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Course plan: Ranking (2 hours)

» Feature vectors
» Basics of discriminative and max-margin ranking
» Nodes in a graph

HITS and Pagerank

Personalized Pagerank and variations
Maximum entropy flows

Learning edge conductance
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Course plan: Labeling (1.5 hours)

» Feature vectors
» Discriminative loss minimization
» Probabilistic and conditional models
» Structured prediction problems
» Nodes in a graph
» Directed Bayesian models, relaxation labeling
» Undirected models, some easy graphs
» Inference using LP and QP relaxations
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Ranking feature vectors

>

Suppose x € X are instances and ¢ : X — R a feature
vector generator

E.g., x may be a document and ¢ maps x to the “vector
space model” with one axis for each word

The score of instance x is 3'¢(x) where 3 € R? is a
weight vector

For simplicity of notation assume x is already a feature
vector and drop ¢

We wish to learn (§ from training data <: “/ < " means
the score of x; should be less than the score of x;, i.e.,

B/Xi S 6/XJ
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Soft constraints

» In practice, there may be no feasible [ satisfying all
preferences <

» For constraint / < j, introduce slack variable s; > 0
B'x; < B'x+s;
» Charge a penalty for using s; > 0

min ZSU subject to

5U>0 oy

B'x; < f'xj+s; forall i <j
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A max-margin formulation
» Achieve “confident” separation of loser and winner:
B'xi+1 < B'x; + s

» Problem: Can achieve this by scaling § arbitrarily; must
be prevented by penalizing || 3|

1.
in —3'+B i bject t
s,-,-rgg?52d‘ + ZSJ subject to
1<)
B'xi+1< f'xi+s; forall i<

» B is a magic parameter that balances violations against
model strength

6
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Solving the optimization

» O'x; +1 < 'x; + s; and s;; > 0 together mean
sij = max{0, 'x; — 3'x; + 1} ("hinge loss")
» The optimization can be rewritten without using s;;

H ]' Yall el
min 56’6 + BZmax{O,ﬁxi — 3'x; + 1}

i<j

» max{0, t} can be approximated by a number of smooth
functions
» el — growth at t > 0 too severe
» log(1l + e') — much better, asymptotes to y = 0 as
t— —ocoandtoy=tast—
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Approximating with smooth objective

» Simple unconstrained optimization, can be solved by
Newton method

1
min =3'3 + B Z log(1 + exp(8'x; — 3'x; + 1))

BERI 2 oy
» If B'x; — B'x; +1 <0, ie, §'x; < ('x;, then pay little
penalty

» If B'x; — B'x; + 1> 0, i.e., §'x; > [('x;, then pay large
penalty
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Ranking nodes in graphs

» Instances no longer feature vectors sampled from some
distribution
» Instances are (also) nodes in a graph
» Instance should score highly if high-scoring instances link
to it
» Two instantiations of this intuition
Hyperlink-induced topic search (HITS): Nodes have two
roles: hubs (fans) and authorities
(celebrities)
Pagerank: Nodes have only one role: endorse other
nodes
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Quick HITS overview

Keyword query

™
i Uup v
Search 3

engine a(v) = h(uy) + h(up) + h(uz)

vy
Root set " V2
V3

Expanded set h(u) = a(vy) + a(vy) + a(v3)

ae(1,...) 0« @,...nT
while 7 and a change "significantly" do
i — Ea
¢, « MR, = 2, h[w]
h — h/g,
a « EThy = ETEa,
€, — Mall =3, 4w
a— al,

end while

» Authority flows along cocitation links, e.g., vi — u — v

» Note, hub (authority) scores are copied, not divided
among authority (hub) nodes—important distinction from
Pagerank and related approaches
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Detour: Translation models

» Long-standing goal of Information Retrieval: return
documents with words related to query words, without
damaging precision

» Retrieval using language models: score document d wrt a
query g (each interpreted as a set or multiset of words)
by estimating Pr(q|d),

» If g; ranges over query words and w ranges over all words
in the corpus vocabulary, we can write

Pr(q|d) = HZ (ai|w) Pr(w|d)

assuming conditional independence between query words

» t(g;|w) is the probability that a corpus w gets
“translated” into query word g; (e.g., g¢; = random and
w = probability)
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Word-document random walks |

» Corpus as bipartite graph: word layer, document layer

» Document node d connects to word node w if w appears
ind
» Random walk with absorption:
1. Start the walk at node v initialized to w
2. Repeat the following sub-steps: With probability 1 — «
terminate the walk at v, and with the remaining
probability o execute these half-steps:
2.1 From word node v, walk to a random document node d
containing word v
2.2 From document node d walk to a random word node
vied
Now set v < v/ and loop.

» Let there be m words and n documents
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Word-document random walks 1l

| 4

Starting with the m-node word layer, walking over to the
n-node document layer can be expressed with a m x n
matrix A, where A,q4 = Pr(d|w)

Each row of A adds up to 1 by design

Once we are at the document layer, the transition back to
the word layer can be represented with a n X m matrix B,

where By, = Pr(w|d)
Each row of B adds up to 1 by design
In general B # A’

The overall transition from words back to words is then
represented by the matrix product C = AB, where C is
mXx m

Rows of C add up to one as well
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Word-document random walks Il|

» Starting from word w, the probability that the process
stops at word g after k steps is given by

(1= @)a*(C")uq

where (C¥),,q is the (w, g)-entry of the matrix C*

» Summing over all possible non-negative k, we get
t(glw) = (1 —a)T+aC+ - +a*"C+ - )ug
=(1-a)(- ozC)V_V;
» For 0 < o < 1, because rows of C add up to 1,

(I — aC)~* will always exist

» Parameter o € (0, 1) controls the amount of diffusion
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Word-document random walks [V

w = ebolavirus, Web corpus: virus, ebola, hoax, viruses,
outbreak, fever, disease, haemorrhagic, gabon,
infected, aids, security, monkeys, hiv, zaire

w = starwars, Web corpus: star, wars, rpg, trek, starwars,
movie, episode, movies, war, character, tv, film,
fan, reviews, jedi

w = starwars, TREC corpus: star, wars, soviet, weapons,
photo, army, armed, film, show, nations,
strategic, tv, sunday, bush, series

» Starting at given w, top-scoring gs make eminent sense

» Depends on corpus, naturally
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HITS-SVD connection |

>

Let A € {0,1}™*" be a boolean matrix where Aj; is 1 if
and only if word i (1 < i < m) occurs in document j
(1<j<n)

This time let B = A’

Do not bother with walk absorption and the parameter «
Start from a mix of all words instead of one word, i.e.,
initialize x = 1/m

After transition to documents the weight vector over
documents is xA

After transition back to words the weight vector over
words is xAA'

x, XAA', x(AA)A, x(AA)(AA), x(AA)?A, ...

16
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HITS-SVD connection |l

» Power iterations, converging to dominant eigenvector of
C = AA’; C is a symmetric m X m matrix

v

C has m eigenvectors; stack them vertically to get
U=uq,usy,...,upy

v

C satisfies U'C = AU’, where A is a diagonal matrix with
eigenvalues \y > Ay > - >\, >0

» Meanwhile suppose the SVD of A is
Amxn = UnxmZmxn Vs, where U'U = 1,5, and
V'V =1,xn

» ¥ = diag(oy,...,0m) of singular values, with
01>0p>+>0,>0,41="-0,=0, for some
O<r<m

» C=AA = UZV'VYIU = UXIZU = UX?U,
L CU=UX? or UC=3X2U
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Topology sensitivity and winner takes all

0100 0000
O G loooo e 0201 o
E= ; ETE=
oRO 0101 0000
0000 0101
®
01000 00000
00000 02001
E=l01 001 ; TE=0 0000
00000 00010
00010 01001

@ (b)

» In (a, upper graph), a; «— 2a + a4 and a; < a, + a4

» In (a, lower graph), ay < 2a, + a4, a4 < a4, and
as < ax + as

» In (b), after k steps, agmai = 2% " and jarge = 3% —
ratio is ajarge/ asman = (3/2)% !
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HITS score stability |

» E is the node adjacency matrix
» Authority vector a is dominant eigenvector of S = E'E
» Perturb S to S, get 3 in place of a
» Can S and S be close yet a and 3 far apart?
» Let \; > A\ be the two largest eigenvalues of S
> Letd =X\ — X >0
» S has a factorization

A 00

S=U|0 X 0|U,
0 0 A

Each column of U an eigenvector of S having unit L,
norm; A is a diagonal matrix of remaining eigenvalues
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HITS score stability Il

| 4

Now we define

) M0 0
§=5+20UsUy=U|0 X+25 0| U.
0 0 A

Because ||U.||2 = 1, the L, norm of the perturbation,
IS — S|z, is 20.

Given S instead of S, how will A1 and A, change to 5\1
and 5\2?

By construction 5\1 = )1 while
5\2:)\2+25>)\2+5:)\1:5\1

Therefore, 5\1 and 5\2 have switched roles and 5\2 is now
the largest eigenvalue

» Old a= U;; new 3 = U,

v

la—=3dllz = [[U1 = Uall = v2
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HITS rank stability, adversarial
G G
(1) () ()
(hy) ) ()
,,7/' /,7/
o7 0%

» Number of edges changed is O(1)

» Q(n?) node pairs swapped in authority order



HITS rank stability in practice

©O~NOUAWNR

Genetic algorithms in search optimization
Adaptation in natural and artificial systems

Genetic programming: On the programming of. ..

Analysis of the behavior of a class of genetic. ..
Uniform crossover in genetic algorithms
Artificial intelligence through simulated. ..

A survey of evolution strategies

Optimization of control parameters for genetic. . .

The GENITOR algorithm and selection pressure
Genetic algorithms + Data Structures = ...
Genetic programming |I: Automatic discovey. . .
Learning internal representations by error. ..

Learning to predict by the method of temporal. ..

Some studies in machine learning using checkers
Neuronlike elements that can solve difficult. ..
Practical issues in TD learning

Pattern classification and scene analysis
Classification and regression trees

UCI repository of machine learning databases
Irrelevant features and the subset selection. . .
The CN2 induction algorithm

Probabilistic reasoning in intelligent systems

Goldberg
Holland

Koza

De Jong
Syswerda
Fogel

Back+
Grefenstette
Whitley
Michalewicz
Koza
Rumelhart+
Sutton
Samuel
Barto+-Sutton
Tesauro
Duda+Hart
Breiman+
Murphy+Aha
John+
Clark+Niblett
Pearl

» Random erasure of 30% of the nodes

» Fairly serious instability

» |Is random erasure the right model?

=
I NWOOOOUTAWN R

3

5
12
52
171
135
179
316
257
170

IO

O NN A

=

-

23
99
40
100
170
72
69

=
I OWOONOUAWNKR

-

WA~NO I OGN
'

22/77



Pagerank

... we are involved in an “infinite regress”: [an
actor'’s status| is a function of the status of those
who choose him; and their [status] is a function of
those who choose them, and so ad infinitum.

Seeley, 1949
» Random surfer roams around graph G = (V, E)
» Probability of walking from node i to j is Pr(j|i) = C(j, 1)

» Cis a |V| x | V]| nonnegative matrix; each column sums
to 1 (what about dead-end nodes?)

» Steady-state probability of visiting node i is its prestige
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Ways to handle dead-end nodes

Amputation: Remove dead-ends, may cause other nodes to
become dead-ends, keep removing

» How to assign scores to the removed nodes?
Self-loop: Each dead-end node i links to itself
» Still trapped at /; need to escape/restart

Sink node: Dead-end nodes link to a sink node, which links
to itself

» Reasonable, but probability of visiting sink
node means nothing

Makes significant difference to node ranks (scilab demo)
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Steady state probabilities

Long after the walk gets under way, at any time step, the
probability that the random surfer is at a given node

Need two conditions for well-defined steady-state probabilities
of being in each state/node

» E must be irreducible: should be able to reach any v
starting from any u

» E must be aperiodic: There must exist some /g such that
for every ¢ > ¢y, G contains a cycle of length ¢
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Teleport

» Simple way to satisfy these conditions: all-to-all
transitions

1
C=aC+(1- a)mlmxw\

Ljv|x|v| is a matrix filled with 1s; C also has columns
summing to 1

» Random surfer walks with probability o, jumps with
probability 1 — «
» What is the “right” value of a?

» |s o a device to make E irreducible and aperiodic, or does
it serve other purposes?

26
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Solving the recurrence

>

vV v.v v VY

Solve p = aCp + (1 — &)1}y« for steady-state visit
probability p € RV with p; >0, |pli=>.pi=1

Consider

s | aCviav T
(1_a)11><|V\ O

Dummy node d outside V

Transition from every node v € V to d

And a transition from d back to every node v € V
Recurrence can now be written as p = (A:,b

What is the relation between p and p?
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Pagerank score stability

» V kept fixed

» Nodes in P C V get incident links changed in any way
(additions and deletions)

» Thus G perturbed to G

> Let the random surfer visit (random) node sequence
Xo, X1,...in G,and Yy, Yy,...in G

» Coupling argument: instead of two random walks, we will
design one joint walk on (X, Y;) such that the marginals

apply to G and G
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Coupled random walks on G and G

» Pick Xp = Yy ~ Multi(r)
» At any step t, with probability 1 — «, reset both chains to
a common node using teleport r: X; = Y; €, V

» With the remaining probability of «

» If x;_1 = yt—1 = u, say, and u remained unperturbed
from G to G, then pick one out-neighbor v of u
uniformly at random from all out-neighbors of u, and set
Xe =Y =v.

» Otherwise, i.e., if x;_1 # y+—1 or x;—1 was perturbed
from G to G, pick out-neighbors X; and Y;
independently for the two walks.
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Analysis of coupled walks |
Let 0, = Pr(X; # Y;); by design, dp = 0.

der1 = Pr(reset at t + 1) Pr(X.y 1 # Yiy1|reset at t + 1)+
Pr(no reset at t + 1) Pr(X;11 # Yir1|no reset at t + 1)
= Pr(reset at t + 1) 0 + a Pr(X;: # Y¢|no reset at t + 1)
= a(Pr(Xes1 # Yerr, Xe # Yi|no reset at t + 1)+
Pr(Xei1 # Yer1, Xe = Yi|no reset at t + 1))

The event X;11 # Yii1, Xt = Y: can happen only if X; € P.
Therefore we can continue the above derivation as follows:
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Analysis of coupled walks Il

Otp1 = ...
< a(Pr(X; # Yi|no reset at t + 1)+
Pr(Xet1 # Yep1, Xe = Vi, Xe € P|no reset at t + 1))
= a(Pr(X, £ Y)+
Pr(Xep1 # Yep1, Xe = Yi, X € P|no reset at t + 1))
< a(Pr(X; # Y:) + Pr(X: € P))
=« (5t + Z,_,EP Pu) )

(using Pr(H, J|K) < Pr(H|K), and that events at time t are
independent of a potential reset at time t + 1)
Unrolling the recursion,

0o = lim;_ oo 0 < (ZUGP pu) /(1—a)
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Analysis of coupled walks Il

» Standard result: If the probability of a state disagreement
between the two walks is bounded, then their Pagerank
vectors must also have small L; distance to each other. In
particular,

2 ZUEP Pu
«

Ip—plli < =

» Lower the value of «, the more the random surfer
teleports and more stable is the system

» Gives no direct guidance why « should not be set to
exactly zero! (WAW talk)

32/77



Pagerank rank stability: adversarial

G formed by connecting y to x,, G by connecting y to x,
Q(n?) node pairs flip Pagerank order
l.e., Ly score stability does not guarantee rank stability

Can “natural” social networks lead often to such
tie-breaking?
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Pagerank rank stability: In practice

Genetic Algorithms in Search, Optimization and. ..
Learning internal representations by error. ..
Adaptation in Natural and Artificial Systems
Classification and Regression Trees

Probabilistic Reasoning in Intelligent Systems
Genetic Programming: On the Programming of. ..

Pattern classification and scene analysis

Maximum likelihood from incomplete data via. ..
10 UCI repository of machine learning databases

11 Parallel Distributed Processing

12 Introduction to the Theory of Neural Computation

©O~NOU A WNR

Learning to Predict by the Methods of Temporal. ..

Goldberg
Rumelhart+
Holland
Breiman-+
Pearl

Koza

Sutton
Duda+Hart
Dempster+
Murphy+Aha
Rumelhart+
Hertz+

» Quite stable, nowhere near adversarial
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» Random 30% erasure hits many unpopular nodes,

S ucp Pu sall

» |Is random erasure a good assumption?
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Other nonstandard path decay functions

» Standard Pagerank can be written as
1
pla) =(1—a)) a'rP'=(1-a)(l- aP)_lm
t>0

where P is the row-normalized node adjacency matrix
For path m = (x1,..., k), let

v

B 1
didy - diy
Equivalent Pagerank expression is

pi(a) = Z (1 — a)a!™ branching(r)/| V|

méepath(-,i)

branching()

v

v

Can generalize to
pi = Z damping(|7|) branching(7)/| V|
mEpath(-,i)

Important application: fichting link spam 35/77
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Probabilistic HITS variants

In the analysis thus far, Pagerank’s stability over HITS seems
to come from two features:

» Pagerank divides among out-neighbors; hub score copies
(which is why in HITS continual rescaling is needed)

» Pagerank uses teleport; HITS does not
Consider this authority-to-authority transition, starting at u

» Walk back to an in-neighbor of u, say w, chosen
uniformly at random from all in-neighbors of v

» From w walk forward to an out-neighbor of w, chosen
uniformly at random from all out-neighbors of w

No teleport yet, but dividing rather than copying

36
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SALSA

» Combining the two half-steps, transition probability from
authority v to authority w is

Pr(wv) = Y L

~ InDegree(v) (O o) eE OutDegree(u)

» Suppose all pairs of authority nodes are connected to
each other through alternating hub-authority paths

» Then 7, ox InDegree(v) is a fixpoint of the
authority-to-authority transition process

» Overkill? Prevents any cocitation-based reinforcement!
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HITS with teleport |

> Let the given graph be G = (V, E). Remove any isolated
nodes from G where no edge is incident.

» From G construct a bipartite graph G, = (L, R, E,), with
L =R =V and for each (u,v) € E connect the node
corresponding to u in L to the node corresponding to v in
R. By construction every node in L has some outlink and
every node in R has some inlink.

» Write down the (2|V]) x (2|V|) node adjacency matrix
for G,.

» Write down the row-normalized node-adjacency matrix,
which we will call E5®¥. Each row corresponding node
u € L will add up to 1, and the rows for v € R will be all
zeros.
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HITS with teleport Il

» Write down the column-normalized node-adjacency
matrix, which we will call E;°". Each row corresponding
to node v € R will add up to 1, and the rows for u € L
will be all zeros.

» Initialize an authority vector a(® to be nonzero only for
v € R, with value 1/|R|, and zero for all u € L. Let 1,
represent the uniform teleport vector distributed only over
nodes in L, and 1, represent the uniform teleport vector
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HITS with teleport Il

distributed only over nodes in R. Compute the following
iteratively:

A = aa@E 4 (1 — )1,
at = ahWE™ + (1 - a)l,

A = aak=DE 1 (1 — a)1,
) = ahWEPY 4 (1 - a)1,

etc. until convergence
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HITS with teleport: Experience

Learning internal representations by error. ..
Probabilistic Reasoning in Intelligent Systems
Classification and Regression Trees

Pattern classification and scene analysis

Maximum likelihood from incomplete data via. ..
A robust layered control system for a mobile robot
Numerical Recipes in C

Learning to Predict by the Method of Temporal. ..
STRIPS: A New Approach to ... Theorem Proving
10 Introduction To The Theory Of Neural Computation
11 Stochastic relaxation, gibbs distributions, ...

12 Introduction to Algorithms

©O~NOU A WNR

Rumelhart+
Pearl
Breiman+
Duda-+Hart
Dempster+
Brook+
Press+al
Sutton
Fikes+
Hertz+
Geman+
Cormen+
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» Clearly much more rank-stable than HITS

» Is « all there is to stability?

» How to set o taking both content and links into account?

(WAW talk)
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Personalized Pagerank

Tjvix1

» Recall we were solving p = aCp + (1 — «) V]

Livix1
[V]
> =1, examples:
» r; > 0 for pages i that you have bookmarked, 0 for other
pages
» r; > 0 for pages about topic “Java programming”, O for
other pages

» Can replace with arbitrary teleport vector r, r; > 0,

» Extreme case of r: r; = 1 for some specific node, 0 for all
others — r called x; in that case (“basis vector”)

» pis a function of r (and C) — write as p,
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Topic-sensitive Pagerank
09 21'\"2;::assensitive |

TopicSensitive Maan

NoBias Maan

» Details of how query is “projected” to topic space

» Clear improvement in precision
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Page staleness

“A page is stale if it is inaccessible, or if it links to many stale
pages’'—to find how stale a page u is,

1: ve—u

2: for ever do

3:  if page v is inaccessible then

4 return s(u) =1
5:  toss a coin with head probability o

6: if head then

7 return s(u) = 0 {with probability o}

8: else
9: choose w : (v, w) € E with probability o« C(w, v)
10: V—w

s(u) = {1, veD
(1 -0)3, C(v,u)s(v), otherwise
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Page staleness: Experience

6.3 T T T T
Scatter plot of decay scores uws. fraction of dead links
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Staleness of a page is generally larger than the fraction of
dead links on the page would have you believe

Fraction of dead links
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Biased walk for keyword search in graphs

» Teleport to query word
nodes (3)

» Also teleport to entity
nodes (4)

» Competition between
relevance to query and
query-independent
prestige

» Each edge e has type t(e) R Q-
and weight 3(t(e))

Word nodes

Entity nodes
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Effect of tuning edge weights

transaction serializability, 3(d — word)/B(d — entity) =1 #cites
Graph based algorithms for boolean function manipulation 506
Scheduling algorithms for multiprogramming in a hard real time environment 413
A method for obtaining digital signatures and public key cryptosystems 312
Rewrite systems 265
Tcl and the Tk toolkit 242
transaction serializability, B(d — word)/B(d — entity) = 10° #cites
On serializability of multidatabase transactions through forced local conflicts 38
Autonomous transaction execution with epsilon serializability 6
The serializability of concurrent database updates 104
Serializability a correctness criterion for global concurrency control in interbase 41
Using tickets to enforce the serializability of multidatabase transactions 12

» For small 3(d — word), query is essentially ignored

» Larger 3(d — word) gives better balance between

query-independent prestige and query-dependent match

» Can learn ((t)s up to a scale factor from < (WAW talk)
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Personalization: Two key properties

» Cannot pre-compute p, for all possible r

» Can we assemble Pageranks for an arbitrary r from
Pageranks computed using “basis vectors”?

Linearity: If p,, is a solution to p = aCp+ (1 — «)ry and p,,
is a solution to p = aCp + (1 — a)ry, then
p=Ap1+ (1 — \)po is a solution to
p=alCp+(1—a)An+(1—A)r), where
0<A<1

Decomposition: If p,, is the Pagerank vector for r = x,, and u
has outlinks to neighbors v, then

Px, = Z aC(v,u)py, + (1 —a)x,

(u,v)EE
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Learning r from <

» Recall p=aCp+ (1 —a)r,ie., (I-—aC)p=(1—-a)r,
or p=(1—a)(l—aC)tr= Mr, say

» < can be encoded as matrix 1 € {—1,0,1}HxIVI and
written as Mp > 0> (each row expresses one pair
preference)

» “Parsimonious teleport” is uniform ry = 1,y|x1/|V|; that
gives us standard Pagerank vector pg = Mn,

» Want to deviate from py as little as possible while
satisfying <

le‘n (Mr — po)'(Mr — po) subject to
MMr>0, r>0 1r=1

(quadratic objective with linear inequalities)
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Pagerank as network flow

» Extend from learning r to learning “flow” of Pagerank on
each edge p,, = p,C(v, u) = p, Pr(v|u)
» A valid flow satisfies

Z pu =1 (Total)

(u,v)EE’
weV > pw= ), Pw  (Balance)
(u,v)eE’ (v,w)eE’

For all v € V, C V having at least one outlink
(1-a) Z Puw = QtPyd (Teleport)
(v,w)EE

» Pagerank satisfies these constraints, but so do many
other flows
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Maximum entropy flow

>

Any principle to prefer one flow over another? Maximize
entropy >, ,yeer —Puv 108 Puy

Or, stay close to a reference flow g by min, KL(p||q)
The flows p,, look like (5 and 7 unconstrained)

Vv eV pa =(1/Z)qa exp(By — Ba)
VveV, pu=(1/2)qu exp(Bs — B, + aT)
VYwve VAV, pw=I(1/2)qua exp(Ba — 5v)
Y(u,v) €E pu = (1/2) quv exp(By — Bu — (1 — a)7)

Dual objective is maxs . —log Z, with Z such that

Z(u,v)EE’ Puv = 1
Can now add constraints like (WAW talk)

Yu<v: Z Powu — Z Pwv <0 (Preference)

(w,u)eE’ (w,v)EE’
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Labeling feature vectors and graph nodes
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Labeling feature vectors
Training data: (x;,y;), i =1,...,n, x; € X (often RY)
yieyY={-1,+41}
Single test instance: Given x not seen before, want to
predict Y

Batch of test instances: Given many xs in a batch, predict Y
for each x

Transductive learning: Given training and test batch together

Predictor: A parameterized function f : X — ); parameters
learnt from training data

Loss: For instance (x,y), 1 if f(x) # y, 0 otherwise
Training loss: Y7 [vi # f(x)]
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Supervised learning approaches

Discriminative learning: Directly minimize (regularized)
training loss

Joint probabilistic learning: Build a model for Pr(x, y), use
Bayes rule to get Pr(Y = y|x)

Conditional probabilistic learning: Directly build a model for
Pr(Y = y|x)
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Linear parameterization of f

> Let f(x) = x3, where x € R1*9 and 3 € R¥*?

» Training loss > [yi # f(x)] = >._;lyixi8 < 0]

» As in ranking, we may insist on more than y;x;3 > 0; say
we want y;x;5 > 1

» Training loss is > [yixi3 < 1] = >, step(1 — yix;3)

0 <0
step(z) = { 2=

1, z>0

» Step function has two problems wrt optimization of 3

» It is not differentiable everywhere
» It is not convex

» Design surrogates for training loss so that we can search
for 3
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Hinge loss
» max{0,1 — y;x;} is an upper bound on training loss
- 1 I B .
min Eﬁ B+ ~ Zs,- subject to
Viosiz1l-—yxi8, s >0
» Standard soft-margin primal SVM; dual is

1
min =’ X'Y'YXa — 1«

a€eR”?
subjectto Vi: 0<a;<B and ya=0

Here y = (y1,...,yn) and Y = diag(y).
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Soft hinge loss

» “Soft hinge loss” In(1 + exp(1 — y;x;3)) is a reasonable
approximation for max{0,1 — y;x;3}
» (Primal) optimization becomes

1 B
min 550+ Z In(1 + exp(1 — yixi/3))
» Compare with logistic regression with a Gaussian prior:
A
log Pr(y;|x;) — =33

m;xzi: og Pr(yilxi) — '

—min >~ log Pr{yx) + 23
B 2

i

— mﬁin Z In(1 4 exp(—y;xi3)) + %ﬁ/ﬁ
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Classification for large )/

Collective labeling of a large number of instances, whose labels
cannot be assumed to be independent, e.g.,

» Assigning multiple topics from a topic tree/dag to a
document

» Assigning parts of speech (pos) to a sequence of tokens in
a sentence

» Matching tokens across an English and a Hindi sentence
that say the same thing

A generic device: include x and y into a feature generator
P X x)Y —Re
» Given x, prediction is arg max,cy 3'9(x, y)
» In training set, want 3'9(x;, y;) to beat 5'i(x;, y) for all
Y #Yi
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Large ) example: Markov chain

» For simplicity assume all sequences of length exactly T;
X, y now sequences of length T

Labels & (noun, verb, preposition, etc.); Y = X7, huge
x} (y}) is the tth token (label) of the ith instance

Suppose there are W word-based features, e.g., hasCap,
hasDigit etc.

Y(x,y) =€ R? where d = W |Z| + |Z| |Z|

v

v

v

v

T

Pxy) =D ey x ),
t=1

where  ¥(y,y',x.t) = ( O(xy) , oY) )
N—— ——
W |X|,emission |X]||X|,transition

-,

Corresponding model weights 3 = (3, 5) € R?

v
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Max-margin training for large Y

» Given (x;,y;), i =1,...,n, want to find 3 such that for
each instance 1,

B'(xi, yi) = B'(xi, y) + margin - Vy € Y\ {yi}

» Leads to the following optimization problem:
1 B
Brgizno 5@’6 + — Z s; subject to
S.
Vi,Vy #yi  Boi(y) > 1—
Alyiy)
» A(y;, y) is severity of mismatch
> 09;(y) is shorthand for ¥(x;, y;) — ¥ (xi, y)
» Exponential number of constraints in primal and variables

vy, in dual
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Cutting plane algorithm to optimize dual

» Primal: min, f(x) subject to g(x) <0
» Dual: max,, z subject to u > 0, z < f(x) + v'g(x) Vx

» Approximate finite dual: maxz s.t. z < f(x;) + v'g(x;)
forj=1,....k—1,u>0
“Master program”: for k =1,2,...

v

» Let (zx, uk) be current solution

» Solve miny f(x) + u, g(x) to get xk

» If z < f(xi) + upg(xk) + € terminate

» Add constraint z < f(xx) + 'g(xx) to approximate dual

v

Dual max objective is non-decreasing with k

v

Strictly increasing if ¢ > 0
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SVM training for structured prediction

1. S;=afori=1,...,n

2: repeat

33 fori=1,...,ndo

4: current 3=, Zy'esj ajy61;(y’) (Representer
Theorem)

5: we want 3'0v;(y) > 1 —s;/A(y;, y) or

si > A(y;, y)(1— 3F'ovi(y)) = H(y), say

6 yi = arg max, ey H(y) {to look for violations}
7: 5 = max{0, max,es, H(y)}

8: if H(y;) > 5 + € then

9 add y to S; {admit a;y into dual}

10: as < dual optimum for S = US;

11: until no S; changes
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Structured SVM: Analysis sketch

Let A = max;, A(y;,y), R = maxi, [|5¢i(y)|2
After every inclusion, dual objective increases by

. [Be €
min{ —, ————
2n 8A2%R?
Dual objective upper bounded by min of primal which is
at most BA

Number of inclusion rounds is at most

{2nA SBA3F?2}
max , —

€ €2

v

v

v

v

v

Need inference subroutine: max, A(y;, y)(1 — 3'évi(y))

Can do this for Markov chains in poly time

v
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Directed probabilistic view of Markov network

Concrete setting:
» Hypertext graph G(V/, E)
» Each node v is associated with observable text x(u); text
of node set A denoted x(A)

» Each node has unknown (topic) label y,; labels of node
set A denoted y(A)

Our goal is
e PV PHEX(V)I(V)
argryrge;;Pr(y(V)!E,X(V))— g max Pr(E, x(V)
where  Pr(E, x( ZPr YPr(E, x(V)|y(V))

is a scaling factor (which we do not need to know for labeling).
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Using the Markov assumption

» VK C V has known labels y(V¥)
» Fix node v with neighbors N(v)
» Known labels for N¥(v), unknown labels for NY(v)

Pr(Y(v) = y|E, x(V),y(V¥))

= Y Py y(NU(W)IEX(V),y(V5))
y(NY(v))eQ,

= Y PrY(NYW)IE X(V). y(V5))

y(NY(v))eQy

Pr(vly(NY(v)). E.x(V), ¥ (VX))

» Q, = label configurations of NY(v) (can be large)
» “Solve for" all Pr(Y(v) = y|...) simultaneously
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Relaxation labeling

» To ease computation, approximate as in naive Bayes

Priy(NY(v)) | E,x(V),y(V¥))
~ I] Pr< w) | E.x(V), y(V¥))

weNY(v

» Estimated class probabilities in the rth round is
Pr(r)(y(v) | E7X(V)7y(VK))

» May use a text classifier for r =0
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Relaxation steps

» Update as follows

Priy(y(v) | E,x(V),y(V"))

~ Y H Priy (y(w) | Ex(V), (V)

y(INU(v)eR, [weNU(v

pr( (v )( (NU(V)),ny(V),y(VK))

» More approximations
Pr (y(v) | y(NU(v)). E,x(V), y(V"))
< Pr () | Y(N(0)). EX(V). (V1))

~Pr(y(v) | y(N(v)), x(v)

» Add terms for deterministic annealing?
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Relaxation labeling: Sample results
40

35 =
i\.\ —— Toxt
30 —— Link
\.\ —— Text+Link
S =
20

T T T T 1
0 20 40 60 80 100
Fraction of neighborhood with known labels (%)

*
*

Error (%)

» Randomly sample node, grow neighborhood, randomly
erase fraction of known labels, reconstruct, evaluate

» Text+link better than link better than text-only

» Link better than text even when all labels wiped out!
(associative prior: pages link to similar pages)
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Undirected view of Markov network

» Each node u represents random variable X,
» Undirected edges express potential dependencies
» Each clique ¢ C V has associated potential function ¢,

» Input to ¢ is an assignment of values to X, say x.
» ¢ outputs a real number

Pr(x) o< [T.cc @c(xc) (C is set of all cliques) —
Hammersley-Clifford theorem

Pr(x) = (1/2) [ Lcec Pe(xc) where Z =5 T]cec dc(xc)

is the partition function

v

v

Conditional Markov networks
» Each node v has observable x, and unobserved label y,

Pr(y[x) = ﬁ TT ¢c(x. )
ceC
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Potential functions and feature generators |

> Pr(y|x) — Z(X) HcEC ¢C(X7.yC) =
m exp (ZCGC ¢C(X7yc))
» Write (log) potential function ¢ as

c(x,ye) Zﬂkfk X, Yei€) = B'F(x,yei c)

» F is a feature (vector) generator

» c is a clique identifier; e.g., in case of a linear chain,
=(t—1,t)
Yea Yi Yea Yi
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Potential functions and feature generators II

| 4

>

k is a feature identifier

One feature may consider only t, y; and x;, and emit a
number reflecting the compatibility between state y; and
observed word output x;, or topic y; and observed
document x;

Another feature may consider only t, y; ; and y;, and
emit a number reflecting the belief that a y;_; — y; can
occur

Have a weight 3 for each k

Given fixed (3, inference finds the most likely y € ) (will
see LP and QP relaxations soon)

During training we fit 3

Training often uses inference as a subroutine
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Training log-linear models

» Our goal is to find maxg L(3) where
L(B) = Z log Pr(yi|x;)
i=1

= Z Zﬂ/":(xhyi.c; C) - |Og Z(X,')
i=1 L ¢

n

oL [ 0
% = ; ; F(thi,cv C) - % lOgZ(Xi)

= Z > (F(xi¥ici €) = Evi F(xi, Yei ©))

c

» At optimum F(x;, yic; ¢) = Ey i F(xi, Ye; )

» Once we have a procedure for the difficult part, we can
easily use gradient-based methods to optimize for

» For Markov chains, can use Viterbi decoding
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Inference for Markov networks: LP relaxation |

» Labeling to minimize energy
minz uyu)+2wuvr(y)())
y(V) ueV (u,v)EE

» ¢ models local information at u
» [ models compatibility of neighboring labels

» For two labels, sometimes easy via mincut
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Inference for Markov networks: LP relaxation |l

» Integer program formulation for I'(y,y’) =

mmZ WeZe + Z U y Xuy

ecE ueV,yey

subject tonuy =1

yey
1
Ze = § Xy: Zey

Zey Z Xuy - va
Zey Z va - Xuy
Xuy €{0,1}

» Can round to a factor of 2

Iy # y']

YueV

Ve € E

Ve = (u,v),Vy
Ve = (u,v),Vy
Yue V,ye)
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Inference for Markov networks: QP relaxation |

» 0,.; compatibility of node s with label j
» 0s .tk compatibility of edge (s, t) with labels (j, k)

maxZHs;j[y(s) =1+ Y bsgiesly(s) = Iy (2) = K]

stk

subject to Z[[y(s) =j]=1
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Inference for Markov networks: QP relaxation Il
» Relaxation of [y(s) = j] to u(s,J):

max Y Ospi(s, ) + D Osjeni(s,j)p(t, k)

s stk
subject to Z p(s,j) =1 Vs
J
0<upu(s,j)<1 Vs, j

» No integrality gap (proof via probabilistic method)
» Limitation: efficient QP solvers work only if © = {6 j.; «}
is negative definite

» If we try to make © negative definite, gap develops
between QP optimum and label assignment
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Concluding remarks

>

Graphs and probability: at the intersection of statistics
and classic Al knowledge representation

Two computation paradigms: pushing weights along
edges (Pagerank etc.) and computing local distributions
or belief measures (graphical models)

Lots of difficult problems!

» Modeling
» Optimization
» Performance on real computers on large data

Real applications both a challenge and an opportunity
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