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ABSTRACT

Many keyword queries issued to Web search engines tar-
get information about real world entities, and interpreting
these queries over Web knowledge bases can often enable the
search system to provide exact answers to queries. Equally
important is the problem of detecting when the reference
knowledge base is not capable of answering the keyword
query, due to lack of domain coverage.

In this work we present an approach to computing struc-
tured representations of keyword queries over a reference
knowledge base. We mine frequent query structures from
a Web query log and map these structures into a refer-
ence knowledge base. Our approach exploits coarse linguis-
tic structure in keyword queries, and combines it with rich
structured query representations of information needs.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Re-
trieval—Query formulation, Retrieval models

1. INTRODUCTION

As the amount of structured data on the Web contin-
ues to grow, the ability to exploit this data for keyword
search becomes increasingly important. Efforts such as DB-
pedia’, Freebase?, and Linked Data® have produced large
heterogeneous knowledge bases that encode great amounts
of information about many real world entities. Web search
queries seeking information about these entities could be
better served by interpreting the query over a knowledge
base in order to provide an exact answer to the query, or to
enhance document retrieval by understanding the entities
described by the query.

For example, consider a user searching for “songs by jimi
hendriz.” While a text search may retrieve relevant docu-
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ments to the query terms, it leaves the user with the task of
scouring textual results in search of the information they are
seeking. This user’s query could be better served by return-
ing a list of particular songs by the musician Jimi Hendrix
(precise answers to the query), possibly along with informa-
tion about each song (e.g., structured facts from a knowledge
base or documents resulting from a text search for the par-
ticular song). Similarly, the keyword query “author of moby
dick” could be better answered if a search system under-
stood that “moby dick” describes a particular book, “author
of” describes a relationship, and the query intent is to find
the unspecified entity that has an “author of” relationship
to “moby dick.”

We refer to the process of interpreting keyword queries
over a knowledge base as semantic query understanding.
This problem has the following characteristics that pose dif-
ficult technical challenges.

e Ambiguity Keyword queries tend to be short, am-
biguous, and underspecified. For a given keyword query
there may be multiple possible ways to interpret the
underlying query intent. Semantic query understand-
ing systems need to accurately interpret entity-based
keyword queries when the underlying reference knowl-
edge base contains the relevant information.

¢ Representation & Coverage Not all keyword queries

have an entity focus (so called, entity-based keyword
queries). A query such as “corporate tax laws buyout”
may intentionally be seeking documents that mention
the given query terms, and an attempt to represent the
query in terms of knowledge base entities may produce
an incorrect interpretation and harm the quality of re-
sults. Similarly, some entity-based queries may seek
information that does not exist in a given reference
knowledge base. A high accuracy semantic query un-
derstanding system will answer queries only when the
query intent can be represented and evaluated over the
reference knowledge base.

e Scale Web knowledge bases tend to be very large
and heterogenous, meaning approaches cannot be en-
gineered to exploit domain specific regularities or de-
pend on small fixed schemas with complete data. Se-
mantic query understanding techniques must scale to
large heterogeneous Web knowledge bases.

1.1 Motivation

Query understanding is a broad phrase used to describe
many techniques applied to keyword queries in order to
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Figure 1: Overview of the query understanding pro-
cess.

represent the underlying information need in a way that a
search system can exploit. Some popular approaches include
topic classification, in which the topic of a query is deter-
mined using a statistical classifier. Topic classification aids
a search system by giving it context, or by allowing the sys-
tem to select the appropriate data source to search. For
example, the query

“songs by jimi hendriz” (1)

may be classified as a music query. However query classifica-
tion does not give any insight into precisely what the query
is looking for within the domain of music.

Another query understanding approach that has received
recent attention from researchers is term annotation. Term
annotation labels individual query terms with annotations
that describe the role these terms play with respect to an un-
derlying information system. Following our example query,
the terms “jimi hendriz” may be annotated as a name, and
the term “songs” annotated as an entity type. While query
annotations can aid a search system in understanding the
meaning of individual terms, the annotations do not describe
the underlying structure of the query as a single coherent
query interpretation. Continuing the example, we want to
model the latent query structure that expresses the query
intention as finding entities of type song that are created
by an entity named “jimi hendriz.” (as opposed to finding,
for example, information about the person named “jimi hen-
driz” who is known to have written songs, or a song named
“imi hendriz”).

The goal of semantic query understanding is to compute
a formal interpretation of an ambiguous information need.
Figure 1 shows our proposed semantic query understanding
process for a variation of our running example information
need. Our example keyword query can be structurally un-
derstood as finding all entities of a type described as “songs,”
that have a “by” relationship to an entity described as “jimi
hendrix”. This is given as the following conjunctive query.

q(z):-Jy.SONG(z) A createdBy(z,y) Ay = Jimi_Hendrix (2)

Where the predicates SONG and createdBy, and the entity
Jimi_Hendrix are part of a Web knowledge base. The dif-
ficulty in mapping a keyword query to a formal interpreta-
tion lies in the inherent ambiguity in keyword queries, and
the many possible mappings query terms can have over very
large reference data collections. For example, the term “hen-
driz” matches 68 data items in our data set, and the term
“songs” matches 4,219 items, and the term “by” matches
7,179 items (see Section 5 for details on the data set used
for our experiments). This yields a space of over two billion
possible conjunctive queries constructed by mapping each
query term to a syntactically similar predicate. This does

not count the possibility of additional predicates existing in
the underlying conjunctive query that are not explicitly rep-
resented by a term in the keyword query. There is also great
variation in how queries are expressed; many Web queries
are very short and underspecified. For example, the query
“hendriz songs” shown in Figure 1 shares the same logical
structure as example query 1, even though the createdBy
relation is not explicitly represented by any query terms. It
is the job of the query understanding system to infer the
existence of such latent relations.

In this work we propose a method for interpreting key-
word queries over Web knowledge bases. We use an an-
notated Web search query log as training data to learn a
mapping between keyword queries and their underlying se-
mantic structures. Because of the very high cost in creating
training data, we design an approach that maps high level
representations of keyword queries to schema-level represen-
tations of structured queries, greatly reducing the amount
of training data needed to accurately learn these mappings.
Our approach integrates state-of-the-art techniques in nat-
ural language processing with top-k search over structured
data and knowledge base query processing, bridging the gap
between language models for statistical representations of
keyword queries and database formalisms for structured rep-
resentations of information needs.

1.2 Contributions

In this work, we make the following contributions.

e We propose a novel method for interpreting keyword
queries over Web knowledge bases that computes prob-
able semantic structures based on a statistical model
learned from real user queries, and maps them into a
knowledge base.

e We show an encoding of the semantic annotation prob-
lem as a parameter estimation problem for a condi-
tional random field, and propose a method of structur-
ing annotated queries that uses a high level representa-
tion of both keyword queries and the target knowledge
base query structure. This high level representation al-
lows us to learn a mapping from semantic summaries
of keyword queries to structured query templates by
exploiting the redundancy of the summaries and tem-
plates shared by different queries in a query log.

e We present the results of an analysis of a real Web
search log, giving insight into the types of entity-based
queries asked by real users. Our analysis shows the im-
portance of addressing entity-based queries due to the
large number of these queries issued by users. The
analysis also establishes relationships between linguis-
tic structure and semantic structure, and gives insight
into the types of structures that repeatedly occur in
keyword queries.

We demonstrate the viability of our proposed approach with
an experimental evaluation of both the effectiveness and ef-
ficiency of a prototype implementation of the system.

1.3 Outline

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of the keyword query understanding
problem, outlines the basis of our formalism for modeling
query intentions, and gives an overview of our approach to



semantic query understanding. The details of our approach
are presented in Section 3. Section 4 describes the results of
our analysis of a Web query log. In Section 5 we empirically
evaluate our proposal. We review relevant work in Section 6
and conclude in Section 7.

2. DATA AND PROBLEM DEFINITIONS
2.1 Representing Knowledge and Queries

We adopt a formal model of knowledge representation as
a collection of assertions based on the OWL2 EL Profile*
extended with unary entity sets (allowing an entity to rep-
resent a class containing only itself), and with attributes
that map to values in a concrete domain such as strings,
numbers, or dates.

Definition 1. (Concept) A concept C is defined by the
following grammar, where A is an entity type (a.k.a, entity
class), R is a relation, R~ is the inverse of relation R, e is
an entity, f is an attribute, k is a constant, and M denotes
concept conjunction (intersection)

C = A|3RC)|IR(C)| C1NCy | f=k]{e}

Definition 2. (Knowledge base) Facts about entities
are represented as assertions. An assertion has one of the
following forms:

Ale) | Rlei,e2) | f(e k)

This first construct asserts that an entity e has type A, for
example: GUITARIST(Jimi_Hendrix). The second construct
asserts that a relation R holds between two entities, for
example: created By(Foxy_Lady, Jimi_Hendrix). This also
implies the inverse created By~ (Jimi_Hendrix, Foxy_Lady).
The last construct asserts that an entity has a particular
value for a given attribute. This is a special case of a re-
lation assertion, where the entity relates to a value. For
example, dateO f Birth(Jimi_Hendrix, 1942-11-27). The as-
sertion subClassOf (A1, A2) is used to encode transitive class
hierarchies among types.

A knowledge base K is represented as a set of assertions.
We write £ = C to denote that concept C' is consistent
with I and K |= C(e) to denote that the knowledge base K
entails that entity e can be inferred to be an instance of C.

We will ultimately use concepts in the given KB formalism
to represent query intentions using the following definition
of a search query over a knowledge base.

Definition 3. (Concept Search Query) A concept search

query is given by a concept C' expressed using Definition 1.
The answer to the query C' over a given knowledge base K
is the set of entities inferred to be instances of C

answer(C,K) ={e | K = C(e)}.

Our example query from Equation 2 can be modeled as the
following: SONG M IcreatedBy({Jimi_Hendrix}).

2.2 The Query Understanding Problem

We can abstract a concept search query C as a conjunc-
tive query A® consisting of uw unary predicates and b binary
predicates with a single distinguished variable. (This equiv-
alence is straightforward, and can be seen in the relationship

*http:/ /www.w3.org/ TR /owl-profiles/#OWL_2_EL

between assertions and concept expressions defined in Sec-
tion 2.1.) Let Kp denote the set of predicates occurring in
a knowledge base K, and )\703 denote the set of predicates
(unary and binary) occurring in a conjunctive query AC.
Let L(P) denote the set of textual labels that can be used
to describe a predicate P. The space of possible queries A€
for a given keyword query @Q = (qig2...qn) is given by the
following expression.

u b

) = A P)A N\ Piljze) st (3)

=1 =1

vPe NS, PeKp (4)
Vg € Q,3P € \p,q € L(P) (5)
KEC (6)

Equation 3 defines a space of all possible conjunctive queries
with u unary predicates and b binary predicates. Equation 4
constrains all predicates to be part of the given knowledge
base, ensuring the query is safe. Equation 5 ensures cov-
erage of all query terms and Equation 6 ensures that the
query is consistent with the knowledge base. Ideally we ex-
pect that £(P) contains all possible representations of P,
including synonyms and linguistic variations of terms (e.g.,
lemmatized forms). In practice, we approximate this by re-
laxing the constraint ¢ € L(P) to allow fuzzy and partial
string matching.

The query understanding problem is to find the most prob-
able concept search query C, subject to the constraints in
Equation 3, for a given keyword query Q:

C = argmax, Pr(C’|Q) (7

such that C represents the intention of ) with respect to
a knowledge base K. In the rest of this paper, we propose
methods for estimating the quantity in Equation 7 by learn-
ing from a Web query log.

2.3 Solution Overview

Estimating the distribution in Equation 7 directly would
require a large amount of labeled training examples. The
space of possible keyword queries mapping to possible KB
queries is very large, and estimating such a mapping directly
is not feasible when training data is limited. Because of the
manual effort required in creating labeled training data, we
need to design an approach that can maximize the utility of
a small collection of training examples.

Our semantic query understanding approach is summa-
rized as a sequence of four steps, as illustrated in Figure 1.

1. Keyword Query Annotation Queries are first an-
notated with the semantic constructs from a knowledge
representation language (i.e., entity, type, attribute,
value, relation). We use part-of-speech tags as fea-
tures that suggest probable semantic constructs for
each query term. The mapping from part-of-speech
tags to semantic constructs is learned from an anno-
tated query log.

2. Keyword Query Structuring Annotated queries
are structured by computing the most probable struc-
tured query templates given the annotations as a se-
mantic summary of the query contents. This rela-
tionship between annotations and query structures is



learned from an annotated query log. Learning a map-
ping directly from keywords to structured queries would
require large amounts of training examples. By learn-
ing the mapping from semantic summaries to query
templates, we take advantage of the redundancy in the
training data caused by many queries sharing the same
summaries and templates.

3. Knowledge Base Mapping Semantically annotated
keyword queries can be combined with a structured
query template to form a structured representation
of the keyword query known as a structured keyword
query. We extend an existing approach [18] to map
structured keyword queries into concept search queries.

4. Knowledge Base Query Evaluation Concept search
queries are then executed over the knowledge base to
find entities and values described by the query. This
process performs query-time inference, exploiting the
semantics encoded in the knowledge base to compute
query answers using a custom knowledge base engine
(discussion of the knowledge base engine is beyond the
scope of this paper, however any database system that
can implement the semantics defined in Section 2.1
could be substituted).

The main focus of this paper is on the first two steps,
we build on existing methods to address the final two steps.
Note that at steps 1 and 2 of the process, we are not yet con-
cerned with how query terms map to particular knowledge
base items as would be done in traditional keyword search
over graphs. Inferring probable structures of the query terms
first will allow us to constrain the possible mappings into the
knowledge base. This can improve performance by fixing the
structure of possible mappings into the knowledge base, and
improve effectiveness by only allowing structures that have a
high probability of being representative of query intentions.
Inferring query structures also gives us the ability to know
precisely what piece of information is being requested, much
like a projection in structured query languages.

3. STRUCTURING KEYWORD QUERIES

As a first step to modeling the semantics of a keyword
query, we map keyword sequences to structures represent-
ing their intents, known as structured keyword queries, ad-
dressing steps 1 and 2 of Figure 1. A structured keyword
query describes a query in two ways: it breaks it into seg-
ments that represent particular semantic constructs, and it
describes how these constructs relate to each other. In or-
der to form structured keyword queries from a given keyword
query, we will have to address these two problems.

3.1 Query Segmentation & Annotation

We define a keyword query @ to be a sequence of query
terms Q = q1,42,-..,qn over a vocabulary V. A semanti-
cally annotated keyword query assigns semantic constructs
from a schema language to sequences of keyword query terms.

Definition 4. (Semantically Annotated Query) Given
a vocabulary V, a keyword query @ and the knowledge repre-
sentation language defined in Definition 1, a semantically an-
notated keyword query AQ (or simply annotated query when
clear from context) is a sequence of keyword phrase-semantic
construct pairs

AQ = (q1q2 ... qi):a1 {qit1---q):a2 - . {Qj+1 .- qn)ian

where each ¢; € V and each a; € {ent, type, rel, attr,val}.

A semantically annotated version of our example query is
given by the following.

“songs”type “by”rel “jimi hendriz’ent

An algorithm that annotates keyword queries with semantic
constructs must solve both the segmentation problem (the
problem of determining the boundaries that separate multi-
term phrases) and the annotation problem. We want to
compute the probability of an annotated query given a key-
word query, Pr(AQ|Q).

Research has shown that part-of-speech (POS) tagging
can be accurately performed over keyword queries [2]. Our
approach to annotating queries exploits query terms, their
POS tags, and sequential relationships between terms and
tags to concurrently infer a segmentation and semantic an-
notation of a part-of-speech annotated keyword query. To do
this, we use a conditional random field (CRF) [12], a state-
of-the-art machine learning method for labeling sequence
data. As a baseline method for comparison, we also try
a technique that directly classifies terms independently with
semantic constructs. We then segment the query by joining
any adjacent terms sharing the same semantic construct.

Baseline term classification Our baseline term clas-
sification aims to exploit the relationship between part-of-
speech tags and semantic constructs by using a term’s part-
of-speech as a proxy for the term. Intuitively, there is a
relationship between semantic constructs (e.g., entities, re-
lations) and the parts-of-speech used in describing instances
of those constructs. For example, entities are generally ex-
pressed using proper nouns like “Jimi Hendrix” or “New
York.” Relations are often described by prepositions, such
as “in” or “by.” The mapping between parts-of-speech and
semantic constructs however, is not always so clear. Rela-
tions can sometimes be described by parts-of-speech other
than prepositions (e.g., the noun “birthplace”); nouns can
often describe many different semantic constructs, such as
types, relations, and attributes; and perhaps the most chal-
lenging side of using part-of-speech tags to infer semantic
constructs is that many entities, types, and relations are
made up of multi-word phrases that can contain many dif-
ferent parts-of-speech (e.g., the relation “has won prize,” or
the type “Chancellors of Germany”).

We model an annotated query log as set of triples L =
{{Q,m,0)}i where Q is a keyword query, 7 is a function
mapping query terms to POS tags, and o is a function map-
ping query terms to semantic constructs. To classify terms
via their part of speech tags, we use the standard naive
Bayes classification method. We perform naive Bayes clas-
sification by directly estimating the joint probability dis-
tribution of POS tags and their semantic constructs from
the query log. The conditional probability of a particular
semantic construct C given a POS tag P is then the fre-
quency of that query term’s POS tag, P, mapping to C,
versus the frequency of P mapping to any semantic con-
struct, Pr(C|P) = Pr(C,P)/Pr(P) which is estimated from
the query log by the following frequencies.

Q,m,0) € Lst3qge Q,n(q) =P,o(q) =C}|

{(Q,m,0) € L s.t.3q € Q,7(q) = P}|
With a distribution over semantic constructs given the

part-of-speech of a query term, we can estimate the prob-
ability of assignments of semantic constructs to individual

pr(cpp) = U



part-of-speech tagged query terms for a whole query. As-
suming independence of query terms for tractability, this
yields the following equation.

Pr(AQ|Q) = Tzceaq Pr(C| n(q)

CRF feature design A CRF is an undirected proba-
bilistic graphical model that models sequential data. Given
a trained model and an input sequence, a CRF enables the
computation of the most probable, or k most probable la-
belings according to the model. Specifically, a labeling is an
assignment of state labels yi,...,yn, to an input sequence
Ti,...,%n, where each y; corresponds to a state in the model
and each x; corresponds to a feature vector.

We base our CRF model on the design for noun-phrase
detection proposed by Sha and Pereira [21] since our prob-
lem shares similarities. For input position z; corresponding
to query term g¢;, we define a feature vector containing the
following features: all query terms and POS tags in a size
five window around position x;; all query term bigrams in
a size three window; all POS tag bigrams in a size five win-
dow; and all POS tag trigrams in a size five window. We
include the actual query terms as features to allow impor-
tant repetitive terms to be captured (e.g., “in” describing a
relation such as “restaurants in barcelona”), but discard any
generated feature that appears only once to avoid overfitting
the particular terms in the training data.

We deviate from the model of Sha and Pereira in label de-
sign. The labels must encode both the semantic constructs
we want to annotate as well as the boundaries between
multi-term semantic constructs. We create two output la-
bels for every semantic construct in our chosen knowledge
representation language: a “begin” (B) and a “continue” (C)
label. This is the minimal encoding that allows us to iden-
tify segmentation boundaries as well as semantic constructs.
To generate training data, we label each multi-term phrase
in the training data with the begin and continue labels cor-
responding the phrase’s semantic construct. For example,
the correct labeling of our running example is the following.

“songs”type-B “by”rel-B “jimi”ent-B “hendriz”ent-C

Here, the query term “hendriz”is annotated as a continua-
tion of the entity starting with “imi”, yielding the following
annotated query.

“songs”type “by”rel “jimi hendriz”ent

Unlike our baseline term classification approach, the CRF
model can distinguish between multiple instances of the same
semantic construct occurring in succession. We train our
model using the Broyden-Fletche-Goldfarb-Shanno (BFGS)
algorithm, a type of hill climbing approach for solving non-
linear optimization problems. To avoid overfitting we use
L2 regularization. The probability Pr(AQ|Q) is then given
directly by the CRF model.

3.2 Structuring Annotated Queries

An annotated query reveals part of the latent structure
of an entity-based keyword query by indicating the seman-
tic role represented by various parts of the query. However
query annotation alone does not describe how these various
recognized semantic constructs interact to model the under-
lying query intention. In our running example query, we
know (after annotation) that the query contains a type, a
relation, and an entity. However there is still ambiguity in

what the query is seeking. Is it ultimately describing entities
of the given type that are related to the given entity? Or
is it seeking information about the given entity within the
context of the given type?

To illustrate the ambiguity in query structure, consider
the following two queries: “john smith dentist” and “new
york restaurants”. Both queries contain an entity followed
by a type. The first query seeks information about the given
entity (“ohn smith”), with a type (“dentist”) given as context
to disambiguate among possible interpretations of the entity.
Whereas the second query is seeking instances of the given
type (“restaurants”), within the context of the given entity
(“new york”).

To model high level query structure, we follow the logical
connectives from the knowledge representation language.

Definition 5. (Structured Query Template) A struc-
tured query template T is a schema-level description of a
concept search query, expressed in the following grammar

T == node | edge(T) | TiMNT:
where node € {ent, type,val} and edge € {rel, attr}.

A structured query template describes the overall graph
structure of the query as well as the node and edge types
of the query predicates. For example, the structured query
template for our example query is type Mrel(ent).

We want to estimate the probability of a query template
given a semantically annotated keyword query, Pr(T|AQ).
We assume access to an annotated query log containing both
semantically annotated queries and their structured query
templates, L = {(AQ;,T3)}.

Our structuring approach directly estimates the probabil-
ity of a structured template given an annotated query by
aggregating over all queries in the training log that share
the same high-level summary of semantic annotations.

Definition 6. (Semantic Summary) Given an anno-
tated query AQ = (q1:a1,q2:a2, ..., qn:Gn), & Semantic sum-
mary is an ordered list of semantic constructs occurring
in AQ, and is given by the function S : AQ — C" s.t.
S(AQ) = <a17a/27~"7a/n>

For example, S(“songs™type “by”rel “imi hendriz”ent) =
(type, rel, ent).

We directly estimate Pr(7|AQ) from labeled training ex-
amples in our query log from the definition of conditional
probabilities, using the semantic summary as a high level
representation of the annotated query.

_ {AQ,T') € L s4T = T',S(AQ) = S(AQ)}]

PrTIAQ) = =700 ) € L s £.5(AQ) = S(AQ)]]

The probability of a query template given an annotated
query is estimated by the proportion of queries with the
same semantic summary that are structured using that tem-
plate, versus the total number of queries with the same se-
mantic summary and any structuring.

3.3 From Structures to KB Interpretations

Combing an annotated query with a structured query tem-
plate yields a structured version of the keyword query. Com-
bining the annotated running example query with its tem-
plate gives the following query “songs”M “by’(“jimi hendriz”)
by swapping the annotated constructs into their respective
positions in the template. We allow relations and attributes



[POS | Ex. | Query | Token || Sem | Freq. |
ent | 99.1%
Proper noun | waterloo | 77.1% | 28.7% type 0.9%
type | 49.5%
. ent | 42.7%
Noun musician | 42.6% | 15.9% attr 6.8%
rel | 0.9%
type | 68.0%
ent | 20.0%
Plural noun | songs 13.6% 5.1% attr 8.0%
rel 4.0%
— ' ent | 60.0%
Adjective big 11.6% 4.3% type | 40.0%
— ) rel | 55.6%
Preposition | in 78% | 2.9% ent | 44.4%
ent | 53.8%
Number | 2008 6.6% | 25% | 1| 46.2%
URI yahoo.ca 5.0% 1.9% ent | 100%
Verb run 47% | 1.7% || ent | 100%
Determiner the 3.1% 1.2% ent | 100%
— rel | 66.7%
Gerund winning | 2.7% | 1.0% type | 33.3%

Figure 2: The ten most frequently occurring part-
of-speech tags among entity-based queries, with the
distribution of how frequently that tag mapped to
various semantic constructs.

to be unmapped (e.g., see Figure 1), however we do not
consider mappings in which entities or types are unmapped.

This type of expression is called a structured keyword query,
and methods to map these expressions into Web knowledge
bases have been developed [18]. The method proposed in [18]
first generates a list of possible KB items for each keyword
phrase in the query. These items are sorted by syntactic
similarity, forming ordered input lists. The inputs are then
processed using a variation of a top-k threshold algorithm.

In this work we extend the the method proposed in [18] in
order to support the class of query structures discovered in
our query log analysis. Our variation of structured keyword
queries is given by the following grammar.

SKQ = k | k(SKQ) | *(SKQ) | SKQ:NSKQ»

Where k is a sequence of keywords and ' denotes conjunc-
tion. This grammar follows the knowledge representation
language defined in Section 2.1. We extend the original
structured keyword query framework by adding the con-
struct *(SKQ) which allows nested queries with unknown
relations. For this construct we must consider all possible
relations in the knowledge base. We accomplish this by mod-
ifying the top-k algorithm used in [18] to dynamically add
all relations that have non-zero knowledge base support to
any KB item in adjacent input lists. We also add support to
the underlying KB formalism to account for inverse relations
and an explicit model of attributes.

Given a structured keyword query SKQ, the KB map-
ping system will return the most probable (or the top-k most
probable) concept search query C' = argmax, Pr(C'|SKQ).
The probability of a structured keyword query (represented
as a semantically annotated query and a query template
SKQ = (AQ,T)) is given by Pr(SKQ|Q) = Pr(T|AQ)
Pr(AQ|Q). We can compute the first term using the tech-

| Template | Frequency |
ent 44.9%
type M rel(ent) 12.8%
ento Mrel(enty) 7.7%
ent M type 5.8%
type 5.8%
attr(ent) 3.8%
enty Mrel(ento) 3.2%
rel(ent) 1.9%
ento Mrel(enty, rel(entz)) 1.3%
typer Mrel(typeo) 1.3%

Figure 3: The ten most frequently occurring tem-
plates among entity-based queries.

niques discussed in Section 3.1 and the second term using
the method presented in Section 3.2. Our overall goal is
to approximate the probability distribution given in Equa-
tion 7. Given a keyword query @, the concept search query
C representing the intent of @ is estimated as:

C = argmax., Pr(C'|SKQ) - Pr(SKQ|Q) (8)

for some structured keyword query SKQ. Our produced
concept search queries satisfy the problem definition in Equa-
tion 3. The queries are safe since all predicates are retrieved
from the KB, they cover all query terms by only considering
complete mappings into the KB, and they are guaranteed
consistent as we evaluate resulting concept search queries
and only include those that are non-empty.

4. ANALYSIS OF A WEB QUERY LOG

We analyzed a sample of keyword queries available from
the Yahoo WebScope program [25]. We inspected queries
keeping only those that have a semantic construct as the pri-
mary query intention, following the classification proposed
in [19]. We annotated 258 queries with the part-of-speech
tags and semantic constructs. We did not consider mis-
spelled, non-English, or other queries that were not clearly
understandable. Among the annotated queries, 156 queries
had some semantic construct as their primary intention (entity-
based queries). That is approximately 60% of queries having
a semantic construct as the primary intent of the query. This
is consistent with the analysis done in [19] which was per-
formed over a different Web query log and reported 58% of
queries having a semantic construct as the primary intent.

Our part-of-speech tag set is based on the analysis in [2],
which is a reduced tag set designed for annotating Web
queries. Figure 2 shows the distribution of part-of-speech
tags over query tokens as well as the percentage of entity-
based queries that contain that part-of-speech. The figure
also illustrates the distribution of terms with the given part-
of-speech over semantic constructs. This distribution cap-
tures the relationship between part-of-speech tags and se-
mantic constructs, which plays a key role in our annotation
methods described in Section 3.1. Not surprisingly, there is
a very strong correlation between proper nouns and entities.
Interestingly, plural nouns are a strong indicator of a term
representing a type, while regular nouns are split between
denoting type and entity labels.

From the 156 entity-based queries, we also annotated the
structured query template underlying our interpretation of
the intent of the query. In the cases where there were multi-



ple possible structurings, we annotated all of them and count
them as individual queries when computing the frequencies
for the equations described in Section 3.

Figure 3 shows the ten most frequent structured query
templates in our training query log, along with the percent-
age of queries exhibiting that structure (over all entity-based
queries). Many queries tend to repeat the same structures.

S. EXPERIMENTAL EVALUATION

5.1 System Implementations

We implemented all of the techniques described in Sec-
tion 3. We use CRF++° to learn the CRF models and use
the tool for mapping structured keyword queries into a KB
described in [18] with the modifications described in Sec-
tion 3.3. We consider the top-10 structures (unless otherwise
specified) and union the results of the best KB mapping for
each structure. For unary queries (not having multiple terms
to perform disambiguation) we employ a heuristic requiring
0.95 syntactic similarity for an interpretation to qualify.

We create two system configurations, the first using the
naive Bayes (NB) term classifier for query annotation and
the second using the CRF approach (CRF). Both systems
use the direct approach (Drct) to structuring (Section 3.2)
and the same KB mapping tool described in Section 3.3
to map the computed structured keyword queries into the
knowledge base and evaluate the resulting concept search
queries. We omit structures containing more than one un-
known relation to avoid the exponential blow-up caused by
matching over all possible pairs of relations. We have found
this does not have a significant impact on the quality of re-
sults. We implement a simple POS-tagger that builds on the
Brown and Wall Street Journal POS tagged lexicon. Our
tagger assigns the most frequent POS tag for each known
word (suitably mapped to our reduced tag set as described
in Section 4), and assigns proper noun to unseen tokens (the
most frequent tag in our query log). We find this to be suf-
ficiently accurate for our purposes. Building and evaluating
a more sophisticated POS tagger is an orthogonal problem
beyond the scope of this paper.

For comparison, we also implement two alternative ways
of mapping keyword queries into knowledge base entities.
The first method implements traditional keyword search over
graphs, with a number of heuristics taken from the litera-
ture. The process of keyword search over graphs is to find all
nodes and edges that match query terms, then search among
these seed matches to see if they can be connected. A result
graph is a subgraph of the data graph that spans all query
terms. This can be viewed as an instance of the Steiner tree
problem. Our implementation uses a breadth-first search
approach to finding Steiner trees. We use the same Lucene
index and graph database used by the KB mapping tool.
Seed nodes are processed in order of syntactic similarity to
the query term they match. The graph search will gener-
ate a given parameter number of results and return the k
highest scoring. The parameter is set to 10,000 in the ef-
fectiveness experiments and is set to 10 in the performance
experiments. Scoring is based on the same syntactic scoring
(3-gram distance) used by the KB mapping tool, normalized
by the answer graph size to promote more compact answers.

The heuristics used in our graph search implementation
include traversal of outgoing edges only, incoming edges

®http://crfpp.sourceforge.net/

only, bi-directional edge traversal [10], search depth limit-
ing as recommended in [24] (we use a depth of three), and
a last heuristic that forces type nodes to be leaves in an-
swer graphs. Note that this system returns subgraphs of
the knowledge base, and cannot precisely interpret queries
in order to find specific answers. In our evaluation, we give
this system the benefit of considering any answer graph as
correct if it contains the answer anywhere in the graph.

The second comparison approach builds a text representa-
tion of each node in the knowledge base, then performs tra-
ditional keyword search over the text representations. We
use Lucene to create an index over all labels in a one hop
radius around each node (including edge labels).

5.2 Data and Workload

We use YAGO [22] as our knowledge base, a high quality
fact collection with a rich type hierarchy over entities and
a part of the Linked Data Web. Our training data is the
Yahoo query log described in Section 4. To evaluate our
approaches, we use both queries from the query log and a
hand-crafted workload designed with specific properties we
wish to evaluate. The query workload consists of 96 queries,
half of which have an underlying query intention that can
be modeled with the data in YAGO, and half taken from
the Yahoo log that describe data mot occurring in YAGO.
The half that have YAGO answers, called positive queries,
are created to exhibit the 12 most frequent structures found
in our analysis, accounting for over 90% of all entity-based
queries. We create four examples of each of these struc-
tures. The second half are entity-based queries taken from
the Yahoo log for which we have manually verified that no
interpretation exists in YAGO. We refer to these queries as
negative queries.

The gold standard result for positive queries is defined
by manually constructing a structured query over YAGO,
and the correct answer for negative queries is defined as the
empty set. This query workload explicitly exercises both of
the problems of interpreting queries when possible, and rec-
ognizing when an interpretation is not possible. We man-
ually create the queries to ensure all structures are repre-
sented, and to control for KB coverage. Finding examples
of queries with all of the desired structures in a Web query
log, such that they also have intentions existing in YAGO
would require a huge manual effort, and possibly a larger
query sample. Existing benchmarks also do not capture all
of the structures we want to evaluate while controlling for
KB coverage. The positive queries from the workload are
available online®.

5.3 Effectiveness Results

To evaluate effectiveness we conducted a direct evaluation
of the query annotations, an evaluation of the computed
KB interpretations, and an end-to-end evaluation of the full
system in finding exact answers to keyword queries.

Precision is defined as the fraction of returned results that
are correct. Recall is defined as the fraction of all possible
correct results that get returned. MRR measures the (recip-
rocal) average rank where the (first) correct answer occurs.
Given a set of queries Q and a function rank(z) that returns
the rank of the first correct answer for query ¢, MRR is given
by the following.

Shttp://cs.uwaterloo.ca/~jpound/cikm2012/workload.txt



Avg. Query Recall Avg. Token Recall

System k=1 | k=5 | k=10 k=1 | k=5 | k=10
CRF 0.461 | 0.703 | 0.832 || 0.626 | 0.797 | 0.923
NB 0.432 | 0.500 | 0.547 || 0.616 | 0.711 | 0.736

Figure 4: Average number of queries with the cor-
rectly annotated query occurring in the top-k anno-
tations (query recall), and average number of cor-
rectly annotated tokens for the best annotation oc-
curring in the top-k (token recall).

12|

|Q| Z rank

For all measures, we count a value of 0 if a system does
not return any result for a positive query or if any result is
returned for a negative query.

MRR(Q

5.3.1 Annotation Accuracy

Figure 4 shows the results of both the NB and CRF anno-
tation approaches. Results are averages using 10-fold cross
validation over the 156 entity-based queries from the Yahoo
query log. We measure average query recall, the frequency
in which the top-k annotations of a query generates the cor-
rect complete annotation. The figure also shows average
token recall for the best annotation in a query’s top-k an-
notations. This is the fraction of query terms annotated
correctly for the best annotation produced for each query.
This is relevant because our structuring and KB mapping
tools are tolerant to errors, meaning an incorrect segmenta-
tion or annotation can still produce a correct concept search
query. While both approaches perform similarly at k=1, the
superiority of the CRF approach is clear as we consider the
top-5 to top-10 annotations.

5.3.2  Query Interpretation

There are four possible outcomes when interpreting a query.

The first is that the query is interpreted over the KB, and
the interpretation is correct (true positive); the second is
that the query is interpreted but the interpretation is in-
correct (false positive); the third is that the query does not
get interpreted though an interpretation does exist in the
data (false negative); and the last is that the query does not
get interpreted because no interpretation exists in the data
(true negative). Figure 5 shows the confusion matrices for
these outcomes for both the CRF and NB approaches when
considering the top-10 structures over the workload outlined
in Section 5.2. The figure shows that the CRF approach is
superior with respect to both types of error, and exhibits
a higher overall true positive rate (correct interpretations)
than the NB approach. Overall the CRF-based approach
produces a correct interpretation or recognizes an uninter-
pretable query almost 93% of the time. We found the CRF’s
ranked list of query interpretations to have an MRR of 0.698
on the positive query set. This means that the correct in-
terpretation is found generally in the first or second position
on average. The NB approach had an MRR of 0.589, also
slightly better than the second position on average.

5.3.3 Keyword Query Answering

We used the workload outlined in Section 5.2 to evaluate
the ability of the proposed approaches to interpret and an-

| CRF.Drct [| f (Incorrect) | t (Correct) || Total +/— |
+ (Interp) 3 (3.1%) | 45 (46.9%) 8 (50%)
— (No Interp) 4 (4.2%) | 44 (45.8%) 48 (50%)

[ Total f/t I 7 (7.3%) [ 89 (92.7%) | |
NB.Drct f (Incorrect) (Correct) Total +/—
+ (Interp) 3 (3.1%) | 36 (37.5%) || 39 (40.6%)
— (No Interp) 2 (12.5%) | 45 (46.9%) || 57 (59.4%)

[ Total £/t [ 15 (15.6%) [ 81 (84.4%) | |

Figure 5: Confusion matrices for the query interpre-
tation task. Raw counts and percentages are shown
for the true/false positive/negatives, as well as the
marginals. The 96 query workload contains 48 pos-
itive queries and 48 negative queries.

System Prec. | Recall | MRR
CRF.Drct 0.789 0.819 | 0.825
NB.Drct 0.722 0.784 | 0.768
graph search 0.516 0.682 | 0.644
text graph, k£ = 10 0.034 0.178 | 0.118
text graph, £ unbounded | 0.000 0.486 | 0.125

Figure 6: Average Precision, MRR, and Recall over
the combined positive/negative query workload.

swer keyword queries. Figure 6 shows the results of each
of the systems, as well the best run for each measure by
any of the graph search system’s configurations. The su-
perior CRF-based annotator paired with the the semantic
summary-based structuring approach has the best perfor-
mance across all metrics. While the NB approach is com-
parable, the improved annotation accuracy of the CRF ap-
proach yields better results. The graph search approach
achieves reasonable recall and MRR, meaning it can find
many correct answers and return good answers at decent
ranks, however the answer set also becomes polluted with
many non-relevant results hurting precision. The approach
has no capacity to determine which results are proper an-
swers and which are coincidental keyword matches. Also,
the graph search is given the advantage of not having to find
the precise answer to queries (any answer graph containing
the query answer is considered correct). Not surprisingly,
the text graph approach has very low precision as it is de-
signed to find resources related to the query terms and does
not attempt to interpret queries in order to find exact an-
swers. Precision is never higher than 0.1 for any value of
k. While the unbounded text graph approach achieves 97%
recall on the positive query set, it has no means of detecting
the negative queries and answers each incorrectly, bringing
down the average considerably.

5.4 Efficiency Results

Precision and recall can be traded off for run-time perfor-
mance by varying the number of candidate structures. Fig-
ure 7 shows the effect of varying the number of structures
considered from 1 to 10 for the CRF.Drct approach. As
the data points move from left to right, the total number of
structures is increasing. This gives an increase in precision
and recall as we explore more of the search space to find the
correct query interpretation, but at the expense of greater
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Figure 7: Average precision and recall vs. average
run time for varying number of KB interpretations.

run times. Occasionally an incorrect interpretation is found
causing a dip in precision. It is important to note that the
lower precision configurations of our system are most often
due to queries not being answered, as opposed to being an-
swered incorrectly. The highest precision (0.789) is obtained
for a configuration that takes 1.5 seconds per query on av-
erage. An average precision of approximately 0.74 can be
achieved in sub-second query processing time.

Figure 8 shows a breakdown of the average run-time for
each component of the system when considering the top-
10 structures. The actual annotation and structuring time
accounts for only a small percent of the total run time, with
the majority of time spent mapping candidate structures
into the knowledge base. The graph search approach (k =
10) took around 67 seconds on average, often hitting an
imposed two minute timeout. This is often due to the graph
search attempting to walk the entire search space if it is
unable to find k£ results. The text graph approach is very
efficient at k = 10, but at the cost of effectiveness.

6. RELATED WORK

Tran et al. [24] have explored mapping keyword queries
into conjunctive queries by matching terms against knowl-
edge base items and searching for connections among the
matches. This approach is similar to our graph search ap-
proach used in the evaluation, though their top-k algorithm
may explore less of the total search space than our BFS
approach. Zhou et al. have also proposed a similar data
driven approach [26]. These techniques are in contrast to
our query-log driven approach which elicits structures from
the information needs of real users. Lei et al. use manually
defined templates to map query terms into formal structured
queries over a knowledge base, and employ heuristics to re-
duce the search space when the query contains more than
two terms [13]. Fagin et al. [5] use user specified gram-
mars and vocabularies to annotate query terms with type
and attribute labels. Our proposed approach could possibly
be used to learn these types of grammars from a query log.

Many recent works have also looked at annotating individ-
ual terms in a keyword query with various levels of semantic
meaning, such as part-of-speech tags [2], and attribute la-
bels from a relational schema [20]. These works do not ad-
dress how terms relate to form single coherent expressions
of the underlying query intent. Manshadi and Li have also
proposed query interpretation using pre-defined grammars.
They also annotate terms that specify operations such as
“SortOrder” [17]. Li proposed a method of determining the
intent head of a query, the part of the query that represents
what the user is looking for (e.g., “songs” in our example

System Struct | Map | Exec || Total
CRF.Drct 0.002s | 1.23s | 0.32s 1.55s
NB.Drct 0.001s | 0.94s | 0.29s 1.24s
graph search - - - || 67.27s
text graph, £ = 10 - - - 0.33s
text graph, k£ unbounded - - - || 17.33s

Figure 8: Avg. time for annotation and structuring
(Struct), KB mapping (Map) and execution (Exec).

query) [14]. Our approach implicitly identifies the intent
head of the query by the root of the concept search query.

Agarwal et al., mined query templates from a query log [1].
Templates would generalize terms that match KB items, for
example “jobs in #location”. These templates were used to
find relevant websites based on clicks. Cheng et al. allowed
user queries to specify a similar template, which explicitly
specifies the intended return type [4]. Our template mining
is similar in nature that of Agarwal, though our templates
fully specify semantic structure and not just types occurring
in keyword queries. Also, we do not rely on input query
terms exactly matching a set of known types, but instead
match against syntactically similar types and resolve am-
biguity from the query context. Our Web knowledge base
setting also yields over 250,000 possible types.

Search over relational data can be viewed as a form of
semantic query understanding. Query terms are mapped
into structured data producing structured queries that can
be used to retrieve data that contains the queried terms.
There is a long line of research for search over structured
data, starting with the DISCOVER [8] and BANKS systems
[9] that aim to efficiently find tuples that span all query
terms, as well as extensions that aim to integrate IR style
ranking [7] or augment the graph traversal algorithm [10].
The heuristics used in our graph search approach are based
on this line of research. Tata et. al, extend keyword search
over structured data to include aggregates and top-1 queries
[23]. Queries are translated to SQL with the allowance of
various aggregation keywords such as num or avg.

Blanco et al. have used relevance based retrieval to search
for nodes in large knowledge bases [3]. This approach how-
ever does not attempt to interpret the semantics of queries,
and thus does not necessarily provide exact answers.

Semantic parsing of natural language questions shares a
similar high level goal with semantic query understanding.
Both tasks are to construct a logical representation of a
query. Semantic parsing aims to parse natural language
queries to lambda calculus expressions of the intention (see
for example [15]). Semantic parsing approaches depend on
fully specified domain-relevant questions, as opposed to short
underspecified keyword queries. Also, these approaches are
applied to small controlled domains with relatively small
homogeneous knowledge bases, as opposed to the massive
heterogeneous knowledge bases found on the Web.

Exploiting Web knowledge bases for question answering
(QA) has also been explored. Fernandez et al. propose the
PowerAqua system [6, 16] that integrates a front-end QA
system on a semantic search back-end to answer questions
over Linked Data knowledge bases. Katz et al. have built
the OMNIBASE+START system that answers questions us-
ing a knowledge base extracted from the Web [11]. While
QA has a similar high level goal to our task, QA approaches
generally depend on either having properly formatted ques-



tions that can be parsed to take advantage of the grammat-
ical structure, or they depend on having the relatively large
amount of text (as compared to keyword queries) from the
question in order to match against answer candidates.

[12] J. D. Lafferty, A. McCallum, and F. C. N. Pereira.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proc.
Eighteenth intl. conference on Machine Learning,
ICML 01, pages 282-289, 2001.

7. CONCLUSIONS AND FUTURE WORK [13] Y. Lei, V. S. Uren, and E. Motta. SemSearch: a search

We have shown how keyword queries can be interpreted engine for the semantic web. In EKAW, pages
over large scale heterogeneous Web knowledge bases by learn- 238-245, 2006.
ing semantic structures from an annotated query log. [14] X. Li. Understanding the semantic structure of noun
Future directions include exploring refinements on the gran- phrase queries. In Proc. 48th Association for
ularity of semantic annotations. For example, distinguishing Computational Linguistics, ACL "10, pages 1337-1345.
locations from other types of entities could provide addi- ACL, 2010.
tional structuring hints, since locations often appear as con- [15] P. Liang, M. I. Jordan, and D. Klein. Learning
text information in keyword queries. We are also interested Dependency-Based compositional semantics. In ACL,
in applying these techniques to other data sets and search pages 590-599, 2011.
verticals such as product and medical knowledge bases. [16] V. Lopez, M. Fernndez, E. Motta, and N. Stieler.
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