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Abstract

The rapid growth of the World-Wide Web poses unprecedented scaling challenges for general-purpose crawlers and
search engines. In this paper we describe a new hypertext resource discovery system called a Focused Crawler. The goal
of a focused crawler is to selectively seek out pages that are relevant to a pre-defined set of topics. The topics are specified
not using keywords, but using exemplary documents. Rather than collecting and indexing all accessible Web documents to
be able to answer all possible ad-hoc queries, a focused crawler analyzes its crawl boundary to find the links that are likely
to be most relevant for the crawl, and avoids irrelevant regions of the Web. This leads to significant savings in hardware
and network resources, and helps keep the crawl more up-to-date.

To achieve such goal-directed crawling, we designed two hypertext mining programs that guide our crawler: a classifier
that evaluates the relevance of a hypertext document with respect to the focus topics, and a distiller that identifies hypertext
nodes that are great access points to many relevant pages within a few links. We report on extensive focused-crawling
experiments using several topics at different levels of specificity. Focused crawling acquires relevant pages steadily while
standard crawling quickly loses its way, even though they are started from the same root set. Focused crawling is robust
against large perturbations in the starting set of URLs. It discovers largely overlapping sets of resources in spite of these
perturbations. It is also capable of exploring out and discovering valuable resources that are dozens of links away from the
start set, while carefully pruning the millions of pages that may lie within this same radius. Our anecdotes suggest that
focused crawling is very effective for building high-quality collections of Web documents on specific topics, using modest
desktop hardware.  1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The World-Wide Web, having over 350 million
pages, continues to grow rapidly at a million pages
per day [2]. About 600 GB of text changes every

Ł Corresponding author. E-mail: soumen@cse.iitb.ernet.in
1 Work partly done at IBM Almaden.
2 Work done at IBM Almaden

month [19]. Such growth and flux poses basic limits
of scale for today’s generic crawlers and search en-
gines. At the time of writing, Alta Vista’s crawler 3

called the Scooter, runs on a 1.5 GB memory, 30 GB
RAID disk, 4ð 533 MHz AlphaServer 4100-5=300
with 1 GB=s I=O bandwidth. Scooter connects to the
indexing engine Vista, which is a 2 GB memory, 180

3 http://www.altavista.com/av/content/about_our_technology.htm

 1999 Published by Elsevier Science B.V. All rights reserved.
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GB RAID disk, 2ð 533 MHz AlphaServer 4100-5=
300. (The query engine is even more impressive, but
is not relevant to our discussion.) Other giant Web
crawlers use similar fire-power, although in some-
what different forms, e.g., Inktomi 4 uses a cluster
of hundreds of Sun Sparc workstations with 75 GB
of RAM and over 1 TB of spinning disk, and it
crawls over 10 million pages a day.

In spite of these heroic efforts with high-end mul-
tiprocessors and exquisitely crafted crawling soft-
ware, the largest crawls cover only 30–40% of the
Web, and refreshes take weeks to a month [2,22].
The overwhelming engineering challenges are in
part due to the one-size-fits-all philosophy: Alta
Vista and Inktomi try to cater to every possible query
that might be made on the Web. Although such ser-
vices are invaluable for their broad coverage, the
resulting diversity of content often snares all but the
most craftily constructed queries in thousands of re-
sponses of little relevance or quality. Furthermore,
the imminent explosion of Web publication beyond
North America and Europe, and beyond academic
and corporate sites, will challenge even the most
scalable solutions.

Compared to the Web, development of the human
brain has been tardy: it has grown ‘only linearly’
from 400 to 1400 cubic centimeters in the last 3.5
million years. How do people avoid information
overload? Serious Web users adopt the strategy of
filtering by relevance and quality. The growth of the
Web matters little to a physicist if at most a few
dozen pages dealing with quantum electrodynamics
are added or updated per week. Seasoned users
also rarely roam aimlessly; they have bookmarked
sites important to them, and their primary need is
to expand and maintain a community around these
examples while preserving the quality.

We argue that a giant, all-purpose crawl is nei-
ther necessary nor sufficient for this purpose. In
our experience (Section 2), keyword queries cannot
naturally locate resources relevant to specific top-
ics. It is also unreasonable to have to first crawl
and index 350 million pages in order to distill fifty
good resources related to quantum electrodynam-
ics! Much of this index would never be used, but,
burdened by the responsibility of maintaining this

4 http://www.inktomi.com/Tech/CoupClustWhitePap.html

huge index, the crawler would not be able to pref-
erentially and frequently refresh and further explore
relevant regions of the Web. It might be argued that
a central crawl amortizes work across multiple top-
ics. But our results (Section 4) suggest that topical
Web exploration is efficient enough for distributed
deployment.

Our contributions: In this paper, we describe a
Focused Crawler which seeks, acquires, indexes, and
maintains pages on a specific set of topics that repre-
sent a relatively narrow segment of the Web. It entails
a very small investment in hardware and network re-
sources and yet achieves respectable coverage at a
rapid rate, simply because there is relatively little to
do. Thus, Web content can be managed by a dis-
tributed team of focused crawlers, each specializing
in one or a few topics. Each focused crawler will
be far more nimble in detecting changes to pages
within its focus than a crawler that is crawling the
entire Web. The focused crawler is guided by a
classifier which learns to recognize relevance from
examples embedded in a topic taxonomy, and a dis-
tiller which identifies topical vantage points on the
Web. We describe the architecture in Section 3 and
our experiences in Section 4.

Eventually, our goal is to impose sufficient topical
structure on the Web so that powerful semi-struc-
tured query, analysis, and discovery are enabled.
Here are some compelling examples:
Discovering linkage sociology: Is there a hyperlink

between the Web page of a speed trap (traffic radar)
maker and an auto insurance company? Apart from
other bicycling pages, what topics are prominent in
the neighborhood of bicycling pages? (First aid is
one answer found by our system.)

Locating specialty sites: Getting isolated pages,
rather than comprehensive sites, is a common
problem with Web search. Now we can order
sites according to the density of relevant pages
found there. E.g., we can find the top five sites
specializing in mountain biking.

Semi-supervised learning: Human-supervised topic
learning yields very high-quality filtering, but
needs labor-intensive training. Finding specialty
sites can quickly generate large amounts of addi-
tional training data with little effort.

Detecting community culture: Simple statistics
about the link graph reveal important informa-
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tion about the community of the focused topic,
e.g., whether it is competitive or collaborative
(Section 4), the typical time taken by a good
resource to become popular, etc.

Estimating community timescales: Simple queries
can identify topical regions of the Web that grow
or change dramatically as against those that are
relatively stable. This can be of great value to
the Web ontologists at Yahoo! or The Mining
Company.
There is much awareness that for serious Web

users, focused portholes are more useful than generic
portals 5: “The most interesting trend is the growing
sense of natural limits, a recognition that covering
a single galaxy can be more practical — and useful
— than trying to cover the entire universe” [16].
A focused crawler is an example-driven automatic
porthole-generator. In a companion paper [8] we
have proposed new HTTP infrastructure to support
bidirectional hyperlinks to facilitate exploration of
fine-grained communities. We feel that the ability to
focus on a topical subgraph of the Web, as in this
paper, together with the ability to browse communi-
ties within that subgraph, will lead to significantly
improved Web resource discovery.

2. Focused crawler administration

Central to a focused crawler is a canonical topic
taxonomy with examples. To run a specific instance,
initial human input has to be provided in two forms.
The user has to select and=or refine specific topic
nodes in the taxonomy, and may also need to provide
additional example URLs which serve as starting
points for the crawl. In this section we give a user’s
view of the system.

2.1. Operation synopsis

Canonical taxonomy creation: When the system is
built, the classifier is pre-trained with a canonical
taxonomy (such as Yahoo!, The Open Directory
Project, The Virtual Library or The Mining Co.)
and a corresponding set of examples. The canon-

5 See excerpts from the press at http://www.cs.berkeley.edu/¾sou
men/focus/

ical (coarse-grained) classification tree is part of
the initial system.

Example collection: The user collects URLs that are
examples of her interest. These are submitted to
the system, e.g., by importing her bookmarks file.

Taxonomy selection and refinement: The system
proposes the most common classes where the
examples fit best. The user can choose and mark
some of these classes as good. Sometimes, the
user may find the taxonomy too coarse, and refine
some categories and move documents from one
category to another.

Interactive exploration: The system also proposes
additional URLs in a small neighborhood of the
examples, that appear to be similar to the ex-
amples. (This can be regarded as a slow-speed,
interactive startup phase.) The user may inspect
and include some of these as examples. The steps
thus far are illustrated in Fig. 1a.

Training: The classifier integrates the refinements
made by the user into its statistical class models.

Resource discovery: At this stage the system is
ready to perform resource discovery as described
in the rest of the paper.

Distillation: Intermittently and=or concurrently, the
system runs a topic distillation algorithm to iden-
tify pages containing large numbers of relevant
resource links, called hubs. The (re)visit priori-
ties of these pages and immediate neighbors are
raised.

Feedback: Typically, the user inspects the system
regularly. The system reports the most popular
sites and resource lists, and the user can give
feedback by marking them as useful or not. This
feedback goes back to the classifier and distiller.
The user collects examples by browsing. The

applet shown in Fig. 1a monitors the page being
rendered by the browser. Using the Classify menu,
the user can make the classifier route the current
page to the few best matching nodes in the category
tree, marking all nodes on the way. After sufficient
browsing, all marked nodes are presented to the
user as candidates for focused crawling. The user
selects some nodes and selects them, thereby mark-
ing them good. These are shown highlighted in the
tree view. E.g., for the topic of “recreational bicy-
cling,” two subtrees were found to be good choices.
One (/Recreation/Sports/Cycling) is shown.
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The other was /Business/Companies/Sports/
Cycling. Example sites that the master category
system already knows about are shown in the upper
right panel and can be viewed through a browser
by clicking. When such a page is visited, the applet
shows URLs of pages in the neighborhood of the
example whose titles have many words in common
with the most distinctive words of the topic [5,8].
Any pages thus found useful can also be added to the
examples by dragging and dropping.

Sometimes the user may feel that the leaf nodes to
which her examples have been assigned are still too
broad and need to be refined. The tree view interface
lets her create and move directories and populate
them with examples. If major changes are made to
the master category tree, some time is needed for
the classifier to integrate the new structure into its
models [5]. For our testbed with about 260,000 doc-
uments from Yahoo!, this takes a few hours. Smaller
changes, such as moving of documents while keep-
ing the tree unchanged, are interactive.

At this stage, the focused crawler can be started.
It is a complex system which not only crawls tens
of thousands of pages per hour, but makes decisions
based on millions of arithmetic calculations per page.
It is thus quite helpful for diagnostic purposes to
visualize the status of the crawl graphically. We have
developed an applet that maintains a plot of page
relevance against time. In Fig. 1b, each red dot is
a Web page, which may be viewed in a browser
window by clicking on the dot. The x-axis represents
time. The y-axis is the relevance score (a probability
value) between zero and one. The blue line is a
smoothed moving average over a recent window of
pages fetched. Continual refreshing introduces new
points at the right edge, and the display scrolls the
leftmost points off the screen.

If the page acquisition rate suddenly lowers, the
right-to-left scrolling slows down. This can be made
to raise an alarm (not implemented). Alternatively,
the crawler may be getting many pages, but their
relevance will be very low. The blue line will go
down without significant recovery. This too can be
made to raise an explicit alarm if necessary.

Fig. 1. Focused crawler administration and monitoring. (a) A sample session for configuring a crawl for ‘recreational bicycling’
resources. (b) Applet for monitoring the recent relevant page acquisition rate of the focused crawler.

2.2. Justification and discussion

A different design is conceivable in which key-
word search is used to locate an initial set of pages
(using a giant crawl and index), expand this graph
to a limited radius and then look for popular sites in
the expanded graph using weighted degree measures
[25,31,4,21,6,3]. This approach was tried as a semi-
automatic means to build a taxonomy like Yahoo!.
For 966 topics picked from Yahoo!, keyword queries
were constructed manually. E.g., the query for the
topic /Business/Companies/Electronics/
PowerSupply was +"power supplŁ" "switchŁ
mode" smps -multiprocessorŁ "uninterruptŁ
power supplŁ" ups -parcel. Typically, several
query refinements were needed to match the quality
of Yahoo! in blind user tests. The resulting queries
were complex (as above) compared to the average
Alta Vista query [29]. The above experiment used
an average of 7.03 query terms and 4.34 operators
(+-Ł"); an average Alta Vista query has only 2.35
terms and 0.41 operators. Query construction is not
a one-time investment, because as pages on the topic
are discovered, their additional vocabulary must be
folded in manually into the query for continued dis-
covery.

Yet another design is possible in which the fo-
cused crawler only uses the examples found by the
user, but does not use a taxonomy with the pre-
packaged examples. E.g., we can set up a simple
two-class learning problem (relevant=irrelevant) for
each focus topic. However, we have a few reasons to
believe that our approach is more promising.

Better modeling of the negative class: In the
two-class learning of text, characterization of the
negative class (e.g. “a page not about mutual funds”)
is often problematic. Using a taxonomy as we do,
deals with this problem by describing the negative
class as a union of positive classes. This is not merely
a mental artifice, but it also affects the accuracy of
learning algorithms significantly [26], because com-
monly used statistical models have large estimation
errors on the diverse negative class.

Reuse of classifier training effort: Learning to
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recognize text documents is made difficult by the
large dimensionality and consequent sparsity. It may
be burdensome for every user to prepare enough
sample documents to have an adequate number of
positive and negative examples for learning her in-
terest profile. The work of mapping the user’s in-
terest onto a predefined set of categories, refining
them when needed, will usually be significantly less
than finding an adequate number of positive and
negative examples. One may even envisage that a
standards organization will design many ‘backbone
taxonomies’ for smaller groups to fill in and refine. A
similar procedure is espoused for maintaining many
Web directories.

Discovery of related classes: The framework of
a master taxonomy helps the user detect additional
regions of the Web that are topically related to her
interest which were not naturally connected with her
start set. As we shall see later, the focused crawler is
quick to suggest that crawling only on mutual funds
while forbidding investment in general will not work
well, because the neighborhoods of these two topics
commingle. It is able to do this because it can clas-
sify the Web pages it encounters into other categories
from the taxonomy, which would not be possible if
the binary-classification approach were used.

Why is this significant? In addition to teaching the
user about the relationship of her interests to other
topics on the Web, this capability is important for
diagnostic purposes. In the mutual funds example, it
is better to broaden the set of categories to those that
provide a minimal covering of the interest topics, be-
cause doing so provides a higher degree of linkage,
which means many more available paths for finding
relevant pages. In such a scenario the crawling-pri-
ority relevance score and the final (for displaying to
the user) relevance score will be determined differ-
ently. A natural way to expand the topic set for this
purpose is to add some of the parents and=or siblings
of the relevant topics from the taxonomy — another
advantage over binary classification.

3. System architecture

The focused crawler has three main components:
a classifier which makes relevance judgments on
pages crawled to decide on link expansion, a dis-

tiller which determines a measure of centrality of
crawled pages to determine visit priorities, and a
crawler with dynamically reconfigurable priority
controls which is governed by the classifier and
distiller. A block diagram is shown in Fig. 2. Here
we briefly outline the basic processes. In subsequent
work we have redesigned the modules on top of a
relational database and efficiently integrated them
[9].

Based on the discussion so far, we can summa-
rize the role of the focused crawler in the following
terms. We are given a directed hypertext graph G
whose nodes are physically distributed. In this paper,
G is the Web. There is a cost for visiting any vertex
(Web page) of G. There is also a tree-shaped hierar-
chical topic directory C such as Yahoo!. Each topic
node c 2 C refers to some pages in G as examples.
We denote the examples associated with topic c as
D.c/. These pages can be preprocessed as desired by
the system. The user’s interest is characterized by a
subset of topics CŁ ² C that is marked good. No
good topic is an ancestor of another good topic. An-
cestors of good topics are called path topics. Given
a Web page q, a measure of relevance RCŁ.q/ of q
with respect to CŁ, together with a method for com-
puting it, must be specified to the system. CŁ will
be omitted if clear from the context. In this paper,
we will use a probability measure 0 � R.q/ � 1.
By definition, Rroot.q/ D 1 8q. If fci g are children
of c0, then

P
ci

Rci .q/ D Rc0.q/. The system starts
by visiting all pages in D.CŁ/. In each step, the
system can inspect its current set V of visited pages
and then choose to visit an unvisited page from the
crawl frontier, corresponding to a hyperlink on one
or more visited pages. Informally, the goal is to
visit as many relevant pages and as few irrelevant
pages as possible, i.e., to maximize average rele-
vance. Therefore we seek to find V � D.CŁ/ where
V is reachable from D.CŁ/ such that

P
V R.v/=jV j

is maximized.
Our formulation would pose a hopeless problem if

pages of all topics were finely dispersed all over the
Web. However, this is not likely to be the case. Cita-
tions signify deliberate judgment by the page author.
Although some fraction of citations are noisy 6, most

6 “This page is best viewed using Netscape,” or “support Free
Speech Online.”
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Fig. 2. Block diagram of the focused crawler showing how the crawler, classifier and distiller are integrated.

citations are to semantically related material. Thus
the relevance of a page is a reasonable indicator of
the relevance of its neighbors, although the reliability
of this rule falls off rapidly with increasing radius on
an average. This explains our use of the classifier.
Secondly, multiple citations from a single document
are likely to cite semantically related documents as
well. This is why the distiller is used to identify
pages with large numbers of links to relevant pages.

3.1. Classification

Relevance is enforced on the focused crawler
using a hypertext classifier [5,7]. We assume that
the category taxonomy induces a hierarchical par-
tition on Web documents. (In real life, documents
are often judged to belong to multiple categories.
We plan to extend our model in future work.) Cat-
egories in the taxonomy tree, also called nodes, are
denoted c. The predicate good.c/ denotes whether
a node c has been marked as good. By definition,
for any document d, the probability that it was
generated from the root category is 1. In general
Pr[cjd] D Pr[parent.c/jd]Pr[cjd; parent.c/]; this
can be recursed using chain rule. Using Bayes rule
we can write:

Pr[cjd; parent.c/] D
Pr[cjparent.c/]Pr[djc]P
c0parent.c0/Dparent.c/Pr[djc0] (1)

where the sum ranges over all siblings c0 of c.

To find Pr[djc] we need a model for document
generation. Pr[cjparent.c/] define the prior distri-
bution of documents. In our generation model, the
page generator first decides the topic on which to
write the document d by using these probabilities to
pick a leaf node cŁ. Each class, in particular cŁ, has
a die with as many faces as the number of unique
words (terms, tokens) in the universe. Face t turns
up with probability �.cŁ; t/. The generator picks an
arbitrary length n.d/ for the document. Then it re-
peatedly flips the die for cŁ, and writes out the term
corresponding to the face that turns up. A document
is thus seen as a bag of words, without order informa-
tion or inter-term correlation. If term t occurs n.d; t/
times, then: Pr[djc] D � n.d/

fn.d;t/g
ÐQ

t2d �.c; t/n.d;t/. In
spite of its simplicity, this model has been very
successful. During crawling, the task is the reverse
of generation: given a document, we seek to find
the best leaf class cŁ. Two modes of focusing are
possible with the classifier.
Hard focus rule: While fetching a document d, the

above formulation is used to find the leaf node
cŁ with the highest probability. If some ancestor
of cŁ has been marked good we allow future
visitation of URLs found on d, otherwise the
crawl is pruned at d.

Soft focus rule: The probability that a page is relevant
to the focused crawl is R.d/ D P

good.c/ Pr[cjd],
because a good node is never the ancestor of an-
other. We do not eliminate any page a priori, but
guess that the priority of visiting each neighbor of
the current page d is the relevance of d. In case
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of multiple paths leading to a page we take the
maximum of their relevance. When a neighbor is
actually visited its score is updated.

3.2. Distillation

Relevance is not the only attribute used to evaluate
a page while crawling. A long essay very relevant to
the topic but without links is only a finishing point
in the crawl. A good strategy for the crawler is to
identify hubs: pages that are almost exclusively a
collection of links to authoritative resources that are
relevant to the topic.

Social network analysis [31] is concerned with
the properties of graphs formed between entities
such as people, organizations, papers, etc., through
coauthoring, citations, mentoring, paying, telephon-
ing, infecting, etc. Prestige is an important attribute
of nodes in a social network, especially in the con-
text of academic papers and Web documents. The
number of citations to paper u is a reasonable but
crude measure of the prestige p.u/. A better measure
is weighted citations, or the total prestige of papers
that cite a paper. This notion is circular but can be
resolved by an iterative eigen computation to find
the fixpoint of p D Ep, where E is the directed
adjacency matrix, as described by Katz [20] in 1953
and adapted to the Web by Page et al. [4].

Mizruchi et al. [25] recognized that centrality
in a social network can be disaggregated into de-
rived and reflected centrality. They found two types
of nodes: bridges which have high derived central-
ity, and hubs which link with good authorities and
thereby have high reflected centrality. Kleinberg later
exploited the same phenomenon on the Web to find
hubs and authorities (bridges) [21]. Each node v has
two corresponding scores, h.v/ and a.v/. Then the
following iterations are repeated on the edge set E
a suitable number of times: a.v/  P

.u;v/2E h.u/
and h.u/ P

.u;v/2E a.v/, interspersed with scaling
the vectors h and a to unit length. This iteration
embodies the circular definition that important hubs
point to important authorities and vice versa.

For focused crawling, two important enhance-
ments are needed: the edge weights must be carefully
controlled and there should be a certain asymmetry
in how we treat hubs and authorities. To appreciate
the model that we will propose, observe that pages

relevant to our interest refer to irrelevant pages and
vice versa with appreciable frequency, owing to the
diversity of Web authorship. Pages of all topics point
to Netscape and Free Speech Online. Conversely,
many hubs are multi-topic in nature, e.g., a pub-
lished bookmark file pointing to sports car sites as
well as photography sites.

We will not only have non-unit edge weight but
differentiate the forward and backward edge weights
into two different matrices E F and EB . We propose
that the weight EF [u; v] of edge .u; v/ be the prob-
ability that u linked to v because v was relevant to
the topic, i.e., R.v/. This has the effect of preventing
leakage of prestige from relevant hubs to irrelevant
authorities. Similarly, we propose that EB[u; v] be
set to R.u/, to prevent a relevant authority from
reflecting prestige to an irrelevant hub. Finally, we
will use a relevance threshold ² to include potential
authorities into the graph, although for hubs we have
no such requirement. We include between 10 and
20% of the most relevant nodes; our results were
not sensitive to the precise choice in this range. The
remaining steps follow:
(1) Construct the edge set E using only those links

that are between pages on different sites, with
forward and backward edge weights as above.

(2) Perform the iterations using the weighted edges.
Always restrict the authority set using the rele-
vance threshold.

3.3. Integration with the crawler

The crawler has one watchdog thread and many
worker threads. The watchdog is in charge of check-
ing out new work from the crawl frontier, which
is stored on disk. New work is passed to workers
using shared memory buffers. Workers save details
of newly explored pages in private per-worker disk
structures. In bulk-synchronous fashion, workers are
stopped, and their results are collected and integrated
into the central pool of work.

The classifier is invoked by each thread as it
encounters a new page. The R value computed is
part of the page result mentioned above. The central
work pool is a priority queue implemented using
the Berkeley DB B-tree storage manager 7. For

7 http://www.sleepycat.com
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soft crawling, candidate URLs are ordered using a
lexicographic combination

.numtries ascending; R descending/;

where numtries is the number of times the crawler
has already tried to fetch the page, with or without
success. For hard crawling, the URLs that survive
are picked in increasing order of numtries; for
the same value of numtries the remaining order is
arbitrary.

The crawler also populates the link graph kept
on disk. Currently this consists of a forward and
backward edge list, stored using the hash access
method of Berkeley DB. Periodically, the crawler is
stopped and the distiller is executed. This generates
a number of top hubs to revisit. We also prepare to
visit unvisited pages cited by the top hubs.

In ongoing work [9] we have reimplemented the
system using a relational database to store the crawl
frontier and facilitate dynamically changing prioriti-
zation strategies, and concurrent activity between the
crawler, distiller and classifier. The integration also
facilitates crawl monitoring and diagnostics using
ad-hoc SQL queries.

4. Evaluation

In this section we will present our experiences
with focused crawling. There are many indicators
of the performance of a focused crawler. Relevance
(precision), coverage (recall) and quality of resource
discovery are some of them. We will measure preci-
sion and provide anecdotes on the quality of resource
discovery. It is extremely difficult to measure or even
define recall for a focused crawler, because we have
a rather incomplete and subjective notion of what
is ‘good coverage’ on a topic. Whereas consensus
has been forced in traditional IR benchmarks, such
agreement would be very hard to arrive at in a rea-
sonable manner in the case of the Web. We will
provide indirect evidence of robust coverage.

4.1. Experimental setup

The focused crawler is a CCC application run-
ning on a dual-processor 333 MHz Pentium-II PC
with 256 MB of RAM and SCSI disk. Our test ma-

chines are connected through a half-duplex 10 MB=s
Ethernet through the router to a SOCKS firewall
machine. The firewall is connected to the ISP us-
ing full-duplex 10 MB=s SMDS over DS3. The ISP
connects us to a 622 MB=s OC12 ATM backbone
(UUNET High Performance Network 8).

A full-scale crawler never operates through a
firewall. Although we had access to machines outside
the firewall, we decided to demonstrate the viability
of focused crawling by running it inside the firewall
and consuming negligible network resources. We ran
the crawler with relatively few threads compared
to what it can handle to avoid disrupting firewall
performance for others. Each instance of the crawler
collected about 6000 URLs per hour.

We picked about twenty topics that could be
represented by one or few nodes in a master category
list derived from Yahoo!, such as gardening, mutual
funds, cycling, HIV=AIDS, etc. Note that these are
just category names and not queries; each category
was trained with up to a few dozen starting example
Web pages. The main performance indicators were
comparable for these and several other crawls. For
concreteness we will present selected results from
the above set. Most crawls were run for at least
four hours. Some were left running for several days,
mainly for stress-testing.

The crawls showed no signs of stagnation for
lack of relevant pages, except for mutual funds. In
that case, analyzing the crawl quickly indicated that
many pages in the neighborhood of mutual funds
were from parent(mutual funds), which was ‘in-
vestment’ in general. These topics are so intimately
mixed that an attempted crawl on one while rejecting
the other was hopeless. Detecting and adapting to
such scenarios automatically is an interesting area of
future research.

In the following sections we make the following
measurements:
ž For a variety of topics, we study the absolute ac-

quisition rate to see if it is high enough to warrant
a focused crawl. We compare the distribution of
relevance scores of soft focused, hard focused,
and unfocused crawls.
ž To judge the robustness of our system, we sam-

pled disjoint fractions of the available set of ‘seed’

8 http://www.uu.net/lang.en/network/usa.html
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URLs and started separate crawls. We compare
the rate of acquisition of relevant pages between
the two crawlers. This is an indirect indicator of
coverage.
ž As another test of robustness, we ran the quality

rating program on the crawls that started from
the samples, and then measured the extent of
overlap between the top rated pages and servers
(IP addresses) found by the two crawlers.
ž We present some of the top-rated URLs as anec-

dotal evidence of the quality of resource discov-
ery. We show examples where promoting unvis-
ited neighbors of top-rated hubs led to further
acquisition of relevant pages.

4.2. Rate of harvesting relevant pages

Perhaps the most crucial evaluation of focused
crawling is to measure the rate at which relevant
pages are acquired, and how effectively irrelevant
pages are filtered off from the crawl. This harvest
ratio must be high, otherwise the focused crawler
would spend a lot of time merely eliminating irrele-
vant pages, and it may be better to use an ordinary
crawler instead!

It would be good to judge the relevance of the
crawl by human inspection, even though it is sub-
jective and inconsistent [23]. But this is not possible
for the hundreds of thousands of pages our sys-
tem crawled. Therefore we have to take recourse
to running an automatic classifier over the collected
pages. Specifically, we can use our classifier. It may

Fig. 3. Rate of relevant page acquisition with a standard unfocused crawl, a hard focused crawl, and a soft focused crawl on the topic of
bicyling.

appear that using the same classifier to guide the
crawler and judge the relevance of crawled pages is
flawed methodology, but it is not so. It is to be noted
carefully that we are not, for instance, training and
testing the classifier on the same set of documents, or
checking the classifier’s earlier work using the clas-
sifier itself. We are evaluating not the classifier but
the basic crawling heuristic that neighbors of highly
relevant pages tend to be relevant.

For each topic, three different crawls were done:
unfocused, soft focused and hard focused. For each
topic, the three crawls start out from the same set of a
few dozen relevant URLs. These were collected by a
keyword query at Alta Vista followed by traditional
topic distillation and some screening by hand to
eliminate irrelevant pages. In the unfocused case, the
crawler fetches new URLs in pseudo-random order,
and all out-links are registered for exploration. The
pages are classified to find R, but no use is made of it
except measurement. This will slow the crawl down a
little. For this reason, and also because network load
fluctuates greatly from experiment to experiment, in
our results we present time not as wall-clock time,
but as the number of URLs fetched so far.

The first column in Figs. 3 and 4 shows the re-
sults of unfocused crawls for bicycling and HIV=
AIDS. The x-axis shows the number of pages ac-
quired (as a representative of real time). The y-axis
shows a moving average of R.u/, where u represents
pages collected within the window. It is immedi-
ately evident that focused crawling does not happen
by accident; it has to be done very deliberately.
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Fig. 4. Rate of relevant page acquisition with a standard unfocused crawl, a hard focused crawl, and a soft focused crawl on the topic of
HIV=AIDS.

The unfocused crawler starts out from the same set
of dozens of highly relevant links as the focused
crawler, but is completely lost within the next hun-
dred page fetches: the relevance goes quickly to zero.
This tends to happen even if we help it in various
ways, such as disabling such highly interconnected
sites as Amazon.com.

In contrast, it is heartening to see in the second
column of Figs. 3 and 4 that the hard-focused crawls
keep up a healthy pace of acquiring relevant pages
over thousands of pages, in spite of some short-range
rate fluctuations, which is expected. On an average,
between a third and half of all page fetches result in
success over the first several thousand fetches, and
there seems to be no sign of stagnation. This rate was
in fact higher than what we had hoped for. Similar
observations hold for the soft focused crawler, shown
in the third column.

Given that none of the crawls approached stagna-
tion, it is difficult to compare between hard and soft
focusing; they both do very well. For cycling, the
hard crawler takes a little while to warm up because
it loses some good opportunities to expand near-
match pages. We believe the soft crawler is more
robust, but needs more skill to monitor and guard
against unwanted topic diffusion. The main technical
problem in doing this is to distinguish between a
noisy vs. systematic drop in relevance.

Fig. 5 explains the earlier time-traces by showing
the distribution of relevance of pages. Pages obtained
by focused crawling show a very sharp peak at the
highest possible relevance value, whereas the unfo-

cused crawler shows essentially a flat distribution
of relevance. It also appears (for cycling) that soft
focusing can ‘tunnel through’ mediocre pages to get
slightly better pages than hard focusing.

4.3. Robustness of acquisition

Another important indicator of the robustness of
a focused crawler is the ability to ramp up to and
maintain a healthy acquisition rate without being too
sensitive on the start set. To test this, we took the
set of starting URLs and sampled subsets uniformly
at random. We picked two disjoint random subsets
each having about 30% of the starting URLs. For
each subset, a different focused crawl was launched
(at different times).

We will present two quantities. First we will
measure the overlap of URLs crawled by the two
crawlers. We will use bicycling and mutual funds
as examples. The overlap is measured along time
t , which is measured by counting the number of
URLs fetched. (Direct comparison of wall-clock
time is less meaningful owing to fluctuating net-
work performance.) At any time t , the crawlers
have collected URL sets U1.t/ and U2.t/. We plot
jU1.t/ \ U2.t/j=jU1.t/j and jU1.t/ \ U2.t/j=jU2.t/j
along time t (note that jU1.t/j D jU2.t/j and there-
fore there is only one line in this case). Sample
results are shown in Fig. 6.

We picked the two topics specifically because we
wanted to study one co-operative community like
bicycling and one competitive domain like invest-
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Fig. 5. Distribution of relevance scores in the bicycling and HIV=AIDS crawls from the three crawlers.

Fig. 6. Overlap of URLs crawled by two soft focused crawlers starting from randomly sampled seed sets on bicycling and mutual funds.

ing and mutual funds. For cycling, the intersection
between the set of URLs crawled grew rapidly to
90%. For mutual funds, it grew to over 60%. This
confirmed our intuition about the two communities.
The steady growth in overlap is heartening news,
although it is a statement primarily about Web be-
havior, not the focused crawler. It means that the
choice of starting points is not critical for the success
of focused crawling. We do have to double-check
one thing, however. What if for reasons unknown,

both crawlers started crawling pages out of one com-
mon site as soon as they reached there? This fear
turns out to be ill-founded: a plot of the extent
to which IP-addresses visited by the two crawlers
overlap against time shows generous visits to new
IP-addresses as well as a healthy increase in the
intersection of server IP-addresses. The intersections
are plotted against time by first lining up the URLs
fetched by each crawler side-by-side, then deriv-
ing the two sequences of IP-addresses visited, S1.t/
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Fig. 7. Overlap of servers crawled by two soft focused crawlers starting from randomly sampled seed sets on bicycling and mutual funds.

and S2.t/, and computing jS1.t/ \ S2.t/j=jS1.t/j and
jS1.t/ \ S2.t/j=jS2.t/j for each t . In this case jS1.t/j
is in general different from jS2.t/j. The results are
shown in Fig. 7.

Results were similar with other topics. Whereas
these results do not imply perfect coverage, they
do indicate that core topical communities are fairly
coherent, and emerge naturally from the crawl inde-
pendent of the starting set. It would be interesting
to stress the robustness by starting from smaller and
smaller URL samples.

4.4. Robustness of resource discovery

Overlap in the set of servers and URLs crawled is
a good indicator of inherent stability of the focused
crawler. However, we wanted to also check that the
topical subgraph of the Web that is built by the fo-
cused crawler leads to robust estimations of popular-
ity (estimated along the lines of recent topic distil-
lation work). To do this we again used the two sets
of crawlers that started from random samples of the
available seed set. After acquiring 10,000 pages, we
ran the popularity=quality rating algorithm with 50
iterations and produced a list of top ‘authorities’ (as
defined in HITS [21]). Then we measured the inter-
section of server IP-addresses in the top 25. We picked
addresses rather than URLs because many pages, es-

pecially in mutual funds and HIV=AIDS are heav-
ily frames enabled and have slight variants in URL.
The results are shown in Fig. 8. We see that in spite
of slight local rank perturbations, the most popular
sites are identified jointly by both runs of the focused
crawler, although it started from different seed sets.

4.5. How remote are good resources?

Now we take a hard look at the following ques-
tion: is the focused crawl doing any real exploration,
or were the resources, specifically, the highly rated
ones, within one or two links of the start set, or
worse, in the start set? In Fig. 9 we plot histograms
of the number of servers in the 100 most popular
ones that are a given radius away from the start set of
URLs. We see a large number of servers at large dis-
tances from the start set, upto 10 links and beyond.
Millions of pages are within 10 links from almost
any page on the Web. Thus the focused crawler is
doing non-trivial work in pursuing only certain paths
and pruning others. (There is some probability that
the distances we report are pessimistic, and shorter
paths to the best sites exist that were missed by the
crawlers. Given we crawl best first on relevance, and
that we tried multiple distinct seed sets, this should
be rare.) Since our seed sets were collected using
Alta Vista and HITS [21], this result also establishes
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Fig. 8. Overlap of the 100 best rated servers crawled by two soft focused crawlers starting from randomly sampled seed sets on cycling
and mutual funds.

Fig. 9. Distance in number of links from the seed set to the 100 most popular sites on cycling and mutual funds. The peak around 10
links for mutual funds is because great hubs were found around that distance.

the need to explore out aggressively from keyword-
based and limited-radius search for resources.

A glance at the two histograms exposes the co-
operative and competitive nature of the two com-
munities. Cycling organizations are inclusive and
social. Hence good hubs (consequently, authorities)
are found at a variety of link distances. In contrast
quite some exploration was needed for mutual funds

and investment until good hubs were found, at radius
8–9. The focused crawler is good at pointing out
these features.

4.6. Distillation anecdotes

Many post-processing operations on a focused
crawl may be useful, such as clustering, indexing,
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Cycling

http://www.truesport.com/Bike/links.htm

http://reality.sgi.com/employees/billh_hampton/jrvs/links.html

http://www.acs.ucalgary.ca/~bentley/mark_links.html

http://www.cascade.org/links.html

http://www.bikeride.com/links/road_racing.asp

http://www.htcomp.net/gladu/'drome/

http://www.tbra.org/links.shtml

http://www.islandnet.com/~ngs/SVCyclingLinks.html

http://www.novit.no/dahls/Cycling/hotlist.html

http://members.aol.com/velodromes/MajorTaylor/links.htm

http://www.nashville.com/~mbc/mbc.html

http://www.bikindex.com/bi/races.asp

http://www.louisvillebicycleclub.org/links.htm

http://world.std.com/~nebikclb/misc/netresources.html

http://crisny.org/not-for-profit/cbrc/links.htm

http://members.aol.com/velodromes/index.htm

HIV/AIDS

http://www.stopaids.org/Otherorgs.html

http://www-hsl.mcmaster.ca/tomflem/aids.html

http://www.ahandyguide.com/cat1/a/a66.htm

http://www.iohk.com/UserPages/mlau/aidsinfo.html

http://daphne.palomar.edu/library/subjects/aidslist.htm

http://www.us.unaids.org/highband/link.html

http://www.ashastd.org/links/hivlinks.html

http://www.hivresourcegroup.org/spd.htm

http://allpaths.com/rainbow/aids.htm

http://www.qrd.org/qrd/aids/

http://www.teleport.com/~celinec/aids.shtml

http://www.aids.wustl.edu/aids/inet.html

http://virology.science.org/aids.html

http://www.metrokc.gov/health/apu/links.htm

http://www.sfaf.org/links.html

http://www.aaas.org/science/aidslink.htm

Fig. 10. Example hubs found by our relevance-conscious topic-distillation after crawling 6000 URLS (about an hour). The reader is
strongly encouraged to visit these URLs.

etc. One more piece of evidence that a focused crawl
is qualitatively better at resource discovery can be
obtained by presenting the results of the distiller.
Since we restrict the authority subgraph to only
highly relevant nodes, our hubs tend to be topically
very pure. Nothing short of human judgement is
adequate for evaluating the rating algorithm; we
strongly encourage the reader to visit the URLs
found by our system and shown in Fig. 10 (verified
to be accessible as of March 1, 1999).

We only presented a small number of our top-
rated pages; the list continues into thousands of
pages. Spot checking failed to reveal irrelevant pages
up to the first few hundred links. We were impressed
that we could find over three thousand relevant sites
within only an hour of focused crawling per topic
using a desktop PC and starting with a few dozen
URLs. The system did not need to consult any addi-
tional large keyword or link indices of the Web, such
as Alta Vista or Inktomi. Furthermore, almost half
of our crawler’s effort was useful from the point of
view of the topics of interest.

4.7. Effect of distillation on crawling

The purpose of distillation in a focused crawler
is not only an end-goal, but also a further enhance-
ment to the crawling process. It sometimes happens
that a very relevant page is abandoned after mis-
classification, for example, when the page has many
image-maps and very little text, and=or the statistical

classifier makes a mistake. After running the dis-
tiller, it is quite easy to look for unvisited citations
from the top hubs. E.g., performing this step with
the HIV=AIDS hubs gives us the following unvisited
URLs (that the reader is encouraged to visit):

http://www.planetout.com
http://www.actupny.org
http://www.users.dircon.co.uk/~eking/index.htm
http://www.aidsinfonyc.org
http://gpawww.who.ch/gpahome.htm
http://www.gaypoz.com
http://aids.uspto.gov/AIDS/access/browse.html
http://www.medibolics.com/nelson/index.htm

Many of these turned out to be relevant and
worth crawling. We can now update the visit priority
of these neglected neighbors to, say, the maximum
possible value and restart the crawl. This process
can be automated to run interspersed with normal
crawling activity.

4.8. Summary

We have presented evidence in this section that
focused crawling is capable of steadily collecting
relevant resources and identifying popular, high-con-
tent sites from the crawl, as well as regions of high
relevance, to guide itself. It is robust to different
starting conditions, and finds good resources that
are quite far from its starting point. In comparison,
standard crawlers get quickly lost in the noise, even
when starting from the same URLs. We end this
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section with two observations that come out of all
these measurements:
ž The Web graph is rapidly mixing with respect to

topics: random links lead to random topics within
an extremely short radius.
ž At the same time, there exist long paths and large

subgraphs where topical coherence persists.
These observations are not necessarily contradic-

tory, and this is exactly what makes focused crawling
worth doing.

5. Related work

Traditionally, machine learning techniques have
been used to design filtering agents. WebWatcher
[18] and HotList and ColdList [27] are examples
of such filtering programs. Ackerman et al describe
similar techniques [1]. In contrast to our technique,
new pages are acquired in some of these systems by
first extracting features that discriminate the hotlist
from the coldlist and then using these features for
posing keyword queries to standard Web search en-
gines. In the context of query refinement, two-way
interactive classifiers have been used for relevance
feedback. None of these systems deal with filtering at
the data acquisition level, and for a large taxonomy.

Early Web crawlers simply followed every link
acquiring more and more pages. Crawlers and agents
have grown more sophisticated [11]. To our knowl-
edge the earliest example of using a query to direct
a limited Web crawl is the Fish Search system [14].
Similar results are reported for the WebCrawler [11,
chapter 4], Shark Search [17], and by Chen et
al. [10]. The focused crawler is different in using
a topic taxonomy, learning from example, and using
graph distillation to track topical hubs.

Ordinary search engines and directories are called
portals or entry points into the Web. There is grow-
ing consensus that portholes — sites that specialize
in specific topics — are often more useful than por-
tals 9. A few systems that gather specialized content
have been very successful. Cho et al compare sev-
eral crawl ordering schemes based on link degree,
perceived prestige, and keyword matches on the

9 See the press articles archived at http://www.cs.berkeley.edu/
¾soumen/focus/

Stanford University Web [12]. Terveen and Hill use
similar techniques to discover related “clans” of Web
pages [30]. Ahoy! 10 [15,28] is a homepage search
service based on a crawler specially tuned to locate
homepages. Cora 11 is a search engine for computer
science research papers, based on a crawler trained
to extract such papers from a given list of starting
points at suitable department and universities. These
are special cases of the general example- and topic-
driven automatic Web exploration that we undertake.

Social networks have been analyzed for decades
to find nodes with high prestige and reflected pres-
tige [20,25,31]. Similar to PageRank [4], HITS [21],
CLEVER [6], topic distillation [3] and link-based
similarity search [13], we use social network anal-
ysis as a subroutine in our system. However, there
are several important distinctions. Our distiller in-
tegrates topical content into the link graph model.
PageRank has no notion of page content, and HITS
and CLEVER explore the Web to a preset radius
(typically, 1) from the keyword query response. All
involve pre-crawling and indexing the Web. The fo-
cused crawler has no a priori radius cut-off for explo-
ration, because it can use the classifier and distiller
to guide itself. Thus the selection of relevant, high
quality pages happens directly as a goal-directed data
acquisition step, not as post-processing or response
to a query.

6. Conclusion

Generic crawlers and search engines are like pub-
lic libraries: they try to cater to everyone, and do
not specialize in specific areas. Serious Web users
are increasingly feeling a need for highly specialized
and filtered ‘university research libraries’ where they
can explore their interest in depth [16,22]. Unlike
public libraries, Web libraries have little excuse not
to specialize, because it is just a matter of locating
and linking to resources.

We have demonstrated that goal-directed crawling
is a powerful means for topical resource discovery.
The focused crawler is a system that learns the spe-
cialization from examples, and then explores the Web,

10 http://www.cs.washington.edu/research/ahoy
11 http://www.cora.jprc.com/
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guided by a relevance and popularity rating mecha-
nism. It filters at the data-acquisition level, rather than
as a post-processing step. Our system selects work
very carefully from the crawl frontier. A consequence
of the resulting efficiency is that it is feasible to crawl
to a greater depth than would otherwise be possible.
This may result in the discovery of some high-quality
information resources that might have otherwise been
overlooked. As Marchiori [24] has noted, the quality
of such resources may not always be strongly related
to simple link-based popularity.

A number of questions arise from our research.
The harvest rate at the root is by definition 100%,
and we have been seeing harvest rates of 30–40%.
How does this depend on the specificity of the topic?
At what specificity can focused crawls be sustained?
Another issue to research is the sociology of citations
between topics. While crawling topics described in
this paper, we found a lot of anecdotal evidence
that bicycle pages not only refer a lot to other
bicycle pages, but also refer significantly more than
one might expect to red-cross and first-aid pages.
Similarly, HIV=AIDS pages often don’t directly refer
to other HIV=AIDS pages, but refer to hospital home
pages, which are more general. Discovering these
kinds of relationships will give interesting insights in
the way the Web evolves.
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