Dynamic Personalized PageRank in Entity-Relation Graphs

Soumen Chakrabarti
IIT Bombay
http://www.cse.iitb.ac.in/~soumen
Motivation: Desktop search tasks

“Find expert e from industry to review a submitted paper p”

- p shares important words with papers p' written by e
- p cites papers p' written by e
- e works for organization o is-a company
- e and I have exchanged many emails
Graph conductance queries

- **Origin nodes** spread activation to **target nodes**
- Personalized PageRank with teleport to origin nodes
- Parts of graph known only at query time, must compute PageRank dynamically
- Similar/related to many other graph search paradigms:
 - Resistive network, conductance from origin to target nodes
 - Random walk with restarts (Tong, Faloutsos, Pan)
 - Connection and centerpiece subgraphs (Faloutsos, McCurley, Tomkins, Tong)
- Naturally combines relevance and prestige
- Automatic “inverse document frequency” (IDF) effect: "holistic" connects to fewer papers than "index"
Notation

- Graph $G = (V, E)$, each edge (u, v) has a type $t(u, v)$
- E.g., “person wrote paper”, “person works in company”, “paper cites paper” etc.
- Edges often bidirectional to ensure activation spread, e.g., person wrote paper, paper written-by person
- Edge type t induces an edge weight $\beta(t)$
- From edge weight we get edge conductance $C(v, u) = C(u \rightarrow v) = \beta(t(u, v))/\sum_{(u, w) \in E} \beta(t(u, w))$
- From each node, teleport with probability $1 - \alpha$
- In case of teleport, jump to node u with probability $r(u)$
- Overall PageRank equation $p_r = \alpha C p_r + (1 - \alpha) r$
- Teleport to single origin node o denoted $r = \delta_o$ and p_{δ_o} denoted PPV$_o$
ObjectRank

- Start with entity nodes, add query word nodes \(w \)
- Teleport to word nodes (set \(r(w) > 0 \)) and compute \(p_r \)
- Too slow to do this for each query at query time
- Exploit linearity: \(p_r = \alpha Cp_r + (1 - \alpha)r \) solves to \(p_r = (1 - \alpha)(I - \alpha C)^{-1}r \), linear in \(r \)
- Therefore \(p_{r1} + p_{r2} = p_{r1+r2} \) and \(p_{\gamma r} = \gamma p_r \)
- Precompute and store \(p_{\delta w} = \text{PPV}_w \) for all \(w \) in vocabulary
- Given multiword query, average \(\text{PPV}_w \)s at query time

Limitations

- Long preprocessing time to compute all word PPVs
- Must truncate word PPVs arbitrarily to limit space
HubRank: ObjectRank with hubs

- Choose hub node subset \(H \subseteq V \)
- Precompute and store \(\text{PPV}_h \) for all \(h \in H \)
- Prepare entity graph \(N \) offline
- On query submission . . .
 - Add word nodes \(W \), link to \(N \)
 - Quickly identify query-specific **active subgraph** boundary
 \((\text{Active} \subseteq \text{Reachable} \subseteq N) \)
- **Blockers** are nodes in \(H \) whose PPVs have been precomputed and stored
- **Losers** are nodes too “far” from word nodes to influence word PPVs appreciably
Estimating PPVs for active nodes

- Set $\hat{\text{PPV}}_u = \delta_u$ for losers u
- Load approximate $\hat{\text{PPV}}_u$ from cache for blockers u
- For active nodes u that are not blockers or losers, update

$$\hat{\text{PPV}}_u \leftarrow \alpha \sum_{(u,v) \in E} C(v, u) \hat{\text{PPV}}_v + (1 - \alpha) \delta_u$$

until convergence (using Decomposition Theorem)

- Can show PPV convergence similar to Jeh and Widom, even using fixed approximate $\hat{\text{PPV}}_u$ for blockers and losers
- Add up word PPVs and report top-k entity nodes
HubRank query processing dynamics

- PPV convergence fast in practice
- Query time essentially decided by number of active nodes
- \[y = 5.6861x^{0.8596} \] for typical and frequent queries

\[
\begin{array}{c|c|c|c}
\text{numActive } |A| & \text{iter} & \text{PPVTime (ms)} \\
\hline
10 & 10 & 10000 \\
100 & 100 & 1000 \\
1000 & 1000 & 100 \\
10000 & 10000 & 10 \\
\end{array}
\]
Performance issues in designing PPV cache

- Time to select a good $H \subset V$
- Time to precompute PPVs for nodes in H
- Space needed to store the hub cache
- Query processing time given the hub cache
- Query response accuracy wrt full ObjectRank computation
Hub selection in \textbf{HubRank} \\

\textbf{Existing proposals}

\begin{itemize}
\item Jeh and Widom: Keep large-PageRank nodes in H
\item Berkhin: Teleport uniformly to personalized nodes, compute \mbox{“H-relative PageRanks”}, pick best, update H, repeat
\end{itemize}

\textbf{Not applicable because}

\begin{itemize}
\item Teleports always go to word nodes
\item \mbox{∴ word nodes have large PageRank}
\item Too many word nodes, cannot include all in H
\item If a query misses a single word PPV, it slows down drastically
\end{itemize}
Key insights

- Include judicious mix of word and entity nodes in H
- Exploit past query workload statistics to design H
- Limit PPV updates to query-specific active subgraph
- Dynamically degrade PPV resolution to save time

Summary of contributions

- Additional index space typically $0.1-1 \times$ basic text index
- Precomputation much faster (typically $52 \times$) than computing all word PPVs
- Query time much faster than query-time whole-graph PageRank (typically $35-450 \times$, gain grows with graph size)
- High ranking accuracy (precision ≈ 0.91)
Heuristic estimate of hub inclusion merit

1: initialize map $\text{meritScore}(u)$ for nodes $u \in W_0 \cup N$
2: for each query word $w \in W_0$ do
3: attach node w to the preloaded entity graph
4: let $\text{frontier} = \{w\}$ and $\text{priority}(w) = \hat{\Pr}(w)$
5: create an empty set of visited nodes
6: while $\text{frontier} \neq \emptyset$ do
7: remove some u from frontier and mark visited
8: $\text{meritScore}(u) += \text{priority}(u)$
9: for each visited neighbor v do
10: $\text{meritScore}(v) += \alpha \text{priority}(u) C(u \rightarrow u)$
11: for each unvisited neighbor v do
12: let $\text{priority}(v) = \alpha \text{priority}(u) C(u \rightarrow v)$
13: add v to frontier
14: sort word and entity nodes by decreasing $\text{meritScore}(u)$
Greedy merit order: Preliminary evaluation

- We pick a nontrivial mix of words and a large number of entities
- Unlike naive application of “large PageRank first” which picks words almost exclusively
- Allowing well-chosen entities into H significantly reduces active subgraph size
Replacing PPVs with fingerprints

- Computing full-precision PPV_u is overkill if
 - All we care about is a top-k entity ranking
 - u is far from teleport origins (almost a loser)

- Idea (Fogaras et al.): Compute FP_u as follows:
 1. sample walk length λ from $Pr(\lambda) = \alpha^\lambda(1 - \alpha)$
 2. repeat
 3. start at u, use C to take λ “random surfer” steps, ending in v
 4. until numWalks walks completed
 5. compute normalized histogram of end-node counts
 6. store $\langle \hat{PPV}_u(v), v \rangle$ records in decreasing $\hat{PPV}_u(v)$ order

- How to set numWalks for each $u \in H$?
- If $\text{meritScore}(u)$ is large, allocate it more numWalks
Loading FPs with dynamic clipping

- `numWalks` is based on aggregate query stats
- For a specific query, some \hat{PPV}_u may be “too precise”
- When marking active subgraph, suppose activation score of u is s
- Recall \hat{PPV}_u is stored as $\langle \hat{PPV}_u(v), v \rangle$ records in decreasing $\hat{PPV}_u(v)$ order
- While loading \hat{PPV}_u, if $s \hat{PPV}_u(v) < \delta_{\text{abandon}}$, quit
- Use sparse vectors for Jeh-Widom updates
- **Fill** is the number of nonzero PPV elements over the active subgraph upon convergence
- **Dramatic reduction** in fill and flops
Accuracy indicators

For a fixed query, let S_k be the true top-k sequence and \hat{S}_k be the sequence returned by the system

Precision at k: \[\frac{|S_k \cap \hat{S}_k|}{k} \]

Relative aggregate goodness (RAG) at k: Let true score of $v \in S_k \cup \hat{S}_k$ be $S_k(v)$, then RAG is

\[\frac{\sum_{v \in \hat{S}_k} S_k(v)}{\sum_{v \in S_k} S_k(v)} \]

Kendall’s τ: Let system score of v be $\hat{S}_k(v)$. Pair $v, w \in S_k \cup \hat{S}_k$ is concordant if $(S_k(v) - S_k(w))(\hat{S}_k(v) - \hat{S}_k(w)) > 0$, discordant if < 0, exactTie if $S_k(v) = S_k(w)$, approxTie if $\hat{S}_k(v) = \hat{S}_k(w)$.

\[\tau_k = \frac{\#\text{concordant} - \#\text{discordant}}{\sqrt{(\#\text{pairs} - \#\text{exactTie})(\#\text{pairs} - \#\text{approxTie})}} \]
As δ_{abandon} is increased to $3 \times 10^{-6} \ldots 10^{-5}$, dramatic reduction in \textsc{HubRank} query processing time

While accuracy is very mildly degraded

With $|V| = 74223$, \textsc{HubRank} is $80 \times$, $74 \times$, $43 \times$ faster for 1-, 2- and 3-word queries

Gap even more striking for a 320000-node test graph
Effect of FP cache size

- Earlier we had measured active subgraph size as an indirect indicator of query time
- Here we plot query time and accuracy against physical cache size on disk
- For reference, a Lucene index is 56 MB
- As cache size grows from 50–75 MB,
 - Query time decreases by almost $4 \times$
 - Accuracy degrades by less than 1%
Comparison with Berkhin’s BCA

- “Bookmark coloring algorithm”
- Elegant approach to identify active subgraph and compute conductance at the same time
- Can exploit hubs like we do
- Does not discuss workload-driven hub-selection
- Does not discuss fast PPV approximations via FPs
- 3–4 times slower in our testbed at around same level of accuracy and same physical cache size
Summary

- Practical interactive graph conductance search system
- Graceful tradeoff between index space and query time
- Index space comparable to basic text index
- Fast query execution with high ranking accuracy
- Preprocessing time tiny compared to full-vocab
- ObjectRank
- Code+data available, call soumen@cse.iitb.ac.in

Ongoing work

- Guaranteed top-k by enhancing BCA
- New hubset choosing algo for top-k BCA
- Hybrid index of PPVs and FPs
- Improved accuracy with reduced index space