
An Error Driven Approach to Query Segmentation

Wei Zhang§
∗

, Yunbo Cao‡, Chin-Yew Lin‡, Jian Su§, Chew-Lim Tan†

§Institute for Infocomm Research
‡Microsoft Research Asia

†National University of Singapore
{zhangw3,sujian}@i2r.a-star.edu.sg, {yunbo.cao,cyl}@microsoft.com, tancl@comp.nus.edu.sg

ABSTRACT
Query segmentation is the task of splitting a query into a
sequence of non-overlapping segments that completely cover
all tokens in the query. The majority of query segmentation
methods are unsupervised. In this paper, we propose an
error-driven approach to query segmentation (EDQS) with
the help of search logs, which enables unsupervised training
with guidance from the system-specific errors. In EDQS,
we first detect the system’s errors by examining the consis-
tency among the segmentations of similar queries. Then,
a model is trained by the detected errors to select the cor-
rect segmentation of a new query from the top-n outputs
of the system. Our evaluation results show that EDQS can
significantly boost the performance of state-of-the-art query
segmentation methods on a publicly available data set.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Query Formulation

Keywords
Query Segmentation, Search Log Mining, Error Driven

1. INTRODUCTION
Tokens (or words) of the queries for search engine are

not independent or unordered symbols but rather ordered
and structured words and phrases with syntactic relation-
ships. Understanding the structure of a query is crucial
for achieving better search performance. Query segmenta-

tion (QS), a process of splitting a query into a sequence
of non-overlapping segments that completely cover all to-
kens in the query, aims to address these challenges. It re-
quires that every segment rendered is a phrase or a semantic
unit. More formally, let q = [w1, w2, · · · , wn] denote a query
consisting of n keywords. A segment s = [wi, · · · , wj](1 ≤
i ≤ j ≤ n) is a subsequence of the query. A segmenta-
tion S = [s1|s2| · · · |sK] for query q is then defined as a
sequence of non-overlapping segments. ‘|’ denotes a segmen-
tation boundary. If we assume there is no order dependency
of s, we can then treat S as a set {sk}

K
k=1.

∗Wei Zhang did this work when he was an intern at Microsoft
Research Asia.

Copyright is held by the author/owner(s)
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
2013 ACM 978-1-4503-2038-2/13/05.̇

The majority of query segmentation methods are unsuper-
vised, however, they are not as accurate as supervised meth-
ods due to the lack of guidance from labeled data. In this pa-
per, we propose an error-driven approach to query segmenta-
tion (EDQS) with the help of search logs, which enables un-
supervised training with guidance from the system-specific
errors. EDQS first assumes the existence of a base segmenta-
tion system (hereafter referred to as ‘base segmenter ’) which
is able to output top-n segmentations for any query. Then
it tries to learn a correction model capable of replacing the
rank-1 segmentation (if it is incorrect) with a ‘rank-k’(k > 1)
segmentation (if one exists) from the output of the base seg-
menter. Our study on three state-of-the-art systems shows
that for more than 25% of queries the correct segmentations
are not ranked as top-1 but included in the top-5 results,
which implies the potential of EDQS.

EDQS can be illustrated by the following flowchart. First,
a query q is fed into a base segmenter (an implementation of
any previous approach). As a result, a set of segmentations
{Si}

n
i=1 regarding q are generated. Subscript i denotes the

rank of the corresponding segmentation. Next, {Si}
n
i=1 are

fed into a correction model. The correction model tries every
possible replacement Si (i > 1) for the rank-1 segmentation
S1 (as indicated by the curved arrows). The trial ends with
two possible results: (a) None of the replacements is valid
(meaning that S1 is correct); and (b) one segmentation S∗

i

(i∗ > 1) is the most likely replacement and thus chosen as
the final segmentation for q (e.g., the replacement indicated
by the solid curve).

q
base segmenter
−−−−−−−−−−−−→

S1

S2

S3

· · ·
Sn

correction model
−−−−−−−−−−−−−→

S1

S2

S3

· · ·
Sn

Next, we detail the keys to our proposal include: how to
automatically detect the system-specific errors and then how
to use the detected errors to learn a correction model.

2. SYSTEM-SPECIFIC ERROR DETECTION
Our method to detect the system-specific errors is moti-

vated by the observation: Queries with a similar intent tend

to have consistent segmentation results. We say that a set
of queries have similar intents if and only if they lead to the
same set of web documents (i.e., URLs). For example, when
issuing to a web search engine any of the three queries in
Table 1, we search for the same set of web pages which can
provide ‘free download of Adobe writer’. We denote such a
set of queries as ‘query intent set ’. More Formally,

Definition 1. A query intent set QINT is a set of queries
satisfying the following conditions:

a)
⋂

q∈QINT Urls(q) 6= ∅;

b) |QINT | > c.

where |QINT | denotes the number of elements in QINT , and
c is set to 2 in our experiments.

Rank-1 Segmentation Result Rank-2 Segmentation Result
download adobe | writer download | adobe writer

free | adobe writer | download free | adobe | writer | download
free | adobe writer free adobe | writer

Table 1: Segmentation results for queries with a similar intent
(Results in bold are considered ‘correct’.)

For the queries in the same query intent set, naturally we
wish to explain them in the same way and thus require that
their segmentations be consistent with each other. We define

the consistency cst(S,S
′

) between segmentations S and S
′

as the number of segments they share, i.e.,

cst(S, S
′

) = |S ∩ S
′

| (1)

In Table 1, if we check only the ‘rank-1’ results, we observe
that the segmentation ‘download adobe | writer’ disagrees
with the other two, which is not what we expect to have. In-
stead, we expect to have the bolded segmentations in which
none of the individual segments for one query disagrees with
the segments for another query. Thus, we propose to detect
the errors of rank-1 segmentation and select ‘correct’ seg-
mentations from top-n segmentation results that are about
m queries in the same query intent sets as follows,

(j∗1 , · · · , j
∗
m) = argmax

1≤j1,··· ,jm≤n

(
∑

1≤i,i
′

≤m 1≤j
′

≤n

cst(Siji , Si
′
j
′)

−

∑

1≤i≤m

cst(Siji , Siji))

(2)

Given one selected segmentation Siji , the objective is to
sum up the consistencies between itself and any of the rest
n ∗m− 1 segmentations. Thus, by this objective, we choose
the segmentations that are agreed with by most top-n seg-
mentations. Finally, we can generate the instances to train
the correction model as follows:

Dq =

{

{(Sq1 7→ Sqj , 0)}j 6=1 if j∗ = 1
{(Sq1 7→ Sqj∗ , 1)} otherwise

(3)

Note that this training set is generated based on a particu-
lar base segmenter, and thus the detected errors are system-
specific.

3. CORRECTION MODEL
The decision of whether or not to correct Sq1 to Sqj can be

made by collectively considering one or multiple local trans-
formations in the form of ‘wiwi+1 7→ wi|wi+1’ or ‘wi|wi+1 7→
wiwi+1’. ‘wiwi+1 7→ wi|wi+1’ means that Sq1 does not in-
clude a segment boundary between tokens wi and wi+1 and
Sqj does; ‘wi|wi+1 7→ wiwi+1’ means the reverse.

Let T (Sq1 7→ Sqj) denote the set of all possible local trans-
formations from Sq1 to Sqj and x denote one element from
the set (i.e., one local transformation). If we know the likeli-
hood f(x) of every individual transformation x being valid,
the likelihood of replacing Sq1 by Sqj can then be estimated
as

∑

x∈T (Sq1 7→Sqj)
f(x).

The likelihood of a local transformation x being valid can
be estimated with a binary classifier. We employ SVM as
the classifier. Given an instance x, SVM assigns a score to it
based on f(x) = wTx+ b, where w denotes a weight vector
and b denotes an intercept. Given a replacement (Sq1 7→
Sqj , y) where y ∈ {0, 1}, a set of labeled data for the binary
classifier is prepared as: {x, y}x∈T (Sq1 7→Sqj). By considering
all the replacements in Dq, we will have a final training data
set {(xi, yi)}

N
i=1 for SVM.

On the basis of that, we can do the correction for a new
query as follows: If for certain j (j > 1)

∑

x∈T (Sq1 7→Sqj)

f(x) >

0, we will use the segmentation with argmax
1<j≤n

∑

x∈T (Sq1 7→Sqj)

f(x)

as its index to replace the top-1 segmentation; Otherwise,
we will keep using the top-1 segmentation. Table 2 describes
the features for representing a local transformation x.

Lexical word wi, word wi+1, word pair < wi, wi+1 >

MI Mutual Information MI(wi, wi+1),MI(s1, s2)
Semantic Freebase categories of s1, s2, s3
Rank j, the rank of the candidate segmentation
Direction 1, if “wiwi+1 7→ wi|wi+1”; 0, reverse.

Positionleft

Positionright
Number of words from the decision position to the
beginning/end of query.

Table 2: The features for classifier. s1,s2 and s3 denote the seg-
ment (including wi, wi+1, or both) of rank-1 segmentation or
candidate segmentation.

4. EXPERIMENTS
Following Hagen et al. [3], we evaluate a QS system by

query accuracy Accqry , break accuracy Accbrk and segment
F-score F sg. We use two data sets as introduced in [1]
and [2], denoted as BW07 and WQ10. We mainly utilized
three unsupervised systems as base segmenters. They are
described in [2] , [3] and [4], denoted as BaseH-1, BaseH-2

and BaseCN respectively. They can represent the state-of-
the-art QS performance.

Table 3 reports the QS results. Comparing each pair of
‘Base’ and ‘EDQS’, we can see that EDQS proposed in this
paper can be successfully spliced onto different base seg-
menters and significantly improves them over different data
sets under the three evaluation metrics. (p < 0.05, t-test).

Data Set Measure
Base

CN
Base

H-1
Base

H-2

Base EDQS Base EDQS Base EDQS

Accqry 62.2 67.2 64.6 66.2 65.6 66.8

BW07 Accbrk 85.1 90.0 86.1 87.3 87.6 88.7
F sg 74.5 79.6 75.8 78.4 78.6 79.5
Accqry 52.8 60.4 57.0 67.9 59.1 67.6

WQ10 Accbrk 80.5 84.7 83.5 89.6 84.4 89.5
F sg 67.8 72.7 71.2 79.0 72.1 78.8

Table 3: Performance on query segmentation

5. REFERENCES
[1] S. Bergsma and Q. I. Wang. Learning noun phrase

query segmentation. In EMNLP-CoNLL, 2007.

[2] M. Hagen, M. Potthast, B. Stein, and C. Bräutigam.
The power of naive query segmentation. In SIGIR,
2010.

[3] M. Hagen, M. Potthast, B. Stein, and C. Bräutigam.
Query segmentation revisited. In WWW, 2011.

[4] K. M. Risvik, T. Mikolajewski, and P. Boros. Query
segmentation for web search. In WWW, 2003.

