
ELSEVIER

Surfing the Web backwards

Soumen Chakrabarti a,1, David A. Gibson b,2, Kevin S. McCurley c,*

a Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
b Department of Computer Science, UC Berkeley, 581 Soda Hall, Berkeley, CA 94720-1776, USA

c MS B2, IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA

“Life can only be understood backwards, but it must be lived forwards.”
Soren Kierkegaard

Abstract

From a user’s perspective, hypertext links on the Web form a directed graph between distinct information sources. We
investigate the effects of discovering ‘backlinks’ from Web resources, namely links pointing to the resource. We describe
tools for backlink navigation on both the client and server side, using an applet for the client and a module for the Apache
Web server. We also discuss possible extensions to the HTTP protocol to facilitate the collection and navigation of backlink
information in the World Wide Web. 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Backlinks; Navigation

1. Introduction

Hypertext predecessors to the World Wide Web
such as Xanadu 3 were conceived as bidirectional in
nature, requiring the authors of both resources to cre-
ate links between the two. Such a system promotes a
uniform and consistent set of hyperlinked documents,
but inhibits the modern scientific tradition of open
criticism and debate. A large part of the intellectual
value of the Web is derived from the fact that authors
of Web documents can freely link to other documents
in the namespace without agreement from the author
of the referenced document. Placing a document into
the namespace implicitly implies an ability to link to

Ł Corresponding author. E-mail address: mccurley@almaden.
ibm.com
1 E-mail: soumen@cse.iitb.ernet.in. Work done while at IBM Al-
maden Research Center.
2 E-mail address: dag@cs.berkeley.edu
3 Xanadu is a registered trademark of Project Xanadu.

that document, and this is part of the reason that the
Web has grown so explosively.

Scientific literature has traditionally built on the
body of knowledge that preceded it, and the notion of
citation has become a fundamental part of scientific
writing. By following citations, the reader is able
to trace backward in time through the evolution of
ideas that leads to the current work. Unfortunately,
this system is unidirectional, and does not allow the
reader to trace forward in time. Such a facility is
provided as a commercial service by the Scientific
Citation Index 4 and the Web of Science 5 from
Information Sciences Institute. Using the Science
Citation Index, a reader can follow citations of earlier
scientific work, and move forward in time through
the scientific literature.

In the context of the World Wide Web, we call

4 http://www.isinet.com/prodserv/citation/citsci.html
5 http://www.isinet.com/prodserv/citation/websci.html

 1999 Published by Elsevier Science B.V. All rights reserved.

602

such a reverse citation a backlink. Backlinks are sel-
dom used in the World Wide Web, but we believe
that they add significant value to the process of in-
formation discovery. Through the use of our tools
we have discovered many unusual ‘nugget’ sites that
are not easily discovered by tracing forward along
the edges of the Web graph, but are quickly located
by traversing the links in the reverse direction. Fol-
lowing backlinks can often lead to information that
has been created more recently, and may therefore
provide an important improvement to the timeliness
of information discovered on the Web. As the Web
matures over time, we expect this factor to increase
in importance.

Backlinks enjoy an advantage over automated
‘find similar resources’ mechanisms because they
are human-created. Other techniques, such as HITS
[10], have already exploited this fact to great success.
Page creation is by and large a personal authoring
process, and creating links involves quite some de-
liberate effort and judgement, certainly far more than
any automated system can dream of doing for the
foreseeable future. The reason for creating the link
might vary from comment to compilation to criti-
cism, but if the author has some standard of quality,
there is always some relevancy.

Both HITS and backlink browsing are greatly
aided by hub resources, which are compiled lists
of relevant links on particular topics. If a site is
respected enough to appear on one such resource list,
one can find a list of similar resources with a single
backlink traversal. This is probably the most useful
backlink browsing technique. If backlink browsing
became more commonplace, we would expect that
commentary and criticism resources would become
much more effective and numerous as well.

The effort required to maintain simple backlinks
is minimal. Search engines provide a reasonably ef-
fective backlink database already. As discussed in
the remainder of this paper, server maintainers can
provide a more complete and up-to-date database
very easily, and greatly enhance the usefulness of
their sites. In effect, a resource can increase in qual-
ity without its creator’s intervention, by the efforts of
people authoring related resources.

This combination of forces leads us to believe that
a significant enhancement of the World Wide Web
can be achieved through backlink navigation. We

propose simple extensions to the HTTP protocol to
facilitate navigation through backlinks. We have im-
plemented these facilities in a Java applet to augment
existing clients, and have also built a module to sup-
port backlink retrieval from the popular Apache Web
server. These are not the only tools that one might
imagine to facilitate backlink navigation, but provide
the basis for building a cooperative infrastructure for
open dialog. In Section 3 we describe our simple
extensions to the HTTP protocol. In Section 4 we
describe the design of the Apache module for the
Apache Web server.

1.1. Discovering backlinks

There are already a few methods of discovering
backlink information on the Web, and we intend to
build on these. Clients and servers can already con-
sult various search engines (e.g., [8]) for backlink
information, and we expect this to grow in popu-
larity. In addition, servers can track backlinks from
their resources by the Referer 6 request-header of the
HTTP protocol ([7], section 10.13). Thus, servers
could supply this information to clients interested in
it. Backlink information is already available through
several search engines, supported by advertising on
those sites. We expect that this will continue for
some time to come, although it does not scale well
as a generic facility for backlink navigation if it is
invoked on every client document retrieval. From a
client’s perspective, they might prefer the indepen-
dence of a search engine for supplying backlinks.
However, crawling has some other drawbacks as
well, notably that there is a time delay from the time
that a link is created until the time that the crawler
returns to crawl the link. This may significantly de-
grade the value of backlink information for research-
ing time-sensitive information. Moreover, search en-
gines are primarily dependent on crawling the Web
from known sites, and cannot discover sites that have
no links into them.

A more scalable solution for both clients and
servers is to leverage the existence of the Referer
request-header. If servers recorded backlink infor-

6 Note that the correct spelling of the word should be Referrer,
but for some reason the alternate spelling is used in the HTTP
specification.

603

mation from the Referer request-header, then clients
could retrieve backlink information directly from the
server of the target resource. This has the advantage
that it decentralizes and balances the load of back-
link browsing, and leverages the existing practice of
providing Referer request-header information.

1.2. Barriers to acceptance

Building an infrastructure to support retrieval of
backlink information will require a certain degree of
cooperation on the Web. Relying on servers to collect
and redistribute information derived from the Referer
field provides the most scalable solution, but it re-
quires the cooperation of the server being linked to.
The scientific community generally endorses open
commentary, so it is natural to assume that this com-
munity would embrace the ability to find out who
makes reference to published work. Sites and authors
with an appreciation for freedom of expression and
peer review can be expected to embrace the notion of
backlinks, but those more interested in ‘controlling
the message’ may choose not to.

For example, many commercial sites are unlikely
to provide unfiltered backlink information, since they
often have a different motivation in their publication,
and are more strongly interested in controlling the
message. Government sites may also be hostile to the
idea of divulging information that criticizes govern-
ment policies expressed on their Web pages. More-
over, the ability to freely link to a document is not
universally accepted, and some sites filter access to
resources on the basis of the Referer header. There is
no mechanism that can compel an author to acknowl-
edge opinions or citations that they disagree with,
and we see no conflict in this. We do not advocate
any form of coerced compliance for building back-
link navigation capabilities, but expect it to emerge
through a combination of balancing forces in society.

The reason for our optimism is that, while some
sites may consider it counter to their interests to
supply backlinks to their resources, other sites may
leap at the opportunity. For example, the League of
Women Voters considers it their mission to encour-
age citizen participation in the government process,
and may therefore offer a ‘portal site’ providing
backlinks to government sites. Consumer’s Union
(publisher of Consumer Reports magazine) offers

noncommercial product information for consumers,
and backlink information for commercial sites might
well be viewed as providing consumer information.
Such a service might even be purchased by the client
or supported by advertising.

Since a resource’s backlinks provide a public
‘place’ for people to comment, backlinks can be
abused like many other public information channels.
If a simple-minded approach is used to compile
backlink information, then it becomes vulnerable to
a form of ‘spamming’, where a target site is induced
to show a backlink to another site. In the case of
backlinks, there are a variety of deterrence measures
that can easily inhibit such attacks without requir-
ing human management of the backlink mechanism.
This is related to the problem of how to manage
a backlink infrastructure, and we will return to the
topic in Section 4.

1.3. Privacy concerns

The Referer header of the HTTP protocol has al-
ways been identified as a potential threat to privacy,
since it conveys information about how a reader
found some information. In addition, servers that re-
ceive the referer information are supplied with a tool
to discover other resources that link to them. One of
us (KM) has for several years maintained a satirical
site called DigiCrime 7 that parodies Internet-related
hacking and criminal activities. The referer entries
from the log files have regularly proved to be a
supply of hacker site URLs that belong to a ‘Web
underground’ of sites that supply information on
computer security from a hacking point of view.
These sites often exist only for a short time, because
they provide access to hacking tools. The creators
typically only share the existence of such sites with
a few friends, and the sites sometimes exist only
in isolated subgraphs of the entire Web. By min-
ing the log files of a site linked from these isolated
resources, their existence can be exposed.

Intranets isolated by firewalls are also vulnerable
to leaks through the Referer field. For example, at
one time there existed a link from inside the FBI
firewall to DigiCrime, and this fact was discovered
by mining the log files (the author was unable to

7 http://www.digicrime.com

604

access the page). If there was an internal Sun Web
page with the URL w3.sun.com/javaos/paral
lel/99plan.htm, and if this resource linked to a
competitor Web site, then the mere transference of
the Referer field in the HTTP protocol may leak
the existence of a plan for deploying a parallel
version of JavaOS in 1999 (there is no such plan that
we are aware of). By making backlink information
publicly available, our extensions may accelerate
the leakage of such information. Luckily there is a
simple solution for corporate intranets — namely to
configure firewall proxy servers to remove or modify
any Referer headers from internal sites. Another
alternative is to use only browsers that follow the
recommendation of RFC 2068 [13] to allow the user
to control when Referer information is transmitted,
in much the same way that the user is commonly
allowed to control cookies. This recommendation is
currently ignored by most popular browsers.

On the public Web, the privacy impact of sending
the Referer field is limited to those sites that are not
linked from other resources. Creators of documents
may expect their resource to remain private because
they do not advertise it or provide links to it from
other public resources. Such ‘security by obscurity’
will be further degraded by the propagation of back-
links, but access control measures already exist to
counter this.

1.4. Metadata efforts

Hypertext has been around since the Talmud and
the Ramayana, if not earlier. There have been sev-
eral bidirectional hypertext systems proposed, dating
back at least to the time of the Xanadu project [23].
Other examples include DLS [9], Atlas [26], Hack-
Links [29], and Hyperwave [20]. References on hy-
pertext systems can be found in [5,11]. More recently,
the Foresight Institute has revived interest in the use
of backlinks in hypertext publishing systems [16].

We can only speculate why these architectures
have not become immensely popular on the Web.
Most likely, they were far ahead of their time, long
before even the early days of standardizing, imple-
menting and extending Web protocols and markup
languages. Storage costs may have been a barrier, or
perhaps the small size and narrow interest in the Web
made it easier to locate resources at that time.

Today, the classification and organization of in-
formation on the Web is a major problem for re-
searchers seeking out specific information. Several
researchers have previously suggested that an in-
creased use of metadata will help in this direction,
but retrofitting this information to the existing Web
is very challenging. Backlinks from a resource can
be viewed as a form of dynamic metadata about the
resource. There are several mechanisms that either
exist already or are in the planning stages to support
the use of metadata for Web resources. These include
the evolving HTML specification, the Resource De-
scription Framework (RDF) [3], XML, WebDAV
[14], and the Dublin Core Metadata Initiative [6].

Backlinks can also be used to bootstrap the ef-
fectiveness of other metadata. One of the problems
identified by Marchiori [19] was the back-propaga-
tion of metadata, in which metadata from two objects
may be merged if one provides a link to the other. A
significant proportion of the existing Web will lack
metadata for the foreseeable future, but the ready
availability of backlink information could be used
to fill in these gaps across resources that do not
incorporate metadata.

1.4.1. Metadata in HTML
HTML 4.0 [2] contains various ways to embed

metadata into it, providing information about both
forward and backward links. This can be used to
convey backlink information to clients, but can also
be used by other backlink information sources to
improve the quality of information available about
a link. If a server discovered a backlink via the
HTTP Referer header, then it may choose to crawl
the source of the link to retrieve information about
the link (such as a document title for the resource).
Though few resources support it yet, version 3.2 of
HTML introduced a relationship attribute for links,
which later became LinkType in HTML 4.0. This al-
lows HTML links to have a purpose attribute such as
‘copyright’ or ‘glossary’. Links may also have a title
attribute as well as content that describes the link.

As a means of conveying backlink information to
clients, HTML is deficient for several reasons. The
HTML LINK element describes a relationship be-
tween the current document and another document.
Unfortunately, there was no LinkType defined for ‘is
referenced by’, and the closest one in the DTD is

605

‘prev’, for use in an ordered set of documents. We
could easily extend this to include a ‘back’ LinkType
indicating knowledge of a link from that document
to the current document. HTML 4.0 also specifies a
way to insert META tags into the head of a docu-
ment, and this could be used to store and transmit
backlink information. There is no formal specifi-
cation of how these should appear in documents,
and documents have tended to implement them in
an ad-hoc manner that is consistent only within an
organization.

Probably the biggest obstacle to conveying back-
link information through the destination document is
the fact that most of the documents that currently
exist in the World Wide Web consist of static doc-
uments residing in file systems, and mere insertion
of metadata is not enough. Much of the metadata
(in particular, backlinks) is dynamic and requires a
management infrastructure to update it. Moreover,
many (if not most) of the existing resources have
been abandoned by their authors, but the information
retains value. Updating these resources will require
a significant effort to retrofit them with appropriate
metadata.

Finally, it should be pointed out that a signifi-
cant amount of information on the World Wide Web
is contained in other data formats besides HTML.
Some of these data formats now support exter-
nal hypertext links. Examples include XML, PDF,
FrameMaker, WinHelp, and Lotus Notes. Extracting
consistent metadata from all of these sources will
prove problematic. We therefore believe that the pre-
dominant method for transporting metadata in the
near term will be external to the retrieved resource.
We will return to this in Section 3.

1.4.2. RDF and WebDAV
Work is underway within the W3C to design

a Resource Description Framework [3] to express
metadata. RDF is an application of XML, and may
ultimately provide a rich framework in which to
express arbitrary metadata, including backlinks. For
example, the Dublin Core includes a relation type of
IsReferencedBy that is evidently intended to ex-
press backlink information. Unfortunately, this effort
is in its infancy, and as of yet there is no specification
for how to express schema for RDF.

RDF does not address the problems of discov-

ery and retrieval of backlink metadata. Retrieval is
addressed in part by WebDAV and DASL, but dis-
covery from multiple sources seems to be mostly
overlooked. WebDAV supports retrieval of metadata
as a subset of a much more ambitious effort to sup-
port distributed authorship of Web resources. The de-
sign goals of WebDAV (see [27]) include support for
locking, versioning, collections, remote editing, and
namespace manipulation. The current draft includes
new HTTP methods called PROPFIND and PROP-
PATCH to support retrieval and update of metadata
about a resource. There are several potential barriers
to rapid adoption of the WebDAV protocol, including
potential security risks for servers.

Another thing that is not addressed by WebDAV
is the ability to make queries on metadata. This is ad-
dressed in the DAV Searching and Locating (DASL)
[4] protocol, which is a proposed extension to HTTP
using XML. Among other things, this allows the
specification of simple queries on DAV data. We ex-
pect WebDAV and DASL to play a significant role in
the manipulation of backlink metadata.

1.5. Tools and goals

Our tools focus on metadata that can be automati-
cally generated from the existing Web infrastructure,
but this may not fulfil the needs of all parties. Back-
link metadata may be constructed from a variety
of sources, including human editing, crawling, and
automatic compilation. Servers may also consult in-
dependent Web crawlers to discover links that are in-
frequently traversed. Servers may also store records
of link traversals to be used in ranking and reporting
the use of information. Backlink data can also be
ranked and filtered by a variety of strategies. Clients
may retrieve backlink information from a variety of
sources, including the server holding the destination
resource or various third parties. More sophisticated
tools would be required to leverage these various
sources. Referer databases and crawlers are still a
valuable resource because they can provide a data
source for site maintainers and browsers.

It is not our goal to address the general design
of a management system for backlink metadata, pri-
marily because the specific goals behind metadata
vary according to whose interests are being served.
Users may wish to consult multiple sources of back-

606

link information, and may wish to promote the free
exchange of link information. Authors may not wish
to provide pointers to things they do not agree with.
Sites that wish to control the quality of backlink
information more tightly, or exercise some editorial
control on backlink information may choose to in-
stitute a labor-intensive human editing process on
metadata (although backlink information could also
be incorporated into the resources themselves). Third
parties may wish to supply backlinks for their own
purposes about resources they do not own. Support-
ing all of these will require a diverse set of tools.
Our goal is simply to demonstrate that backlinks
have value for information discovery, and describe
the design of some basic tools to exploit them.

2. Client design

One of the primary reasons for the widespread
success of hypertext beyond FTP and Gopher is the
availability of an effective graphical user interface
for users to navigate through the Web. In order for
backlinks to become a useful augmentation to the
existing World Wide Web, there will have to be a
widely deployed integration of the information into
the user interface.

We are certainly not the first to have suggested
displaying information related to the graph struc-
ture of the Web within the browser. Many programs
called site mappers have been developed that per-
form site-level crawls to help administrators main-
tain links. One example is Mapuccino from IBM
Haifa [17]. These have been generalized and made
more sophisticated. Miller and Bharat [21] have de-
signed a system called SPHINX which is a customiz-
able crawler which analyzes and presents sections of
Websites in a graphical format.

In this section we describe our experiences in
implementing the ‘browse assistant’ applet. We cur-
rently have a version working with Netscape Com-
municator 8 version 4.07 or 4.5. We wrote the applet
to study the effect of backlink guidance on the
browsing activity and experience, and as a proof-of-
concept prototype of the client end of our architec-
ture proposal. Currently the browse assistant consults

8 http://www.netscape.com/download/index.html

a search engine such as HotBot 9 to retrieve back-
link information. Views of the browser assistant are
presented in Figs. 1 and 2.

2.1. User interface goals

Due to the wide variety of applications and cul-
tures present on the Web, it is a difficult task to
cater to all users in the transparently simple way that
forward hyperlinking does. This makes the client
design particularly tricky. The information has to be
presented in as useful a way as possible, while being
as universal as possible, and of course staying within
the realm of feasible technology.

For this reason we designed the client in as gen-
eral a fashion as possible, to make it useful in the
widest variety of contexts. Of course, task-specific
additions to this basic framework (such as finding re-
lated news stories, or having more sophisticated nav-
igation controls) would improve it in specific con-
texts. But it has been our experience that a generic
display has considerable use on its own.

The guiding principle in the client design is to pro-
vide context for the user browsing the Web. Studies
have shown that browsing the Web is most strongly
visualized with spatial metaphors [18], and context is
best thought of in these terms: your context is ‘where
you are’ and where you are able to go next.

Web browsing is seldom a simple forward pro-
gression of link clicks: one often backtracks and
explores new paths. However, the current genera-
tion of browsers show only the current page, and its
outgoing links, as context. Our client expands this
context in a natural way by making it easy to access
pages you have visited recently, and by providing the
backlink information.

Thus the two main interface panels are a history
view, which shows recent browsing context, and the
backlink view, which lists the backlinks of the cur-
rently displayed ‘target’ page, showing the context
of the target page in the larger compass of the Web.
The history view is displayed in a tree-like fashion to
respect the backtracking nature of Web exploration.
The backlink view is a simple list of page titles. While
the page title is not always the most informative de-
scription of a page, it is the most easily accessible and

9 http://www.hotbot.com

607

Fig. 1. A screen-shot of the backlink browser applet. The browser assistant is showing the user’s location in the upper panel (including
frame substructure). The lower panel shows Web pages that link to the Toyota home page. Some words that are related to the current
page are highlighted. The user is about to click on the backlink shown by an arrow.

is, most often, sufficiently useful. Navigation is sim-
ple: the titles in both panels behave like conventional
hyperlinks, and load the page into the main browse
window. Buttons to the left of the history tree let one
view the backlinks of other pages in the tree.

At present only a maximum of 25 backlinks are
displayed: this is partly a technical limitation, but
one does find that most pages have fewer backlinks
than this, so this number is sufficient. The backlinks
are ordered by a simple heuristic: they are scored
according to how many words in the backlink title
appear in the target page, and sorted by this score.
This works well at bringing good pages to the top of
the list, without incurring the overhead of fetching
the backlink pages themselves.

Of course, this prototype design has room for
many enhancements. One might want to specify
filters on what type of backlinks are displayed. One
could add annotations and persistent storage to the
history view, to build a bookmarking scheme. One
could arrange for custom information to be displayed
in place of simple backlink titles, or give the target
page designer greater control over the form and
content of the backlinks.

This design has been received favourably by early
users. One interesting observation was that there
seem to be two distinct ways of visualizing browsing
activity: some users thought of it as a kind of back-
tracking tree-search, and some imagined it more as a
‘path in the woods’. Both viewpoints are valid, and

608

Fig. 2. Screen-shot, continued. Clicking on the suggested backlink instantly takes the user to a extensive list of auto manufacturers
around the world. (Some other backlinks are narrower, giving a range of generalizations of the topic of the initial page.) Also notice how
the backlink traversal is recorded in the upper panel.

we now include a feature to flatten the history tree,
for users who prefer to browse linearly.

2.2. Client implementation notes

We considered the following features such a
browse assistant should ideally have. It should work
with many browsers, since we do not want to have to
recode it multiple times. It should be easy to install,
without a hacked-up browser or patches. A plug-in
is easier, but many users resist them. This led us to
consider using Java. The assistant should also have
a minimal performance impact on the client and the
network.

The applet architecture is largely straightforward,

but a few points should be made about the implemen-
tation details. The interface coding was constrained
to be as lean as possible to speed loading times.
We chose not to use Swing or other GUI toolkits,
because the current generation of browsers does not
include them by default. The applet performs several
tasks which the Java default security model would
disallow. It needs to be able to monitor the current
browser window for new pages being loaded, fetch
results from a search engine, and, for study pur-
poses, we log the browse trail to local disk. In order
to permit these operations, the applet must first be
signed with a key certified by a trusted certification
authority (CA) in order to certify authenticity. If the
signature on the applet cannot be traced from a cer-

609

tificate in the browser, then it fails to run. For the
purposes of our testing, we chose to produce our own
self-signed certificate, and have the users download
this as well. Once the applet starts, Netscape prompts
the user for permission to perform the necessary op-
erations. Similar mechanisms exist with Microsoft
Internet Explorer, although the programming APIs
are different and we restricted ourselves to a single
implementation.

When the applet starts, it creates a new window,
which should be used for further browsing. This
means that the applet can continue to run uninter-
rupted in its own window, and that it can monitor
the new window’s browsing activity. Netscape’s cur-
rent model cannot send events to Java when a page is
loaded, so the applet polls, by examining the contents
of JavaScript variables. The applet can be configured
to fetch backlinks from HotBot or AltaVista. An
appropriate query string is formed, to minimize the
amount of extraneous text returned, and the URLs
and page titles are extracted from the engine results.
Eventually it could also be configured to consult
properly configured servers (see Section 4).

2.3. User studies

In order to get some feel for the usefulness of
backlinks, we designed a user experiment. Given the
space of possible information needs and the diver-
sity of the Web as well as Web users, the results
should be regarded as anecdotal rather than rigor-
ous. We picked eight topics for exploration by our
volunteers. Topics were chosen to have a sizable
supporting community and yet narrow enough that
some human browsing would likely be required over
and above keyword searches and=or topic distilla-
tion [10]. The topics chosen were ‘Airbag safety’,
‘Curling equipment’, ‘vintage Gramaphone equip-
ment’, ‘Lyme disease’, ‘Leonid meteor shower’, and
‘freedom of Press’. They were made available to our
volunteers on the Web, along with a longer descrip-
tion for each of the topics 10.

Each volunteer was assigned randomly to two
of the topics. Volunteers were given two versions
of the backlink applet. One version (the placebo)

10 http://www.cs.berkeley.edu/¾soumen/doc/www99back/user
study/topics.html

Table 1
Total scores for each topic

Topic Forward Backlink Both

Airbag safety 22 148 11
Curling equipment 68 42 5
Vintage gramaphone equipment 10 112 2
Lyme disease 34 22 14
Leonid meteor shower 54 131 11
Freedom of the Press 65 24 3

Total 253 479 46

did not show backlinks; the other did. The placebo
applet only showed the tree-structured history view.
For each topic we wanted at least one user to use
the placebo applet and at least one user to use the
full applet. We wanted to make the look-and-feel
uniform and only test the value of backlinks.

Each volunteer had to first search for one topic us-
ing the placebo applet. They would enter the search
terms above to Alta Vista, then browse for 15 min,
then stop and send us a log of all URLs visited as
maintained by the applet. Then they would use the
backlinked version of the applet, searching for the
second topic for 15 min.

A Perl script stripped off the information as to
which version of the applet each URL came from,
and produced an evaluation form 11, available on
the Web. Three additional volunteers independently
rated each URL without knowing the source applet
version, on a scale of 0 to 3. They were instructed
to visit the logged URL, and visit links on that page
only if needed. The rating guideline was as follows:
1: Not relevant to the topic, no collection of links to

relevant pages.
2: Somewhat relevant, but not a great starting point

for the topic.
3: Very relevant, but not a great starting point for

the topic.
4: Right on the topic, and has a great collection of

relevant links, some of which are verified.
The examiners did not have specific expertise in

any of the topics. The scores were added up over
each topic. The totals are shown in Table 1.

From these results it seems reasonable to con-

11 http://www.cs.berkeley.edu/¾soumen/doc/www99back/user
study/evaluate.html

610

clude that for some topics, the incorporation of back-
link navigation into a browser produces measurable
improvement in the quality of information discov-
ered on the Web. In our experience, topics broader
than our selection gave more useful results, as in the
two examples shown in this paper.

3. Extensions to HTTP

We began this project with the intent of building
something quick and dirty to accelerate the use of
backlink information for information retrieval. Our
experiments with the browser assistant encouraged
us to investigate server-side and protocol enhance-
ments that would further the use of backlinks. Our
design goals are:
ž Clients should inform servers that they want back-

link information.
ž Servers should inform clients how and where they

can retrieve backlink information.
ž Proxies should to be able to assist clients in

retrieving backlink information, possibly by ag-
gregation from different sources.
ž The protocol should be simple enough for embed-

ded devices to implement a meaningful subset.
ž It should be easy to integrate with the existing

infrastructure.
ž There should be zero or at least minimal perfor-

mance impact for clients and servers that choose
to ignore backlink information.
We considered several different methods for inte-

grating the retrieval of backlink information into the
browsing process. It could be delivered inline to the
normal browsing process, or as a separate document
retrieval. If delivered inline, it could be piggybacked
on the normal HTTP [7,13] process using keepalive
to retrieve another document, or it could be deliv-
ered as part of a MIME multipart document, or it
could be delivered in the HTTP response header. A
client that wishes to take advantage of backlink in-
formation could express a willingness to receive the
information in an Accept: header line, or negotiate
the content that is delivered as in RFC 2295 [15].
None of these seem appropriate.

The original HTTP protocol [7] contained a
method called ‘LINK’ that was apparently intended
for distributed maintenance of backlinks between re-

sources. In addition, the Link: entity-header ([13],
section 19.6.2.4) was suggested as a mechanism to
convey backlink metadata in responses. The descrip-
tion sounds rather close to what we require, but
unfortunately both were declared as experimental
and unreliable in the HTTP 1.1 specification ([13],
section 19.6). As such they are now inappropriate
foundations upon which to build.

Two more serious objections to the Link: en-
tity-header are that it can degrade the performance
of HTTP, and it fails to address several desirable
features of backlink metadata. In particular, there is
no transfer of ranking, freshness, or history data, and
there is no way to issue queries on backlink meta-
data. The performance problem derives from the fact
that backlink information is transferred in the header
before transferring the actual resource body. Back-
link metadata should properly be regarded as a sec-
ondary source of information about the resource, and
fetching the metadata before fetching the resource is
inefficient. Consider for example that HotBot already
reports that it knows about 522,890 links to Yahoo!

WebDAV and RDF offer some attractive capabil-
ities, but address far more than we needed and have
a few drawbacks. In order to integrate the variety of
sources that are available to clients and proxies, we
chose to design an extension to HTTP that avoids
some of these problems. Servers and clients that sup-
port WebDAV will be unaffected by the protocol we
suggest.

3.1. HTTP response headers

In order for clients to be able to retrieve and dis-
play backlink information in a useful way, they need
to establish the location and willingness to exchange
such information. We propose several mechanisms
to accomplish this. For clients and servers that sup-
port HTTP=1.0, the easiest way is for the server to
indicate that backlinks are available, and supply a
URI to tell the client where to fetch them. We chose
to have the server report the availability of back
link information by including an optional end-to-end
HTTP header response line formatted according to
the HTTP Extension Framework [25]. It is perhaps
easiest to specify an example, followed by the syntax
description. A sample response header might look
like:

611

Opt: "http://www.swcp.com/~mccurley/
bl/"; ns=15-

15-location: text/html URI1
15-location: text/rdf URI2

Here each 15-location line indicates a MIME type
and URI location for retrieving backlink information
in that form. The URIs can be relative or absolute, to
support both fetching the information from another
site as well as from the server itself. The number
15 is merely an example, since it is dynamically
generated by the server to avoid header conflicts as
per [25]. The URIs should not be pointers to generic
backlinks page, but rather should be specific to the
page that was requested in the HTTP request.

If the client and server are using persistent con-
nections, the client can go ahead and issue the re-
quest for backlink information into the pipeline as
soon as they see the appropriate response header
indicating that backlinks are available. This stream-
lines the retrieval. If the client and server are not
using persistent connections, or if the backlink infor-
mation is to be retrieved from a different server, then
a separate connection will have to be initiated by the
client.

In our example, we gave two locations for back-
link information, with two different MIME types for
the content at those locations. The option of pro-
viding information in several forms is designed to
support both collection by machine and interaction
by humans. The text/html MIME type is intended
for humans to view, and tailor their access to back-
link information. This gives the server control over
the display, search, access control, and policy. It may
contain simply an HTML-formatted list of inlinks,
or it may also contain a query interface for how to
request links to the page. For example, a server may
offer a query interface for requesting only inlinks
from certain sites, or that are used with a certain
frequency. It may also contain a human-readable
statement of policy regarding availability of back-
links. In this case the design of the query interface
is left to the server, but the server will still have
information informing them of which URI backlink
information is requested for.

One advantage to the HTML interface is that ex-
isting browsers can use it with minimal modification
(a simple ‘backlinks’ button may retrieve this and

display it). For more sophisticated client programs,
we believe that more elaborate and verbose methods
based on RDF are appropriate. Servers that support
WebDAV will require XML support, and can re-
spond to a PROPFIND command with essentially
the same response as an ordinary HTTP request for
the referenced URI.

The description of response header lines follows
[25], using lines of the form:

prefix-location: URI mime-type [;charset]

where prefix is from [25], and mime-type is one of
text/html, text/rdf, or a new MIME type called
x-backlinks/text discussed below. The charset
is optional, and follows the MIME specification. Ad-
ditional MIME types are possible as well.

3.2. The x-backlinks MIME type

In the interest of simplicity for our Apache mod-
ule, we devised a simple transfer mechanism for
backlink information based on a new MIME type.
The x-backlinks MIME type described in this sec-
tion is intended to be easily parsed, human-readable,
and compact. A response of this type consists of a
sequence of lines ending in CRLF. Lines are of two
types. First, lines of the form:

Alt: URI mime-type

are used to specify further sources for backlink in-
formation. These can be used either to provide com-
pletely different sources, or in the case when more
information is available from the server, a URI to
fetch more or issue queries. URIs are site-specific,
but examples include:

Alt: http://www.ibm.com/bl?uri=/
contact.html x-backlinks/text

Alt: /bl?key=76x32 text/rdf;
charset=us-ascii (Plain Text)

Alt: http://www.ibm.com/bl text/html

Second, there are lines specifying actual back-
links. These have the form:

uri count first-date last-date title

Each field except the URI can be replaced with
a ‘-’ character if the server chooses not to report
it or data are unavailable. In addition, a line can

612

be truncated at any point after the URI. Thus the
simplest possible response consists of a URI. The
meaning of each field is as follows:
uri: the uri of the backlink. This may be either

relative or absolute. Relative URIs are interpreted
relative to the requested URI.

count: the number of times that the referrer has
been received by the server during the period
between first-date and last-date. If either
first-date or last-date is omitted, then the
count is simply the total number of times that
records are available for.

first-date: the first date for which records are
available. Both first-date and last-date are
formatted according to RFC2068 [13], and sur-
rounded by the double-quote symbol ". Better
efficiency would be achieved through the ISO
8601 [1] format, but this has not gained wide
acceptance in the World Wide Web.

last-date: the date that the link was last refer-
enced through a Referer field, or the last date that
the link was validated by the server.

title: a descriptive title for the URI. The origin and
content of this text is unspecified, but is intended
to describe to a human the relationship or content
of the resource. It may be constructed by a variety
of methods, including those described in Sec-
tion 1.4.1, other automatic processes, or manual
human editing. In the event that a non-standard
character set is used, it should be formatted ac-
cording to RFC 1522 [22].
The order of the individual backlink lines is left

to the server to decide, and the client is free to
use them as it wishes. The inclusion of frequency
and freshness information is used to assist clients in
customizing the display.

3.3. Proxies and interoperability

In the event that both client and server support
backlink information, the proxy should simply relay
the requests, consistent with the existing caching
and HTTP end-to-end extension mechanism. Proxies
that are aware of other backlink information sources
(e.g., search engines) may insert their own headers
to inform the client that other sources are available.

Clients may be designed to only fetch backlink
information upon the interest of the user, or they

may retrieve and display backlinks as the default.
We imagine that backlink information will be used
only on infrequent user demand, and do not wish to
impose an undue burden on the network.

The HTTP extensions that we propose here will
be ignored by all compliant HTTP implementations.
Implementations that do not support the extension
will simply suffer a minor performance degrada-
tion from constructing and transmitting the head-
ers. Proxies may recognize incompatibilities between
servers and clients, and supply appropriate transla-
tions.

4. Server-side implementation

Most of the server modification relates to the
storage of the backlink database and query support
for backlink-enabled clients. At the most rudimen-
tary level, no special support is needed to provide
backlinks. The administrator simply turns on the
referer log option in any popular Web server such
as Apache 12, and installs a simple CGI script that
grep’s the logs for the target URL. This will not
satisfy our requirements of efficiency and frugality
of space usage. At the other end, it is conceivable
that fairly sophisticated database capability will be
needed to support rather complicated queries being
made to the server, e.g., ‘find all inlinks from a given
site that have been followed at least 50 times in the
last 10 hours.’

We believe that Web servers will continue to take
on more and more characteristics of database servers
in the future [12]. However, in the near term the
greatest benefit for non-commercial sites of small to
medium sites will probably come from the ability
to make basic queries regarding inlinks. Moreover,
avoiding dependence on a database will make it
easier to distribute, upgrade and deploy.

We considered two candidates for integrating the
backlink code with the server: modules and servlets.
Apache, the most widely used server, provides a
modular architecture by which additional functions
can be integrated into the server through a standard
API (Thau, [28]). The other option is to use server-
side Java handlers, called servlets, to perform the

12 http://www.apache.org

613

necessary actions. With sufficient server-side capa-
bility to execute generic code associated with each
page, a backlink server can be constructed with rela-
tively little server customization. Some vendors also
provide server-side scripting languages which (while
mostly used for site maintenance) can be used to
implement a backlink server [24].

We implemented the simple HTTP protocol ex-
tension as a module in the Apache Web server. Our
module performs three places in the Apache flow of
processing. First, the module reports referer fields to
a database, and keeps track of the number of times
a link has been followed as well as the last time it
was followed. Second, the module registers a special
URL with the server, and supplies inlink information
for URLs on the server. Third, the server modifies
outgoing response headers to show availability of
backlink information. There are a number of config-
uration options, including filtering by host or path,
the logging location, storage management for back-
link information, and URL specification for how to
retrieve backlinks. We plan to release this module
through the IBM Alphaworks Web site 13.

Rather than use a full-fledged relational engine
behind the server, we decided to use a pared-down
storage manager: the Berkeley DB 14 library, in order
to encourage widespread dissemination with Apache.
The current version of the database is implemented
with three Berkeley DB hash tables. Keys into the
tables are constructed by hashing URLs to 64-bit
values. The three tables are constructed as follows:
(1) A hash table where the keys are hashes of URLs,

and the values are the URLs themselves. This
allows reconstructing the URLs from the keys.

(2) A hash table where keys are hashes of URL pairs
(referer, target) and data elements are (times-
tamp, count) pairs. This facilitates fast updates to
the database and limited selective retrieval.

(3) A multi-valued hash table where the keys are
hashes of URLs, and the data elements are lists
of inlinks, given by 64-bit hashes.

If the total number of URLs that a server encoun-
ters is below 232, and if the hash function behaves
as a random function, then collisions between URLs
are unlikely for the hash function. In the event that

13 http://www.alphaworks.ibm.com
14 http://www.sleepycat.com

collisions occur, the only consequence is that a few
stray backlinks may be supplied to users. Given the
dynamic nature of the Web, these stray backlinks
will likely have little effect compared to the dead
links that users regularly encounter.

4.1. Further development

One problem that we have not addressed com-
pletely is that of ‘spamming’. If a server is open to
suggestion about what sites should be listed as back-
links, then we can expect sites to use backlinks as a
means to lure browsers to their pages. Consider for
example an advertising page that contains ‘hidden’
links to a site in the form of white printing on a
white background, containing HREF tags. A server
that becomes aware of such a link may automatically
provide this as a backlink to clients, even though
the advertising page has little to do with the server.
If there are a large number of backlinks from the
server page, then it becomes a competition for the
advertising page to have their backlink listed ahead
of others. Any automated procedure for ranking the
pages is potentially vulnerable to abuse by the ad-
vertiser, since they may skew their content to raise
their ratings. If the server uses frequency and number
of distinct client IP addresses reporting a referer as
an automated ranking function, then advertisers are
faced with a difficult task since they must also in-
duce users to follow the link out of their advertising
page to the target page in order to reinforce their
backlink rating on the target page. Alternatively, the
advertisers would have to simulate clients following
the link, which consumes many resources. Thus it
seems that there are ranking policies that will eas-
ily deter such an attack. Our server implementation
implements a strategy of supplying backlinks ranked
by frequency*diversity, making it unlikely that the
server will be subject to the attack.

One can also enforce tighter checks, by imposing
more flexible filters on the backlink sets, or even by
such devices as displaying only backlinks which link
to more than one specified target page. We leave this
to future versions.

Our server implementation is designed to simply
compile backlink data from the most readily avail-
able source, but clearly there is more that could
be done. Our database is populated with an access

614

count, timestamp of last access, and URL. In addi-
tion, the server could store a full history of access,
textual information, ratings, rate of change, owner-
ship, copyright information, or many other factors.
This information might be managed through a vari-
ety of tools, including crawling, automated reporting
and postprocessing, or human editing. These may
prove particularly useful for sites that wish to imple-
ment a specific policy involving backlink metadata.
For example, the server may wish to only report
backlinks that are still active, or report all links that
ever existed.

At present the Apache module only supports re-
trieval of all links to a given page. Queries about
backlink information will require more of the func-
tionality of traditional database servers. DASL looks
like a promising means to support queries on server
resources, including metadata. The exact use of such
queries in a client is unclear, however, and the most
likely mechanism may remain a traditional HTML
form interface for some time to come.

5. Conclusions

It is our firm belief that backlink metadata pro-
vides a significant enhancement of information gath-
ering from Web resources. We have described a
protocol by which such data can be retrieved and
used by clients, and some prototype tools that will
support the infrastructure. These tools support only
a minimal set of policies for managing the backlink
metadata, and it is natural to expect that others will
develop tools to further assist in the management
and use of such data. For example, the integration
of backlink data into browsing tools can be done in
several ways, and we encourage software developers
to think of the best ways to organize and present
such information.

Acknowledgements

Thanks to our volunteers, Dimitrios Gunopu-
los, Inderjit Dhillon, Dharmendra Modha, Myron
Flickner, Jason Zien, Kiran Mehta, Louis Nagtegaal,
Daniel Oblinger, Amit Somani, SriGanesh Madha-
van, Sunita Sarawagi, and Martin van den Berg.

Special thanks to Sunita Sarawagi and Martin van
den Berg for help with the URL evaluation. Thanks
to Rob Barrett and Robert Schloss for helpful discus-
sions, and to the anonymous referees for constructive
criticism and suggestions.

References

[1] Data elements and interchange formats — information in-
terchange — representation of dates and times, ISO stan-
dard 8601:1988.

[2] HTML 4.0 specification, available online at http://www.w3.
org/TR/REC-html40/

[3] Resource description framework, available online at http://
www.w3.org/RDF/

[4] DAV searching and locating, July 1998, IETF Working
Group, available online at http://www.ics.uci.edu/pub/ietf/d
asl/

[5] V. Balasubramanian, State of the art review on hypermedia
issues and applications, available online at http://eies.njit.ed
u/ 333/review/hyper.html

[6] D. Bearman, Dublin Core relation element working draft
1997-12-19, available online at http://purl.oclc.org/dc/docu
ments/working_drafts/wd-relation-current.htm

[7] T. Berners-Lee, R. Fielding and H. Frystyk, RFC 1945: Hy-
pertext Transfer Protocol — HTTP/1.0, May 1996, avail-
able online at http://www.cis.ohio-state.edu/htbin/rfc/rfc194
5.txt

[8] K. Bharat, A. Broder, M. Henzinger and P. Kumar, The
connectivity server: fast access to linkage information on
the web, in: 7th International World Wide Web Conference,
Melbourne, 1997, available online at http://www.research.d
igital.com/SRC/personal/Andrei_Broder/cserv/386.html

[9] L. Carr, D. De Roure, W. Hall and G. Hill, The distributed
link service: a tool for publishers, authors and readers, in:
Proc. of the 4th International WWW Conference, 1995,
available online at http://www.mmrg.ecs.soton.ac.uk/public
ations/papers/dls/link_service.html

[10] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D.
Gibson and J. Kleinberg, Automatic resource compilation
by analyzing hyperlink structure and associated text, in:
Proc. of the 7th International World Wide Web Conference,
Computer Networks and ISDN Systems 30 (1997) 65–74,
available online at http://www7.scu.edu.au/programme/full
papers/1898/com1898.html

[11] K.E. Drexler, Hypertext publishing and the evolution of
knowledge, available online at http://www.foresight.org/We
bEnhance/HPEK0.html

[12] M. Fernandez, D. Florescu, J. Kang, A. Levy and D.
Suciu, Catching the boat with strudel: experiences with
a web-site management system, in: SIGMOD Conference,
ACM, 1998.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk and T. Berners-
Lee, RFC 2068: Hypertext Transfer Protocol — HTTP1.1,

615

January 1997, available online at http://www.cis.ohio-state.
edu/htbin/rfc/rfc2068.txt

[14] Y.Y. Goland, Jr., E.J. Whitehead, A. Faizi, S.R. Carterand
and D. Jensen, HTTP extensions for distributed authoring
— WEBDAV, November 1998, Internet-Draft for infor-
mational purposes only, should be considered as work in
progress, available online at http://www.ietf.org/internet-dr
afts/draft-ietf-webdav-protocol-10.txt

[15] K. Holtman and A. Mutz, RFC 2295: transparent content
negotiation in HTTP, March 1998, available online at http:/
/www.cis.ohio-state.edu/htbin/rfc/rfc2295.txt

[16] T. Kaehler, The backlinks page: Web enhancement project,
June 1997, available online at http://www.foresight.org/We
bEnhance/backlinks.news.html

[17] Y. Maarek, M. Jacovi, M. Shtalhaim, S. Ur, D. Zernik and
I.B. Shaul, WebCutter: A system for dynamic and tailorable
site mapping, in: World Wide Web Conference, Vol. 6,
Santa Clara, April 1997.

[18] P.P. Maglio and T. Matlock, Metaphors we surf the web
by, in: Workshop on Personalized and Social Navigation in
Information Space, Stockholm, 1998.

[19] M. Marchiori, The limits of web metadata, and beyond, in:
Proc. of the 7th International World Wide Web Conference,
pp. 1–9, 1998, available online at http://www.elsevier.nl/ca
s/tree/store/comnet/free/www7/1896/com1896.htm

[20] H. Maurer, HyperWave — The Next Generation Web Solu-
tion, Addison-Wesley Longman, Reading, MA, 1996.

[21] R. Miller and K. Bharat, SPHINX: a framework for creating
personal, site-specific web crawlers, in: World Wide Web
Conference, Vol. 7, Brisbane, April 1998.

[22] K. Moore, MIME (multipurpose internet mail extensions)
part two: Message header extensions for non-ascii text,
September 1993, available online at http://www.cis.ohio-sta
te.edu/htbin/rfc/rfc1522.html

[23] T. Nelson and J. Walker, Project Xanadu, available online
at http://www.xanadu.net/ and http://www.xanadu.com.au/

[24] NeoSoft, Neowebscript, November 1998, available online
at http://ftp.neosoft.com/neowebscript/index.html

[25] H.F. Nielsen, P. Leach and S. Lawrence, HTTP ex-
tension framework for mandatory and optional ex-
tensions, August 1998, Internet-Draft, available online
at http://www.w3.org/Protocols/HTTP/ietf-http-ext/draft-fry
styk-http-extensions-00

[26] J.E. Pitkow and R. Kipp Jones, Supporting the web: a
distributed hyperlink database system, in: Proc. of the
5th International WWW Conference, 1996, available on-
line at http://www.imag.fr/Multimedia/www5cd/www396/o
verview.htm

[27] J. Slein, F. Vitali, E. Whitehead and D. Durand, Require-

ments for a distributed authoring and versioning protocol
for the world wide web, February 1998, available online at
http://www.cis.ohio-state.edu/htbin/rfc/rfc2291.txt

[28] R. Thau, Design considerations for the Apache server API,
in: 5th International World Wide Web Conference, Paris,
1996, available online at http://www5conf.inria.fr/fich_html
/papers/P20/Overview.html

[29] J. Walker, Hack links, July 1995, available online at http://
www.fourmilab.ch/documents/hacklinks.html

Soumen Chakrabarti received his
B.Tech in Computer Science from
the Indian Institute of Technology,
Kharagpur, in 1991 and his M.S. and
Ph.D. in Computer Science from UC
Berkeley in 1992 and 1996. He was
a Research Staff Member at IBM
Almaden Research Center between
1996 and 1999, and is now an Assis-
tant Professor in the Department of
Computer Science and Engineering
at the Indian Institute of Technology,

Bombay. His research interests include hypertext information
retrieval and on-line scheduling of parallel servers.

David Gibson is a PhD student at
the University of California, Berke-
ley, where he is studying theoretical
aspects of computer science, human
factors, and experimental computa-
tion. He is a part-time researcher
at IBM’s Almaden Research Cen-
ter, and partially supported through
NSF grants CCR-9626361 and IRI-
9712131.

Kevin S. McCurley is a Research
Staff Member at IBM Almaden Re-
search Center. He received a Ph.D.
in Mathematics in 1981 from the
University of Illinois, and has pre-
viously held positions at Michi-
gan State University, University of
Southern California, and Sandia Na-
tional Laboratories. His current re-
search interests include information
security, embedded computing, and
Web technologies.

