
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 819–826, Prague, June 2007. c©2007 Association for Computational Linguistics

Learning Noun Phrase Query Segmentation

Shane Bergsma and Qin Iris Wang
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8

{bergsma,wqin}@cs.ualberta.ca

Abstract

Query segmentation is the process of tak-
ing a user’s search-engine query and di-
viding the tokens into individual phrases
or semantic units. Identification of these
query segments can potentially improve
both document-retrieval precision, by first
returning pages which contain the exact
query segments, and document-retrieval re-
call, by allowing query expansion or substi-
tution via the segmented units. We train and
evaluate a machine-learned query segmenta-
tion system that achieves 86% segmentation-
decision accuracy on a gold standard set of
segmented noun phrase queries, well above
recently published approaches. Key en-
ablers of this high performance are features
derived from previous natural language pro-
cessing work in noun compound bracketing.
For example, token association features be-
yond simple N-gram counts provide power-
ful indicators of segmentation.

1 Introduction

Billions of times every day, people around the world
communicate with Internet search engines via a
small text box on a web page. The user provides
a sequence of words to the search engine, and the
search engine interprets the query and tries to return
web pages that not only contain the query tokens,
but that are also somehow about the topic or idea
that the query terms describe.

Recent years have seen a widespread recognition
that the user is indeed providing natural language

text to the search engine; query tokens are not inde-
pendent, unordered symbols to be matched on a web
document but rather ordered words and phrases with
syntactic relationships. For example, Zhai (1997)
pointed out that indexing on single-word symbols is
not able to distinguish a search for “bank terminol-
ogy” from one for “terminology bank.” The reader
can submit these queries to a current search engine
to confirm that modern indexing does recognize the
effect of token order on query meaning in some way.

Accurately interpreting query semantics also de-
pends on establishing relationships between the
query tokens. For example, consider the query “two
man power saw.” There are a number of possible
interpretations of this query, and these can be ex-
pressed through a number of different segmentations
or bracketings of the query terms:

1. [two man power saw]

2. [two man] [power saw]

3. [two] [man] [power saw]

4. [two] [man power] [saw], etc.
One simple way to make use of these interpretations
in search would be to put quotation marks around the
phrasal segments to require the search engine to only
find pages with exact phrase matches. If, as seems
likely, the searcher is seeking pages about the large,
mechanically-powered two-man saws used by lum-
berjacks and sawyers to cut big trees, then the first
segmentation is correct. Indeed, a phrasal search
for “two man power saw” on Google does find the
device of interest. So does the second interpreta-
tion, but along with other, less-relevant pages dis-
cussing competitions involving “two-man handsaw,

819

two-woman handsaw, power saw log bucking, etc.”
The top document returned for the third interpreta-
tion, meanwhile, describes a man on a rampage at a
subway station with two cordless power saws, while
the fourth interpretation finds pages about topics
ranging from hockey’s thrilling two-man power play
advantage to the man power situation during the
Second World War. Clearly, choosing the right seg-
mentation means finding the right documents faster.

Query segmentation can also help if insufficient
pages are returned for the original query. A tech-
nique such as query substitution or expansion (Jones
et al., 2006) can be employed using the segmented
units. For example, we could replace the sexist “two
man” modifier with the politically-correct “two per-
son” phrase in order to find additional relevant doc-
uments. Without segmentation, expanding via the
individual words “two,” “man,” “power,” or “saw”
could produce less sensible results.

In this paper, we propose a data-driven, machine-
learned approach to query segmentation. Similar to
previous segmentation approaches described in Sec-
tion 2, we make a decision to segment or not to seg-
ment between each pair of tokens in the query. Un-
like previous work, we view this as a classification
task where the decision parameters are learned dis-
criminatively from gold standard data. In Section 3,
we describe our approach and the features we use.
Section 4 describes our labelled data, as well as the
specific tools used for our experiments. Section 5
provides the results of our evaluation, and shows the
strong gains in performance possible using a wide
set of features within a discriminative framework.

2 Related Work

Query segmentation has previously been ap-
proached in an unsupervised manner. Risvik et
al. (2003) combine the frequency count of a seg-
ment and the mutual information (MI) between pairs
of words in the segment in a heuristic scoring func-
tion. The system chooses the segmentation with the
highest score as the output segmentation. Jones et
al. (2006) use MI between pairs of tokens as the sole
factor in deciding on segmentation breaks. If the MI
is above a threshold (optimized on a small training
set), the pair of tokens is joined in a segment. Oth-
erwise, a segmentation break is made.

Query segmentation is related to the task of noun
compound (NC) bracketing. NC bracketing deter-
mines the syntactic structure of an NC as expressed
by a binary tree, or, equivalently, a binary bracket-
ing (Nakov and Hearst, 2005a). Zhai (1997) first
identified the importance of syntactic query/corpus
parsing for information retrieval, but did not con-
sider query segmentation itself. In principle, as
N increases, the number of binary trees for an N -
token compound is much greater than the 2N−1 pos-
sible segmentations. In practice, empirical NC re-
search has focused on three-word compounds. The
computational problem is thus deciding whether the
three-word NC has a left or right-bracketing struc-
ture (Lauer, 1995). For the segmentation task,
analysing a three-word NC requires deciding be-
tween four different segmentations. For example,
there are two bracketings for “used car parts,” the
left-bracketing “[[used car] parts]” and the right-
bracketing “[used [car parts]],” while there are four
segmentations, including the case where there is
only one segment, “[used car parts]” and the base
case where each token forms its own segment,
“[used] [car] [parts].” Query segmentation thus nat-
urally handles the case where the query consists of
multiple, separate noun phrases that should not be
analysed with a single binary tree.

Despite the differences between the tasks, it is
worth investigating whether the information that
helps disambiguate left and right-bracketings can
also be useful for segmentation. In particular, we
explored many of the sources of information used
by Nakov and Hearst (2005a), as well as several
novel features that aid segmentation performance
and should also prove useful for NC analysis re-
searchers. Unlike all previous approaches that we
are aware of, we apply our features in a flexible
discriminative framework rather than a classification
based on a vote or average of features.

NC analysis has benefited from the recent trend
of using web-derived features rather than corpus-
based counts (Keller and Lapata, 2003). Lapata and
Keller (2004) first used web-based co-occurrence
counts for the bracketing of NCs. Recent inno-
vations have been to use statistics “beyond the N-
gram,” such as counting the number of web pages
where a pair of words w, x participate in a genitive
relationship (“w’s x”), occur collapsed as a single

820

phrase (“wx”) (Nakov and Hearst, 2005a) or have
a definite article as a left-boundary marker (“the
w x”) (Nicholson and Baldwin, 2006). We show
strong performance gains when such features are
employed for query segmentation.

NC bracketing is part of a larger field of research
on multiword expressions including general NC in-
terpretation. NC interpretation explores not just
the syntactic dependencies among compound con-
stituents, but the semantics of the nominal relation-
ships (Girju et al., 2005). Web-based statistics have
also had an impact on these wider analysis tasks, in-
cluding work on interpretation of verb nominalisa-
tions (Nicholson and Baldwin, 2006) and NC coor-
dination (Nakov and Hearst, 2005b).

3 Methodology

3.1 Segmentation Classification

Consider a query x = {x1, x2, ..., xN} consisting
of N query tokens. Segmentation is a mapping S :
x → y ∈ YN , where y is a segmentation from the
set YN . Since we can either have or not have a seg-
mentation break at each of the N−1 spaces between
the N tokens, |YN | = 2N−1. Supervised machine
learning can be applied to derive the mapping S au-
tomatically, given a set of training examples con-
sisting of pairs of queries and their segmentations
T = {(xi,yi)}. Typically this would be done via a
set of features Ψ(x,y) for the structured examples.
A set of weights w can be learned discriminatively
such that each training example (xi,yi) has a higher
score, Scorew(x,y) = w · Ψ(x,y), than alterna-
tive query-segmentation pairs, (xi, zi), zi 6= yi.1 At
test time, the classifier chooses the segmentation for
x that has the highest score according to the learned
parameterization: ŷ = argmaxy Scorew(x,y).
Unlike many problems in NLP such as parsing or
part-of-speech tagging, the small cardinality of YN

makes enumerating all the alternative query segmen-
tations computationally feasible.

In our preliminary experiments, we used a Sup-
port Vector Machine (SVM) ranker (Joachims,
2002) to learn the structured classifier.2 We also in-

1See e.g. Collins (2002) for a popular training algorithm.
2A ranking approach was also used previously by Daumé III

and Marcu (2004) for the CoNLL-99 nested noun phrase iden-
tification task.

vestigated a Hidden Markov Model SVM (Altun et
al., 2003) to label the segmentation breaks using in-
formation from past segmentation decisions. Ulti-
mately, the mappings produced by these approaches
were not as accurate as a simple formulation that
creates a full query segmentation y as the combi-
nation of independent classification decisions made
between each pair of tokens in the query.3

In the classification framework, the input is a
query, x, a position in the query, i, where 0<i<N ,
and the output is a segmentation decision yes/no.
The training set of segmented queries is converted
into examples of decisions between tokens and
learning is performed on this set. At test time, N −1
segmentation decisions are made for the N -length
query and an output segmentation y is produced.
Here, features depend only on the input query x and
the position in the query i. For a decision at position
i, we use features from tokens up to three positions
to the left and to the right of the decision location.
That is, for a decision between xL0 and xR0, we ex-
tract features from a window of six tokens in the
query: {..., xL2, xL1, xL0, xR0, xR1, xR2, ...}. We
now detail the features derived from this window.

3.2 Features

There are a number of possible indicators of whether
a segmentation break occurs between a pair of to-
kens. Some of these features fire separately for each
token x in our feature window, while others are de-
fined over pairs or sets of tokens in the window. We
first describe the features that are defined for the to-
kens around the decision boundary, xL0 and xR0,
before describing how these same features are ex-
tended to longer phrases and other token pairs.

3.2.1 Decision-boundary features

Table 1 lists the binary features that fire if partic-
ular aspects of a token or pair of tokens are present.
For example, one of the POS-tags features will fire
if the pair’s part-of-speech tags are DT JJ , another
feature will fire if the position of the pair in the to-

3The structured learners did show large gains over the clas-
sification framework on the dev-set when using only the basic
features for the decision-boundary tokens (see Section 3.2.1),
but not when the full feature set was deployed. Also, features
only available to structured learners, e.g. number of segments
in query, etc., did improve the performance of the structured
approaches, but not above that of the simpler classifier.

821

Table 1: Indicator features.
Name Description
is-the token x = “the”
is-free token x = “free”
POS-tags Part-of-speech tags of pair xL0 xR0

fwd-pos position from beginning, i
rev-pos position from end N − i

ken is 2, etc. The two lexical features (for when the
token is “the” and when the token is “free”) fire sep-
arately for the left and right tokens around the deci-
sion boundary. They are designed to add discrimi-
nation for these common query words, motivated by
examples in our training set. For example, in the
training set, “free” often occurs in its own segment
when it’s on the left-hand-side of a decision bound-
ary (e.g. “free” “online” ...), but may join into a
larger segment when it’s on the right-hand-side of a
collocation (e.g. “sulfite free” or “sugar free”). The
classifier can use the feature weights to encourage or
discourage segmentation in these specific situations.

For statistical features, previous work (Section 2)
suggests that the mutual information between the de-
cision tokens xL0 and xR0 may be appropriate. The
log of the pointwise mutual information (Church and
Hanks, 1989) between the decision-boundary tokens
xL0, xR0 is:

MI(xL0, xR0) = log
Pr(xL0xR0)

Pr(xL0)Pr(xR0)

This is equivalent to the sum: log C(xL0xR0) +
log K − log C(xL0) − log C(xR0). For web-based
features, the counts C(.) can be taken as a search en-
gine’s count of the number of pages containing the
term. The normalizer K is thus the total number of
pages on the Internet.

Represented as a summation, we can see that pro-
viding MI as the feature effectively ties the weights
on the logarithmic counts C(xL0xR0), C(xL0), and
C(xR0). Another approach would be to provide
these logarithmic counts as separate features to our
learning algorithm, which can then set the weights
optimally for segmentation. We call this set of
counts the “Basic” features. In Section 5, we con-
firm results on our development set that showed us-
ing the basic features untied increased segmentation

Table 2: Statistical features.
Name Description
web-count count of “x” on the web
pair-count web count “w x”
definite web count “the w x”
collapsed web count “wx” (one word)
and-count web count “w and x”
genitive web count “w’s x”
Qcount-1 Counts of “x” in query database
Qcounts-2 Counts of “w x” in database

performance by up to 4% over using MI – an impor-
tant observation for all researchers using association
models as features in their discriminative classifiers.

Furthermore, with this technique, we do not need
to normalize the counts for the other pairwise statis-
tical features given in Table 2. We can simply rely
on our learning algorithm to increase or decrease the
weights on the logarithm of the counts as needed.

To illustrate how the statistical features work,
consider a query from our development set: “star
wars weapons guns.” The phrase “star wars” can
easily be interpreted as a phrase; there is a high
co-occurrence count (pair-count), and many pages
where they occur as a single phrase (collapsed),
e.g. “starwars.com.” “Weapons” and “guns,” on the
other hand, should not be joined together. Although
they may have a high co-occurrence count, the coor-
dination feature (and-count) is high (“weapons and
guns”) showing these to be related concepts but not
phrasal constituents. Including this novel feature re-
sulted in noticeable gains on the development set.

Since this is a query-based segmentation, features
that consider whether sets of tokens occurred else-
where in the query database may provide domain-
specific discrimination. For each of the Qcount fea-
tures, we look for two quantities: the number of
times the phrase occurs as a query on its own and the
number of times the phrase occurs within another
query.4 Including both of these counts also resulted
in performance gains on the development set.

We also extensively investigated other corpus-
based features, such as the number of times the
phrase occurred hyphenated or capitalized, and the

4We exclude counts from the training, development, and
testing queries discussed in Section 4.1.

822

corpus-based distributional similarity (Lin, 1998)
between a pair of tokens. These features are
not available from search-engine statistics because
search engines disregard punctuation and capitaliza-
tion, and collecting page-count-based distributional
similarity statistics is computationally infeasible.

Unfortunately, none of the corpus-based features
improved performance on the development set and
are thus excluded from further consideration. This
is perhaps not surprising. For such a task that in-
volves real user queries, with arbitrary spellings and
sometimes exotic vocabulary, gathering counts from
web search engines is the only way to procure reli-
able and broad-coverage statistics.

3.2.2 Context Features

Although the tokens at the decision boundary
are of paramount importance, information from the
neighbouring tokens is also critical for segmentation
decision discrimination. We thus include features
that take into consideration the preceding and fol-
lowing tokens, xL1 and xR1, as context information.
We gather all the token indicator features for each of
these tokens, as well as all pairwise features between
xL1 and xL0, and then xR0 and xR1. If context to-
kens are not available at this position in the query,
a feature fires to indicate this. Also, if the context
features are available, we include trigram web and
query-database counts of “xL1 xL0 xR0” and “xL0

xR0 xR1”, and a fourgram spanning both contexts.
Furthermore, if tokens xL2 and xR2 are available, we
collect relevant token-level, pairwise, trigram, and
fourgram counts including these tokens as well.

In Section 5, we show that context features are
very important. They allow our system to implic-
itly leverage surrounding segmentation decisions,
which cannot be accessed directly in an independent
segmentation-decision classifier. For example, con-
sider the query “bank loan amoritization schedule.”
Although “loan amoritization” has a strong connec-
tion, we may nevertheless insert a break between
them because “bank loan” and “amoritization sched-
ule” each have even stronger association.

3.2.3 Dependency Features

Motivated by work in noun phrase parsing, it
might be beneficial to check if, for example, token
xL0 is more likely to modify a later token, such as

xR1. For example, in “female bus driver”, we might
not wish to segment “female bus” because “female”
has a much stronger association with “driver” than
with “bus”. Thus, as features, we include the pair-
wise counts between xL0 and xR1, and then xL1 and
xR0. Features from longer range dependencies did
not improve performance on the development set.

4 Experimental Setup

4.1 Data

Our dataset was taken from the AOL search query
database (Pass et al., 2006), a collection of 35
million queries submitted to the AOL search en-
gine. Most punctuation has been removed from the
queries.5 Along with the query, each entry in the
database contains an anonymous user ID and the do-
main of the URL the user clicked on, if they selected
one of the returned pages. For our data, we used only
those queries with a click-URL. This subset has a
higher proportion of correctly-spelled queries, and
facilitates annotation (described below).

We then tagged the search queries using a max-
imum entropy part-of-speech tagger (Ratnaparkhi,
1996). As our approach was designed particularly
for noun phrase queries, we selected for our final ex-
periments those AOL queries containing only deter-
miners, adjectives, and nouns. We also only consid-
ered phrases of length four or greater, since queries
of these lengths are most likely to benefit from a seg-
mentation, but our approach works for queries of any
length. Future experiments will investigate applying
the current approach to phrasal verbs, prepositional
idioms and segments with other parts of speech.

We randomly selected 500 queries for training,
500 for development, and 500 for final testing.
These were all manually segmented by our annota-
tors. Manual segmentation was done with improv-
ing search precision in mind. Annotators were asked
to analyze each query and form an idea of what the
user was searching for, taking into consideration the
click-URL or performing their own online searches,
if needed. The annotators were then asked to seg-
ment the query to improve search retrieval, by forc-
ing a search engine to find pages with the segments

5Including, unfortunately, all quotation marks, precluding
our use of users’ own segmentations as additional labelled ex-
amples or feature data for our system

823

occurring as unbroken units.
One annotator segmented all three data sets, and

these were used for all the experiments. Two ad-
ditional annotators also segmented the final test set
to allow inter-annotator agreement calculation. The
pairwise agreement on segmentation decisions (be-
tween each pair of tokens) was between 84.0% and
84.6%. The agreement on entire queries was be-
tween 57.6% and 60.8%. All three agreed com-
pletely on 219 of the 500 queries, and we use this
“intersected” set for a separate evaluation in our ex-
periments.6 If we take the proportion of segmenta-
tion decisions the annotators would be expected to
agree on by chance to be 50%, the Kappa statis-
tic (Jurafsky and Martin, 2000, page 315) is around
.69, below the .8 considered to be good reliability.

This observed agreement was lower than we an-
ticipated, and reflects both differences in query in-
terpretation and in the perceived value of differ-
ent segmentations for retrieval performance. An-
notators agreed that terms like “real estate,” “work
force,” “west palm beach,” and “private investiga-
tor” should be separate segments. These are colloca-
tions in the linguistics sense (Manning and Schütze,
1999, pages 183-187); we cannot substitute related
words for terms in these expressions nor apply syn-
tactic transformations or paraphrases (e.g. we don’t
say “investigator of privates”). However, for a query
such as “bank manager,” should we exclude web
pages that discuss “manager of the bank” or “branch
manager for XYZ bank”? If a user is searching for a
particular webpage, excluding such results could be
harmful. However, for query substitution or expan-
sion, identifying that “bank manager” is a single unit
may be useful. We can resolve the conflicting objec-
tives of our two motivating applications by moving
to a multi-layer query bracketing scheme, first seg-
menting unbreakable collocations and then building
them into semantic units with a query segmentation
grammar. This will be the subject of future research.

4.2 Experiments

All of our statistical feature information was col-
lected using the Google SOAP Search API.7 For
training and classifying our data, we use the popular

6All queries and statistical feature information is available
at http://www.cs.ualberta.ca/˜bergsma/QuerySegmentation/

7http://code.google.com/apis/soapsearch/

Support Vector Machine (SVM) learning package
SVMlight (Joachims, 1999). SVMs are maximum-
margin classifiers that achieve good performance on
a range of tasks. In each case, we learn a linear ker-
nel on the training set segmentation decisions and
tune the parameter that trades-off training error and
margin on the development set.

We use the following two evaluation criteria:

1. Seg-Acc: Segmentation decision accuracy: the
proportion of times our classifier’s decision to
insert a segment break or not between a pair of
tokens agrees with the gold standard decision.

2. Qry-Acc: Query segmentation accuracy: the
proportion of queries for which the complete
segmentation derived from our classifications
agrees with the gold standard segmentation.

5 Results

Table 3 provides our results for various configu-
rations of features and token-combinations as de-
scribed in Section 3.8 For comparison, a baseline
that always chooses a segmentation break achieves
44.8% Seg-Acc and 4.2% Qry-Acc, while a system
that inserts no breaks achieves 55.2% Seg-Acc and
4.0% Qry-Acc. Our comparison system is the MI
approach used by Jones et al. (2006), which achieves
68% Seg-Acc and 26.6% Qry-Acc (Table 3). We let
the SVM set the threshold for MI on the training set.

Note that the Basic, Decision-Boundary system
(Section 3.2.1), which uses exactly the same co-
occurrence information as the MI system (in the
form of the Basic features) but allows the SVM to
discriminatively weight the logarithmic counts, im-
mediately increases Seg-Acc performance by 3.7%.
Even more strikingly, adding the Basic count infor-
mation for the Context tokens (Section 3.2.2) boosts
performance by another 8.5%, increasing Qry-Acc
by over 22%. Smaller, further gains arise by adding
Dependency token information (Section 3.2.3).

Also, notice that moving from Basic features for
the Decision-Boundary tokens to all of our indica-
tor (Table 1) and statistical (Table 2) features (re-
ferred to as All features) increases performance from
71.7% to 84.3%. These gains convincingly justify

8Statistically significant intra-row differences in Qry-Acc
are marked with an asterix (McNemar’s test, p<0.05)

824

Table 3: Segmentation Performance (%)

Feature Type Feature Span Test Set Intersection Set
Seg-Acc Qry-Acc Seg-Acc Qry-Acc

MI Decision-Boundary 68.0 26.6 73.8 34.7
Basic Decision-Boundary 71.7 29.2 77.6 39.7
Basic Decision-Boundary, Context 80.2 52.0* 85.6 62.1*
Basic Decision-Boundary, Context, Dependency 81.1 53.2 86.2 64.8
All Decision-Boundary 84.3 57.8* 86.6 63.5
All Decision-Boundary, Context 86.3 63.8* 89.2 71.7*
All Decision-Boundary, Context, Dependency 85.8 61.0 88.7 69.4

our use of an expanded feature set for this task.
Including Context with the expanded features adds
another 2%, while adding Dependency information
actually seems to hinder performance slightly, al-
though gains were seen when adding Dependency
information on the development set.

Note, however, that these results must also be
considered in light of the low inter-annotator agree-
ment (Section 4.1). Indeed, results are lower if we
evaluate using the test-set labels from another an-
notator (necessarily training on the original anno-
tator’s labels). On the intersected set of the three
annotators, however, results are better still: 88.7%
Seg-Acc and 69.4% Qry-Acc on the intersected
queries for the full-featured system (Table 3). Since
high performance is dependent on consistent train-
ing and test labellings, it seems likely that develop-
ing more-explicit annotation instructions may allow
further improvements in performance as within-set
and between-set annotation agreement increases.

It would also be theoretically interesting, and of
significant practical importance, to develop a learn-
ing approach that embraces the agreement of the
annotations as part of the learning algorithm. Our
initial ranking formulation (Section 3.1), for exam-
ple, could learn a model that prefers segmentations
with higher agreement, but still prefers any anno-
tated segmentation to alternative, unobserved struc-
tures. As there is growing interest in making max-
imal use of annotation resources within discrimina-
tive learning techniques (Zaidan et al., 2007), devel-
oping a general empirical approach to learning from
ambiguously-labelled examples would be both an
important contribution to this trend and a potentially
helpful technique in a number of NLP domains.

6 Conclusion

We have developed a novel approach to search query
segmentation and evaluated this approach on actual
user queries, reducing error by 56% over a recent
comparison approach. Gains in performance were
made possible by both leveraging recent progress in
feature engineering for noun compound bracketing,
as well as using a flexible, discriminative incorpora-
tion of association information, beyond the decision-
boundary tokens. We have created and made avail-
able a set of manually-segmented user queries, and
thus provided a new testing platform for other re-
searchers in this area. Our initial formulation of
query segmentation as a structured learning prob-
lem, and our leveraging of association statistics be-
yond the decision boundary, also provides power-
ful tools for noun compound bracketing researchers
to both move beyond three-word compounds and to
adopt discriminative feature weighting techniques.

The positive results achieved on this important ap-
plication should encourage further inter-disciplinary
collaboration between noun compound interpreta-
tion and information retrieval researchers. For ex-
ample, analysing the semantics of multiword expres-
sions may allow for more-focused query expansion;
knowing to expand “bank manager” to include pages
describing a “manager of the bank,” but not doing
the same for non-compositional phrases like “real
estate” or “private investigator,” requires exactly the
kind of techniques being developed in the noun com-
pound interpretation community. Thus for query ex-
pansion, as for query segmentation, work in natural
language processing has the potential to make a real
and immediate impact on search-engine technology.

825

The next step in this research is to directly inves-
tigate how query segmentation affects search perfor-
mance. For such an evaluation, we would need to
know, for each possible segmentation (including no
segmentation), the document retrieval performance.
This could be the proportion of returned documents
that are deemed to be relevant to the original query.
Exactly such an evaluation was recently used by Ku-
maran and Allan (2007) for the related task of query
contraction. Of course, a dataset with queries and
retrieval scores may serve for more than evaluation;
it may provide the examples used by the learning
module. That is, the parameters of the contraction
or segmentation scoring function could be discrim-
inatively set to optimize the retrieval of the training
set queries. A unified framework for query contrac-
tion, segmentation, and expansion, all based on dis-
criminatively optimizing retrieval performance, is
a very appealing future research direction. In this
framework, the size of the training sets would not
be limited by human annotation resources, but by
the number of queries for which retrieved-document
relevance judgments are available. Generating more
training examples would allow the use of more pow-
erful, finer-grained lexical features for classification.

Acknowledgments

We gratefully acknowledge support from the Natu-
ral Sciences and Engineering Research Council of
Canada, the Alberta Ingenuity Fund, the Alberta In-
genuity Center for Machine Learning, and the Al-
berta Informatics Circle of Research Excellence.

References
Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann.

2003. Hidden markov support vector machines. In ICML.

Kenneth Ward Church and Patrick Hanks. 1989. Word associ-
ation norms, mutual information, and lexicography. In ACL,
pages 76–83.

Michael Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with per-
ceptron algorithms. In EMNLP, pages 1–8.

Roxana Girju, Dan Moldovan, Marta Tatu, and Daniel Antohe.
2005. On the semantics of noun compounds. Computer
Speech and Language, 19(4):479–496.

Hal Daumé III and Daniel Marcu. 2004. NP bracketing by
maximum entropy tagging and SVM reranking. In EMNLP,
pages 254–261.

Thorsten Joachims. 1999. Making large-scale Support Vector
Machine learning practical. In B. Schölkopf and C. Burges,
editors, Advances in Kernel Methods: Support Vector Ma-
chines, pages 169–184. MIT-Press.

Thorsten Joachims. 2002. Optimizing search engines using
clickthrough data. In ACM Conference on Knowledge Dis-
covery and Data Mining, pages 133–142.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner.
2006. Generating query substitutions. In WWW, pages 387–
396.

Daniel Jurafsky and James H. Martin. 2000. Speech and lan-
guage processing. Prentice Hall.

Frank Keller and Mirella Lapata. 2003. Using the web to obtain
frequencies for unseen bigrams. Computational Linguistics,
29(3):459–484.

Giridhar Kumaran and James Allan. 2007. A case for shorter
queries, and helping users create them. In NAACL-HLT,
pages 220–227.

Mirella Lapata and Frank Keller. 2004. The web as a base-
line: Evaluating the performance of unsupervised web-based
models for a range of NLP tasks. In HLT-NAACL, pages
121–128.

Mark Lauer. 1995. Corpus statistics meet the noun compound:
Some empirical results. In ACL, pages 47–54.

Dekang Lin. 1998. Automatic retrieval and clustering of simi-
lar words. In COLING/ACL, pages 768–773.

Christopher D. Manning and Hinrich Schütze. 1999. Foun-
dations of Statistical Natural Language Processing. MIT
Press.

Preslav Nakov and Marti Hearst. 2005a. Search engine statis-
tics beyond the n-gram: Application to noun compound
bracketing. In CoNLL, pages 17–24.

Preslav Nakov and Marti Hearst. 2005b. Using the web as
an implicit training set: application to structural ambiguity
resolution. In HLT/EMNLP, pages 835–842.

Jeremy Nicholson and Timothy Baldwin. 2006. Interpretation
of compound nominalisations using corpus and web statis-
tics. In ACL Workshop on Multiword Expressions, pages
54–61.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A
picture of search. In The First International Conference on
Scalable Information Systems.

Adwait Ratnaparkhi. 1996. A maximum entropy model for
part-of-speech tagging. In EMNLP, pages 133–142.

Knut Magne Risvik, Tomasz Mikolajewski, and Peter Boros.
2003. Query segmentation for web search. In WWW (Poster
Session).

Omar Zaidan, Jason Eisner, and Christine Piatko. 2007. Using
“annotator rationales” to improve machine learning for text
categorization. In NAACL-HLT, pages 260–267.

Chengxiang Zhai. 1997. Fast statistical parsing of noun phrases
for document indexing. In ANLP, pages 312–319.

826

