salton G, Buckley C (1988) Term-weighting approaches in automatic
text retrieval. Inf Process Manage 24(5):513–523

39. Salton G, McGill MJ (1983) Introduction to Modern Information Re-
trieval. McGraw-Hill, New York

40. Schutze H, Hull DA, Pederson JO (1995) A comparison of classifiers
and document representations for the routing problem. In: SIGIR, 1995,
pp 229–237

41. Shardanand U, Maes P (1995) Social information filtering: Algorithms
for automating word of mouth. In: Computer Human Interaction (CHI),
1995, ACM Press, New York

42. van Rijsbergen CJ (1979) Information Retrieval. Butterworths, Oxford
(Also available on-line at http://www.dcs.gla.ac.uk/Keith/Preface.html)

43. Voorhees EM (1993) Using WordNet to disambiguate word senses for
text retrieval. In: SIGIR, 1993, pp 171–180

44. Wald A (1950) Statistical Decision Functions. Wiley, New York
45. Weiss SM, Kulikowski CA (1990) Computer Systems That Learn.

Morgan-Kaufmann, San Mateo, Calif
46. Yang Y, Pedersen J (1997) A comparative study on feature selection in

text categorization. In: International Conference on Machine Learning,
1997, pp 412–420

47. Young TY, Calvert TW (1974) Classification, Estimation and Pattern
Recognition. Elsevier Science Publishers, Amsterdam

48. Zipf GK (1949) Human Behavior and the Principle of Least Effort: An
Introduction to Human Ecology. Addison-Wesley, Reading, Mass

