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Working notion of “semantic search”
I Extractors and annotators

associate structured
knowledge with strings

I Neither complete nor
perfect

I No complete schema
(despite CYC and
WordNet)

I Noisy structure must
coexist with source text

I Must exploit structured
info and uninterpreted
strings in conjunction

Figure: Artist’s impression of
“semantic search”
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Annotated corpus and query examples

4

Born in New York in 1934 , Sagan was
a noted astronomer whose lifelong passion
was searching for intelligent life in the cosmos. 

person

scientist

physicist

astronomer

entity

region

city

district

state

hasDigit isDDDD

Where was Sagan born?
� type=region NEAR “Sagan”

Name a physicist who searched
for intelligent life in the cosmos
� type=physicist NEAR “cosmos”…

When was Sagan born?
� type=time
pattern=isDDDD NEAR
“Sagan” “born”

abstraction

time

year

is-a
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Search in entity-relationship graphs
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Talk outline

Ranking problems: what is “NEAR”?

I Typed proximity search in text + is-a graphs

I Proximity search in typed graphs

I Discovering hidden favorite communities

Indexing and query processing problems

I Typed proximity search in text + is-a graphs

I Dynamic (query-sensitive) Pageranking on typed graphs
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Learning proximity scores of token spans

type=person NEAR "television" "invent*"

I Rarity of selectors

I Distance from
candidate position to
selectors

I Many occurrences of
one selector (closest)

I Combining scores from
many selectors (sum)

Candidate position to scoreSelectors
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stem
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Second-closest 
stem “invent”

person

is-a

0−6 −5 −4 −3  −2 +1−1 +2
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Making up a feature vector x for position 0

I Limit to ±W window

I x(−4) = 0;
x(−1) = IDF(invent*);
x(−6) = IDF(television)

I IDF(w) =
numDocs/numDocsWith(w),
or perhaps
IDF(w) = log(1 +
numDocs/numDocsWith(w))

I Other features, e.g., is
selector noun? candidate
has digits?

Candidate position to scoreSelectors

Closest 
stem
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0−6 −5 −4 −3  −2 +1−1 +2

I If in doubt, throw everything into the kitchen sink
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The model vector β
I Score of candidate position is βx

I β(j) is the value of the decay function at offset j

I TREC gives us correct i and incorrect j token spans

I i ≺ j means we want βxi + margin ≤ βxj

I Want β to be smooth with β(−W − 1) = β(W + 1) = 0

min
β

W+1∑
j=−W

(βj−1 − βj)
2 + B

∑
i≺j

SmoothLoss(βxi + 1− βxj)

min
β

W+1∑
j=−W

(βj−1 − βj)
2 + B

∑
i≺j

log
(
1 + exp(βxi + 1− βxj)

)
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β fit to TREC QA

 j aw

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50Gap j-->

be
ta

(j)

Rough
Smooth

Train Test MRR
IR 2000 0.16
2001 2000 0.29

‘2001’=‘TREC 2001’;
‘MRR’=Mean
reciprocal rank

I Only positive offsets shown

I Unexpected decay shape!

I Smooth function slightly better than rough function

I Improves beyond flat scoring function with only IDF

Next: Extending beyond chain graphs
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Typed entity-relationship graphs

Person

works-for

Paper
cited in-reply-to

wrote
sent

Email

received

Company

i

j

β=2

β=3

β=3

Probability of 
following blue 
edge  out of i 
is 2/(2+3+3)

Teleport?

I Nodes have entity types: Person, Paper, Email, Company

I Edges have relation types: wrote, sent, cited, in-reply-to

I Edge e has type t(e) ∈ {1, . . . , T}
I Edge (u, v) of type t(u, v) has weight β(t(u, v)) and

conductance C (v , u)
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Conductance, teleport, Pagerank
I Create dummy node d

I Create edges (d , u) and (u, d) for each u

I Let 0 < α < 1 be the teleport probability

I Let rv be the probability of teleport to v

C{α,β}(v , u) =



α β(t(u,v))P
(u,w)∈E β(t(u,w))

, u 6= d , v 6= d

1− α, u 6= d , u ∈ Vo , v = d

1, u 6= d , u ∈ V \ Vo , v = d

rv , u = d , v 6= d

0, otherwise

C is a function of α and β
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Dodging complicated constraints

min
0<α<1
β≥0,p

ModelCost(β) + B
∑
i≺j

SmoothLoss(pu − pv)

subject to p = C{α,β} p

I Both C and p are variables ⇒ complicated constraints
I Following power iterations, approximate p ≈ CH p0 where

H is a (possibly adaptive) horizon and p0 is the initial
Pagerank vector (say uniform)

I Also, C{α,β} does not change if all β are scaled

min
0<α<1

β ≥ 1

ModelCost(β) + B
∑
i≺j

SmoothLoss
(
(CH p0)u − (CH p0)v

)
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ModelCost and SmoothLoss

Parsimonious model: all β(t)s equal

ModelCost(β) =
∑
t 6=t′

(
β(t)− β(t ′)

)2

If β and κβ (some multiple κ > 1) are both solutions,
optimizer should prefer β

Use SmoothLoss(z)
= huber(z), where

huber(z) =


0, z < 0

z2/(2W ), z ∈ (0, W ]

z −W /2, z > W

Can compute approximate ∇β, ∂/∂α, and use gradient
descent
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Is SmoothLoss approximation good?

I Hinge and Huber essentially
identical

I Empirically, wrt β(t), true and
Huber error have same minima

I Wrt α Huber has spurious
minima, but basic grid search
adequate
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Learning rate and robustness

I 20000-node, 120000-edge
graph

I 100 pairwise training
preferences enough to cut
down test error to 11 out
of 2000

I 20% random reversal of
train pairs leads to 5%
increase in test error

I Model cost reduces as
noise increases — makes
sense
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Accuracy of estimating β and α

I Assign hidden β, α

I Compute weighted
Pagerank and sample ≺

I See if algorithm can
recover hidden weights

I Upward (downward)
pressure on small (large)
β thanks to∑

t,t′(β(t)− β(t ′))2

regularizer

I Large patches of β lead to
same Pagerank ordering

I α sensitive to B setting

1

10

100

1 10 100hidden beta

es
tim

at
ed

 b
et

a

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
hidden alpha

es
tim

at
ed

 a
lp

ha

B=1e10

B=1e16

17 / 32



Learning a hidden favored community

I Unlike the random surfer, humans
are very selective about following
links

I Links in some communities matter,
other links do not

I Also preferential teleport

I ≺ expresses this indirectly, as in
u1 ≺ v1, u2 ≺ v2 etc.

I Goal is to generalize and find the
boundaries of favored community

I Unlike global β(t) here info is local;
does not extend beyond the
“teleport radius”

�

�

Favored
community

u1

v1

v2

u2

18 / 32



A constrained flow formulation
I Directly estimate puv instead of C (v , u) = Pr(v |u)
I quv is a “parsimonious” reference flow (unweighted

Pagerank)

min
{0≤puv≤1}
{0≤suv :u≺v}

∑
(u,v)∈E ′

puv log
puv

quv
+ B

∑
u≺v

suv (SoftObj)

subject to
∑

(u,v)∈E ′

puv =1 (Total)

∀v ∈ V ′
∑

(u,v)∈E ′

puv =
∑

(v ,w)∈E ′

pvw (Balance)

∀v ∈ Vo (1− α)
∑

(v ,w)∈E

pvw =αpvd (Teleport)

∀u ≺ v (1 + ε)
∑

(w ,u)∈E ′

pwu ≤ suv +
∑

(w ,v)∈E ′

pwv

(SoftPref)
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Experimental results

I We solve the dual via
cutting-plane approach

I Time is linear in |≺|,
|V |+ |E |

I Generalization improves
with margin 1 + ε
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Talk outline

Ranking problems: what is “NEAR”?

I Typed proximity search in text + is-a graphs

I Proximity search in typed graphs

I Discovering hidden favorite communities

Indexing and query processing problems

I Typed proximity search in text + is-a graphs

I Dynamic (query-sensitive) Pageranking on typed graphs
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Indexing for is-a proximity search

“Which scientist studied whales?” →
type=scientist NEAR study|studied whale*

I Open-domain type hierarchies very large: 15000 internal
and 80000 leaf types in WordNet (full set A)

I Runtime type expansion too expensive: even WordNet
knows 650 scientist, 860 cities, . . .

Pre-generalize

I Index a subset R ⊂ A

I Query atype a 6∈ R , want
k answers

I Probe index with g , ask
for k ′ > k

scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…

a

g
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Cost models
I How much space saved by indexing R instead of A?

(Cannot afford to try out many Rs, need quick estimate)
I What is the average query time bloat owing to a → g

pre-generalize and post-filter?

Post-filter

I Fetch k ′ high-scoring
spans w for g

I Check if w is-a a as well
(using forward and
reachability index); if not,
discard

I If fewer than k survive,
restart with larger k ′

(expensive!)

scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…

a

g

�
?
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Index space estimate

I Let corpusCount(a) be the
count of tokens w in the
corpus such that w is-a a

I One posting entry for
each count of each type a

I Therefore our space
estimate is (proportional
to)

∑
a∈R corpusCount(a)

I Surprisingly accurate
despite index compression

y = 1.4902x - 2E+08
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Characterizing a query workload

P̃r(a) =
queryLogCount(a) + λ∑

a′∈A

(
queryLogCount(a) + λ

)
I Heavy-tailed type

distribution in queries

I Many test types never
seen in training types and
vice versa

ℓ
-2500

-2300

-2100

-1900

-1700

-1500

1.E-08 1.E-06 1.E-04 1.E-02 1.E+00
Lidstone

Lo
gP

ro
b

I λ = 0 would give these types zero probability

I Danger of allocating no g close to these as

I Build multinomial model over a with positive λ

I Cross-validate likelihood of held-out test log
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Query time bloat estimate
I tscan time to scan one candidate position while merging

postings

I tfilter time to check if w is-a a

I If R = A (all types indexed), query takes time roughly
tscan corpusCount(a)

I If a 6∈ R , the price paid for generalization to g consists of
I Longer scans: tscan corpusCount(g)
I Post-filtering k ′ responses: k ′tfilter

expected bloat =
∑
a∈A

P̃r(a)
tscan corpusCount(g) + k ′tfilter

tscan corpusCount(a)

Now we have a greedy cost-benefit analysis of every type a
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Result of greedy knapsack

I Estimated query bloat
reasonably accurate

I With only 520MB index,
only 1.9 average bloat

I Space comparable to
inverted index on stems

Corpus/Index GBytes
Original corpus 5.72
Gzipped corpus 1.33
Stem index 0.91
Full type A index 4.30
Type subset R index 0.52
Query Bloat 1.90
Reachability index 0.01
Forward index 1.16
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Searching a TypedWordGraph
W N

d

Active
subgraph

Blocker

Loser

Word
layer

Dummy↔entity teleport

Entities

D
um

m
y�wordstelepo

rt

Active node

I Attach query words W to preloaded entities N

I Set teleport r > 0 only for word nodes

I Compute personalized Pagerank vector (PPV) pr — slow!
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Options to date

Query-time Pagerank

I For ∼ 75000 nodes, ∼ 200000 edges, ∼ 11 sec/query

I Impractical except for very small graphs

Combine per-word PPVs

I Proposed by ObjectRank

I For ∼ 75000 nodes, ∼ 175000
words, ∼ 526 CPU-hours

I Full PPV index has size 102GB

I Compare with text index: 56MB

I Truncating down to 56MB leads
to serious loss of accuracy
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RAG=Relative average

goodness, Prec=Precision,

KTau=Kendall’s Tau
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HubRank query execution

I Input: query words W ,
abandon/trim threshold δ

I Max priority queue, priority of
node u is estimate of path
conductance from d to u

I Grow active set A

W N

d

Active
subgraph

Blocker

Loser

Word
layer

Dummy↔entity teleport

Entities

D
um

m
y�wordstelepo

rt

Active node

A is bordered with

Blockers: Hub nodes with indexed (approx) PPVs

Losers `: Conductance from d to ` is too small to matter

I Load trimmed PPV for blockers, trivial PPV for losers

I Iteratively compute PPVs of all active nodes including d

I Sort PPV of d and return results
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HubRank results
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I Indexing 10 CPU-hours
(vs. 526, ObjectRank)

I 63MB index (vs. 102GB)

I δ-trim cuts CPU, fill

I Negligible accuracy loss

I Query in 250ms (vs. 11 s)
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Conclusion
I Searching typed entity-relationship graphs

I Perhaps attached to mentions in unstructured text

I Many interesting challenges, surprisingly unexplored

I Architecture for flexible space-time-accuracy tradeoffs

I Ranking
I Far from vector-space territory, no guidance
I Learning linear proximity functions
I Learning edge conductance parameters

I Indexing and query processing
I Combining large is-a graphs with linear proximity
I Dynamic personalized Pageranking
I Anytime preprocessing, anytime query processing
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