
Indexing, Searching, and Ranking in

Entity-Relationship Networks with

Associated Text

Soumen Chakrabarti
IIT Bombay

http://www.cse.iitb.ac.in/∼soumen

1 / 32

http://www.cse.iitb.ac.in/~soumen

(In fewer words)

Ranking and Indexing for Semantic Search

Soumen Chakrabarti
IIT Bombay

http://www.cse.iitb.ac.in/∼soumen

2 / 32

http://www.cse.iitb.ac.in/~soumen

Working notion of “semantic search”
I Extractors and annotators

associate structured
knowledge with strings

I Neither complete nor
perfect

I No complete schema
(despite CYC and
WordNet)

I Noisy structure must
coexist with source text

I Must exploit structured
info and uninterpreted
strings in conjunction

Figure: Artist’s impression of
“semantic search”

3 / 32

Annotated corpus and query examples

4

Born in New York in 1934 , Sagan was
a noted astronomer whose lifelong passion
was searching for intelligent life in the cosmos.

person

scientist

physicist

astronomer

entity

region

city

district

state

hasDigit isDDDD

Where was Sagan born?
� type=region NEAR “Sagan”

Name a physicist who searched
for intelligent life in the cosmos
� type=physicist NEAR “cosmos”…

When was Sagan born?
� type=time
pattern=isDDDD NEAR
“Sagan” “born”

abstraction

time

year

is-a

4 / 32

Search in entity-relationship graphs

5 / 32

Talk outline

Ranking problems: what is “NEAR”?

I Typed proximity search in text + is-a graphs

I Proximity search in typed graphs

I Discovering hidden favorite communities

Indexing and query processing problems

I Typed proximity search in text + is-a graphs

I Dynamic (query-sensitive) Pageranking on typed graphs

6 / 32

Learning proximity scores of token spans

type=person NEAR "television" "invent*"

I Rarity of selectors

I Distance from
candidate position to
selectors

I Many occurrences of
one selector (closest)

I Combining scores from
many selectors (sum)

Candidate position to scoreSelectors

Closest
stem

“invent”

te
le

vi
si

on

w
as

in
ve

nt
ed in

19
25

.

In
ve

nt
or

Jo
hn

 B
ai

rd

w
as

bo
rn

E
ne

rg
y�

Second-closest
stem “invent”

person

is-a

0−6 −5 −4 −3 −2 +1−1 +2

7 / 32

Making up a feature vector x for position 0

I Limit to ±W window

I x(−4) = 0;
x(−1) = IDF(invent*);
x(−6) = IDF(television)

I IDF(w) =
numDocs/numDocsWith(w),
or perhaps
IDF(w) = log(1 +
numDocs/numDocsWith(w))

I Other features, e.g., is
selector noun? candidate
has digits?

Candidate position to scoreSelectors

Closest
stem

“invent”

te
le

vi
si

on

w
as

in
ve

nt
ed in

19
25

.

In
ve

nt
or

Jo
hn

 B
ai

rd

w
as

bo
rn

E
ne

rg
y�

Second-closest
stem “invent”

person

is-a

0−6 −5 −4 −3 −2 +1−1 +2

I If in doubt, throw everything into the kitchen sink

8 / 32

The model vector β
I Score of candidate position is βx

I β(j) is the value of the decay function at offset j

I TREC gives us correct i and incorrect j token spans

I i ≺ j means we want βxi + margin ≤ βxj

I Want β to be smooth with β(−W − 1) = β(W + 1) = 0

min
β

W+1∑
j=−W

(βj−1 − βj)
2 + B

∑
i≺j

SmoothLoss(βxi + 1− βxj)

min
β

W+1∑
j=−W

(βj−1 − βj)
2 + B

∑
i≺j

log
(
1 + exp(βxi + 1− βxj)

)

9 / 32

The model vector β
I Score of candidate position is βx

I β(j) is the value of the decay function at offset j

I TREC gives us correct i and incorrect j token spans

I i ≺ j means we want βxi + margin ≤ βxj

I Want β to be smooth with β(−W − 1) = β(W + 1) = 0

min
β

W+1∑
j=−W

(βj−1 − βj)
2 + B

∑
i≺j

SmoothLoss(βxi + 1− βxj)

min
β

W+1∑
j=−W

(βj−1 − βj)
2 + B

∑
i≺j

log
(
1 + exp(βxi + 1− βxj)

)

9 / 32

β fit to TREC QA

 j aw

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50Gap j-->

be
ta

(j)

Rough
Smooth

Train Test MRR
IR 2000 0.16
2001 2000 0.29

‘2001’=‘TREC 2001’;
‘MRR’=Mean
reciprocal rank

I Only positive offsets shown

I Unexpected decay shape!

I Smooth function slightly better than rough function

I Improves beyond flat scoring function with only IDF

Next: Extending beyond chain graphs
10 / 32

Typed entity-relationship graphs

Person

works-for

Paper
cited in-reply-to

wrote
sent

Email

received

Company

i

j

β=2

β=3

β=3

Probability of
following blue
edge out of i
is 2/(2+3+3)

Teleport?

I Nodes have entity types: Person, Paper, Email, Company

I Edges have relation types: wrote, sent, cited, in-reply-to

I Edge e has type t(e) ∈ {1, . . . , T}
I Edge (u, v) of type t(u, v) has weight β(t(u, v)) and

conductance C (v , u)

11 / 32

Conductance, teleport, Pagerank
I Create dummy node d

I Create edges (d , u) and (u, d) for each u

I Let 0 < α < 1 be the teleport probability

I Let rv be the probability of teleport to v

C{α,β}(v , u) =

α β(t(u,v))P
(u,w)∈E β(t(u,w))

, u 6= d , v 6= d

1− α, u 6= d , u ∈ Vo , v = d

1, u 6= d , u ∈ V \ Vo , v = d

rv , u = d , v 6= d

0, otherwise

C is a function of α and β

12 / 32

Dodging complicated constraints

min
0<α<1
β≥0,p

ModelCost(β) + B
∑
i≺j

SmoothLoss(pu − pv)

subject to p = C{α,β} p

I Both C and p are variables ⇒ complicated constraints
I Following power iterations, approximate p ≈ CH p0 where

H is a (possibly adaptive) horizon and p0 is the initial
Pagerank vector (say uniform)

I Also, C{α,β} does not change if all β are scaled

min
0<α<1

β ≥ 1

ModelCost(β) + B
∑
i≺j

SmoothLoss
(
(CH p0)u − (CH p0)v

)

13 / 32

ModelCost and SmoothLoss

Parsimonious model: all β(t)s equal

ModelCost(β) =
∑
t 6=t′

(
β(t)− β(t ′)

)2

If β and κβ (some multiple κ > 1) are both solutions,
optimizer should prefer β

Use SmoothLoss(z)
= huber(z), where

huber(z) =

0, z < 0

z2/(2W), z ∈ (0, W]

z −W /2, z > W

Can compute approximate ∇β, ∂/∂α, and use gradient
descent

14 / 32

Is SmoothLoss approximation good?

I Hinge and Huber essentially
identical

I Empirically, wrt β(t), true and
Huber error have same minima

I Wrt α Huber has spurious
minima, but basic grid search
adequate

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
alpha

er
ro

r
or

 lo
ss

true error

huber

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12
beta(0)

er
ro

r
or

 lo
ss

true error

hinge

huber

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40
beta(4)

er
ro

r
or

 lo
ss

true error

hinge

huber

15 / 32

Learning rate and robustness

I 20000-node, 120000-edge
graph

I 100 pairwise training
preferences enough to cut
down test error to 11 out
of 2000

I 20% random reversal of
train pairs leads to 5%
increase in test error

I Model cost reduces as
noise increases — makes
sense

0

100

200

300

400

500

0 50 100 150 200
numTrainPref

te
st

E
rr

or
 o

f 2
00

0

0

0.01

0.02

0.03

0.04

0.05

0 0.04 0.08 0.12
fraction noise

te
st

 e
rr

or

0.E+00

2.E-09

4.E-09

6.E-09

8.E-09

1.E-08

m
od

el
 c

os
t

error

model

16 / 32

Accuracy of estimating β and α

I Assign hidden β, α

I Compute weighted
Pagerank and sample ≺

I See if algorithm can
recover hidden weights

I Upward (downward)
pressure on small (large)
β thanks to∑

t,t′(β(t)− β(t ′))2

regularizer

I Large patches of β lead to
same Pagerank ordering

I α sensitive to B setting

1

10

100

1 10 100hidden beta

es
tim

at
ed

 b
et

a

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
hidden alpha

es
tim

at
ed

 a
lp

ha

B=1e10

B=1e16

17 / 32

Learning a hidden favored community

I Unlike the random surfer, humans
are very selective about following
links

I Links in some communities matter,
other links do not

I Also preferential teleport

I ≺ expresses this indirectly, as in
u1 ≺ v1, u2 ≺ v2 etc.

I Goal is to generalize and find the
boundaries of favored community

I Unlike global β(t) here info is local;
does not extend beyond the
“teleport radius”

�

�

Favored
community

u1

v1

v2

u2

18 / 32

A constrained flow formulation
I Directly estimate puv instead of C (v , u) = Pr(v |u)
I quv is a “parsimonious” reference flow (unweighted

Pagerank)

min
{0≤puv≤1}
{0≤suv :u≺v}

∑
(u,v)∈E ′

puv log
puv

quv
+ B

∑
u≺v

suv (SoftObj)

subject to
∑

(u,v)∈E ′

puv =1 (Total)

∀v ∈ V ′
∑

(u,v)∈E ′

puv =
∑

(v ,w)∈E ′

pvw (Balance)

∀v ∈ Vo (1− α)
∑

(v ,w)∈E

pvw =αpvd (Teleport)

∀u ≺ v (1 + ε)
∑

(w ,u)∈E ′

pwu ≤ suv +
∑

(w ,v)∈E ′

pwv

(SoftPref)

19 / 32

Experimental results

I We solve the dual via
cutting-plane approach

I Time is linear in |≺|,
|V |+ |E |

I Generalization improves
with margin 1 + ε

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5
1

1.5

0
100
200
300
400
500
600
700
800
900

T
im

e
(s

)

Relative |E|

0

0.2

0.4

0.6

0.8

1

0 50 100 150iterations

sa
tis

fie
dC

on
st

ra
in

ts

fracBalanceOK

fracRatioOK

150
170
190
210
230
250
270
290

30
0

60
0

90
0

12
00

15
00

18
00

1
1.01
1.1
2
4
8

Average of numViolations

trainPrefSize

margin

20 / 32

Talk outline

Ranking problems: what is “NEAR”?

I Typed proximity search in text + is-a graphs

I Proximity search in typed graphs

I Discovering hidden favorite communities

Indexing and query processing problems

I Typed proximity search in text + is-a graphs

I Dynamic (query-sensitive) Pageranking on typed graphs

21 / 32

Indexing for is-a proximity search

“Which scientist studied whales?” →
type=scientist NEAR study|studied whale*

I Open-domain type hierarchies very large: 15000 internal
and 80000 leaf types in WordNet (full set A)

I Runtime type expansion too expensive: even WordNet
knows 650 scientist, 860 cities, . . .

Pre-generalize

I Index a subset R ⊂ A

I Query atype a 6∈ R , want
k answers

I Probe index with g , ask
for k ′ > k

scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…

a

g

22 / 32

Cost models
I How much space saved by indexing R instead of A?

(Cannot afford to try out many Rs, need quick estimate)
I What is the average query time bloat owing to a → g

pre-generalize and post-filter?

Post-filter

I Fetch k ′ high-scoring
spans w for g

I Check if w is-a a as well
(using forward and
reachability index); if not,
discard

I If fewer than k survive,
restart with larger k ′

(expensive!)

scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…

a

g

�
?

23 / 32

Cost models
I How much space saved by indexing R instead of A?

(Cannot afford to try out many Rs, need quick estimate)
I What is the average query time bloat owing to a → g

pre-generalize and post-filter?

Post-filter

I Fetch k ′ high-scoring
spans w for g

I Check if w is-a a as well
(using forward and
reachability index); if not,
discard

I If fewer than k survive,
restart with larger k ′

(expensive!)

scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…

a

g

�
?

23 / 32

Index space estimate

I Let corpusCount(a) be the
count of tokens w in the
corpus such that w is-a a

I One posting entry for
each count of each type a

I Therefore our space
estimate is (proportional
to)

∑
a∈R corpusCount(a)

I Surprisingly accurate
despite index compression

y = 1.4902x - 2E+08

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

0 1E+09 2E+09 3E+09

Estimated Index Size -
Sum(CorpusCounts)

A
ct

ua
l I

nd
ex

 S
iz

e

24 / 32

Characterizing a query workload

P̃r(a) =
queryLogCount(a) + λ∑

a′∈A

(
queryLogCount(a) + λ

)
I Heavy-tailed type

distribution in queries

I Many test types never
seen in training types and
vice versa

ℓ
-2500

-2300

-2100

-1900

-1700

-1500

1.E-08 1.E-06 1.E-04 1.E-02 1.E+00
Lidstone

Lo
gP

ro
b

I λ = 0 would give these types zero probability

I Danger of allocating no g close to these as

I Build multinomial model over a with positive λ

I Cross-validate likelihood of held-out test log

25 / 32

Query time bloat estimate
I tscan time to scan one candidate position while merging

postings

I tfilter time to check if w is-a a

I If R = A (all types indexed), query takes time roughly
tscan corpusCount(a)

I If a 6∈ R , the price paid for generalization to g consists of
I Longer scans: tscan corpusCount(g)
I Post-filtering k ′ responses: k ′tfilter

expected bloat =
∑
a∈A

P̃r(a)
tscan corpusCount(g) + k ′tfilter

tscan corpusCount(a)

Now we have a greedy cost-benefit analysis of every type a

26 / 32

Result of greedy knapsack

I Estimated query bloat
reasonably accurate

I With only 520MB index,
only 1.9 average bloat

I Space comparable to
inverted index on stems

Corpus/Index GBytes
Original corpus 5.72
Gzipped corpus 1.33
Stem index 0.91
Full type A index 4.30
Type subset R index 0.52
Query Bloat 1.90
Reachability index 0.01
Forward index 1.16

1

6

11

16

21

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9 2.5E+9 3.0E+9

Observed Index Size

Observed Estimated

A
ve

ra
ge

 B
lo

at
at

27 / 32

Searching a TypedWordGraph
W N

d

Active
subgraph

Blocker

Loser

Word
layer

Dummy↔entity teleport

Entities

D
um

m
y�wordstelepo

rt

Active node

I Attach query words W to preloaded entities N

I Set teleport r > 0 only for word nodes

I Compute personalized Pagerank vector (PPV) pr — slow!

28 / 32

Options to date

Query-time Pagerank

I For ∼ 75000 nodes, ∼ 200000 edges, ∼ 11 sec/query

I Impractical except for very small graphs

Combine per-word PPVs

I Proposed by ObjectRank

I For ∼ 75000 nodes, ∼ 175000
words, ∼ 526 CPU-hours

I Full PPV index has size 102GB

I Compare with text index: 56MB

I Truncating down to 56MB leads
to serious loss of accuracy

0.4

0.5

0.6

0.7

0.8

0.9

1

30 40 50 60 70TruncateAt

Q
ua

lit
y

RAG
Prec
Ktau

RAG=Relative average

goodness, Prec=Precision,

KTau=Kendall’s Tau

29 / 32

HubRank query execution

I Input: query words W ,
abandon/trim threshold δ

I Max priority queue, priority of
node u is estimate of path
conductance from d to u

I Grow active set A

W N

d

Active
subgraph

Blocker

Loser

Word
layer

Dummy↔entity teleport

Entities

D
um

m
y�wordstelepo

rt

Active node

A is bordered with

Blockers: Hub nodes with indexed (approx) PPVs

Losers `: Conductance from d to ` is too small to matter

I Load trimmed PPV for blockers, trivial PPV for losers

I Iteratively compute PPVs of all active nodes including d

I Sort PPV of d and return results

30 / 32

HubRank results

0

200000

400000

600000

800000

1.E-07 1.E-06 1.E-05
abandonDelta

Fill

FLOPS

I Indexing 10 CPU-hours
(vs. 526, ObjectRank)

I 63MB index (vs. 102GB)

I δ-trim cuts CPU, fill

I Negligible accuracy loss

I Query in 250ms (vs. 11 s)

0.8

0.85

0.9

0.95

1

1.
E

-0
7

3.
E

-0
7

1.
E

-0
6

3.
E

-0
6

1.
E

-0
5abandon

Delta

ac
cu

ra
cy

0

1000

2000

3000

tim
e

(m
s)

avgPrec
avgRAG
avgKTau
avgHRTime

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12
queryWordstim

e
(m

s)

0

1000

2000

3000

4000

5000

nu
m

Q
ue

ry

HubRank

ObjectRank

numQuery

31 / 32

Conclusion
I Searching typed entity-relationship graphs

I Perhaps attached to mentions in unstructured text

I Many interesting challenges, surprisingly unexplored

I Architecture for flexible space-time-accuracy tradeoffs

I Ranking
I Far from vector-space territory, no guidance
I Learning linear proximity functions
I Learning edge conductance parameters

I Indexing and query processing
I Combining large is-a graphs with linear proximity
I Dynamic personalized Pageranking
I Anytime preprocessing, anytime query processing

32 / 32

	Introduction
	Searching is-a annotated text
	Searching ER graphs
	Talk outline

	Learning proximity scores of token spans
	Setting up features, model
	Experiments

	Learning conductance in typed graphs
	Setting up the model
	Quality of loss approximation
	Learning performance

	Learning constrained prestige flows
	A constrained flow formulation
	Experiments

	Indexing for is-a proximity search
	Index space estimate
	Workload estimate
	Query time bloat estimate
	Experiments

	Indexing for dynamic personalized Pagerank
	HubRank sketch
	HubRank results

	Conclusion

