
Programming Languages (CS329) Midterm exam
Computer Science and Engineering 2002-09-18 09:30–11:30
Indian Institute of Technology Bombay Open book/notes

This exam consists of pages 1 through 6. Credit for each question is marked up alongside and the
total is given at the end. Use these credits for time management. It is advisable to provide some
verbal intuition, because this may earn you partial credit in case the final answer is wrong.

You can use the FWH book, your own notes, and notes posted on the course Web pages in the last
three years. You cannot use notes written by another student which you have copied, unless you wrote
the notes in a fair collaboration.

Write your answers only in the spaces provided. Carry out any rough work on separate sheets of
paper; do not attach rough sheets. Do not write inside the boxes meant for entering scores.

1. Suppose I1 and I2 are different identifiers, and I2 6∈ FV [E1].

(a) Give an example of E1, E2 and E3 such that

[E1/I1]
(
[E2/I2]E3

)
6≡ [E2/I2]

(
[E1/I1]E3

)
.

2
(b) Although trivial commutativity does not hold, a minor adjustment to the substitution will

make things work out. Fill in the blank below.

[E1/I1]
(
[E2/I2]E3

)
≡

[
( E2)/I2

](
[E1/I1]E3

)

3
(c) Prove by induction that your choice works.

1



3

2. (a) Complete this design of the integer decrement (DEC) function which, given a Church numeral
n̄ as input, outputs n− 1. Here ID is the identity function, (λ y y).

λn . IF (ZERO? n) 0̄
(n

(λ x (IF (x ID FALSE) 0̄ (INC x)) )

)

2
(b) Explain how your choice works.

2

3. What is the result of evaluating the following expression using FLK with dynamic scope?

let a = 1

let f = (proc b (+ a b))

(call f (let a = (call f 20)

(call f 300)) )

3

4. In class we considered only the single-binding let construct. We can easily extend this to a
multi-binding let construct, provided no right-hand-side uses any of the identifiers to be bound.
In other words, no Ij (j = 1, . . . , n) is allowed to occur free in any Ek (k = 1, . . . , n) in the
following code:

2



let I1 = E1 I2 = E2 . . . In = En

E0

We will also assume the availability of multi-argument procs, written as (proc (x y)...), with
the understanding that a multi-binding let can be desugared into a multi-argument proc.

While describing Y and rec, we have only considered a single recursive function which calls
itself. Real languages support mutual recursion between a set of functions, which, in FLK style,
may be expressed as

letrec f = (proc x ...(call g ...)...) g = (proc y ...(call f ...)...)
;; use f and g here

Desugar the letrec construct using rec and multi-binding lets, by completing the template
given below, where Ic, Is 6∈ ∪0≤j≤nFV [Ej ].

D[(letrec I1 = E1 ... In = En E0)] =

(call (rec Ic (proc Is

(let I1=(call Ic ) ... In=(call Ic )
(call D[E1] . . . D[En]) )

)

) (proc (I1 ... In) D[ ]) )

(We have left around some lets for readability, but these are easily removed via additional
desugaring.)

6

3



5. What is potentially dangerous about the following C++ code fragment? (Hint: it has got to do
with virtual methods.)

class istream {
public:
istream() { }
~istream() { }
virtual int getChar() =0;

};
class ifstream : public istream {
protected:
int fileDesc;
public:
ifstream(const char * fileName);
~ifstream();
int getChar();

};

ifstream::ifstream(const char * fn) {
fileDesc = open(fn, O\_RDONLY);

}
ifstream::~ifstream() {

close(fileDesc);
}
int ifstream::getChar() {

// getChar on files
// implemented here

}

Suppose I construct a ifstream object (which results in a file descriptor being allocated), and
cast an istream pointer to this object. I can use the istream pointer to invoke the getChar
method on the ifstream object, because getChar is virtual. Afterwards, if I delete the istream
pointer (instead of deleting the ifstream pointer, because the destructor istream is not
virtual, the file descriptor will not be released, resulting in a resource leak. See Delete.cpp for
an example you can play with.

3

6. The Fibonacci function can be written in FLK in the following manner:

(rec fib (proc n
(if (< n 2) 1

(+ (call fib (- n 1)) (call fib (- n 2))) ) ) )

Convert the above code to continuation passing style by completing this template:

(rec fib-cps (proc (n k) ...)

(rec fib-cps
(proc (n k)

(if (< n 2) (call k 1) ;; (< n 2) is primitive
(call fib-cps (- n 1) ;; (- n 1) is primitive

(proc (v1)
(call fib-cps (- n 2)

(proc (v2) (call k (+ v1 v2)))
) )

) ;call
) ;if

) ;proc
)

4

4

Delete.cpp


7. Here is a session from the MIT Scheme interpreter:

1 ]=> (define bump (lambda (x) (begin (display x) x)))
;Value: bump
1 ]=> (* (bump 5) (bump 6))
65
;Value: 30

Here are some standard semantics for FLK (no Store) to help you. Scheme is similar.

Cont = ExpVal → ExpVal
Proc = ExpVal → Cont → ExpVal
E : Expr → Env → Cont → ExpVal

E [(callcc E] = λu λk

(
E [E]u λ p

(
p λ d λ j (k d) k

))

E [(proc I E)] = λ u0 λ k0

k0 λ eλ k1

(
E [E]

I→ e

u0
k1

)
What is the result of evaluating the following Scheme code?

(a) (+ 1 (callcc (lambda (c) (/ 2 (* (c 3) (c 4)) ) ) ) )

The answer is 1 + 4 = 5, because ‘*’ seems to be evaluated right-associatively in Scheme.

3
(b) (+ 1 (callcc (lambda (c) (* 2 (c (c 10)))) ) )

The answer is 1 + 10 = 11. Which c is/are involved? Try modifying the code to find out.

3

8. We wish to add the following looping construct to FLK!:

E ::= . . . | (loop E) | (break E)

(loop E1) evaluates E1 repeatedly for ever. (break E2) ends the nearest lexically enclosing
loop with the return value of E2.

E.g., the following FLFL code (when translated to FLK!) will evaluate to 1+2+3+4+5 = 15:

let s = 0, i = 0

(loop

(begin

(:= s (+ s i))

(if (> i 5) (break s) (:= i (+ 1 i)))

) )

Write down standard semantics for these new constructs. (Note: the FLFL code is only an
example. The rest of this question concerns FLK!, not FLFL.) Do not present a desugaring into
callcc, label or goto. You may use new, read and write if you wish. Make sure there is no
unlimited growth of storage (unless the programmer allocates new cells, of course) even if the
number of loop iterations is arbitrarily large.

The following Scheme code should help you answer the question.

5



1 ]=> (define a 3)
1 ]=> (define looper (lambda (body)

(begin
(callcc (lambda (c) (set! a c)))
(body)
(a 1) ) ) )

1 ]=> (define mybody (lambda () (display "foo ")))
1 ]=> (looper mybody)

6

Total: 40

you may use the space below for rough work

6


